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The effect of sodium-glucose cotransporter 2 inhibitor (SGLT2I) on

nonalcoholic steatohepatitis (NASH) has been reported, but there are few

studies on its effect on NASH-related renal injury. In this study, we exam-

ined the effect of SGLT2I using a novel medaka fish model of NASH-

related kidney disease, which was developed by feeding the d-rR/Tokyo

strain a high-fat diet. SGLT2I was administered by dissolving it in water

of the feeding tank. SGLT2I ameliorates macrophage accumulation and

oxidative stress and maintained mitochondrial function in the kidney. The

results demonstrate the effect of SGLT2I on NASH-related renal injury

and the usefulness of this novel animal model for research into NASH-

related complications.

Nonalcoholic fatty liver disease (NAFLD) is closely

associated with obesity, diabetes, hyperlipidemia, hyper-

tension, and insulin resistance [1–3] and frequently com-

plicated with various metabolic diseases including

chronic kidney disease and cardiovascular disease which

can adversely impact prognosis. As insulin resistance is

a major risk factor for disease progression, a variety of

antidiabetic therapies are expected to provide benefit in

NAFLD [4–6]. Among these potential therapeutic

approaches, sodium-glucose cotransporter 2 inhibitors

(SGLT2Is), which reduce hyperglycemia by suppressing

glucose reabsorption in proximal tubules and improving

insulin resistance, glucotoxicity, and lipotoxicity [7–9],

were shown to be effective in ameliorating NAFLD pro-

gression in basic [10–13] and clinical [14–24] studies. In

addition, we recently showed the preventive effect of

tofogliflozin (Tofo), a highly specific SGLT2I [13], on

fatty infiltration and fibrotic changes in the liver of

high-fat diet (HFD)-fed medaka fish (Oryzias latipes)

nonalcoholic steatohepatitis (NASH) model [25]. This

model provided ease of maintenance of animals under

the same condition (the same concentrations of the

chemical compound dissolved in water) and high fecun-

dity. Intriguingly, a recent study reported that the
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HFD-fed medaka exhibited enlarged glomeruli, dilated

glomerular capillaries, and expanded mesangium,

changes comparable to changes observed in humans

with metabolic syndrome-related glomerulopathy [26].

To date, only a few studies demonstrated the beneficial

effect of SGLT2Is on chronic renal injury in NASH ani-

mal models and elucidated the underlying mechanisms

[27–31]. The mechanisms include the renal inflamma-

tion, fibrosis, ER stress, apoptosis and lipid accumula-

tion due to the increased renal expression of reactive

oxygen species related to oxidative stress [11,28] and

TGF-b1, type IV collagen, and fibronectin [11]. There-

fore, we examined whether NASH-related renal injury

could be ameliorates by the SGLT2I Tofo and assessed

renal changes, inflammation, oxidative stress, and renal

mitochondrial damage in the medaka model of NASH.

We found that Tofo ameliorates the accumulation of

macrophages and oxidative stress and maintained mito-

chondrial function in the renal tubules of medaka fish in

the HFD-induced renal injury model. These results

demonstrate the beneficial effect of an SGLT2I in

NASH-related renal injury and further reveal the utility

of the medaka model of NASH in examining these

effects and evaluation of other potential therapeutic

compounds for NASH-related complications.

Materials and methods

Animals and diets

All animal experiments were conducted in full compliance

with the regulations of the Institutional Animal Care and Use

Committee at Niigata University (Niigata, Japan) that

approved the study protocol. All animals received humane

care according to the criteria outlined in the ‘Guide for the

Care and Use of Laboratory Animals’ by the National Acad-

emy of Sciences and published by the National Institute of

Health. The d-rR/Tokyo strain of medaka fish (strain ID:

MT837) was supplied by NBRP Medaka (https://shigen.

nig.ac.jp/medaka/). All animals were 4 months old and main-

tained in plastic tanks containing 2 L tapwater in plastic tanks

under fluorescent light from 8 AM to 8 PM. The water tem-

perature was maintained at 25 � 1 °C. The medaka NASH

model was developed by feeding the fish an HFD described in

a previous study [25,32]. Briefly, each tank was supplied with a

control diet (Hikari Labo M-450; Kyorin, Hyogo, Japan) or

HFD (HFD32; CLEA Japan, Tokyo, Japan), at a rate of

20 mg�day�1 per fish to be consumedwithin 14 h.

Tofogliflozin administration

Tofogliflozin (Kowa Co. Ltd., Tokyo, Japan) was prepared

at a final concentration of 0.5 mg�L�1 in the tank

containing the fish to be treated, as described previously

[25]; this concentration is the Cmax of 500 ng�mL�1 in

humans treated with a standard Tofo dose of 20 mg.

Briefly, Tofo was dissolved in dimethyl sulfoxide (Nacalai

Tesque, Kyoto, Japan) to a concentration of 100 mg�mL�1

and then added to the water of the plastic tank at a final

concentration of 0.5 mg�L�1. The same amount of dimethyl

sulfoxide was administrated to the tank of the HFD group

as vehicle control.

Histological analyses

Kidney tissue samples were collected at the indicated time

points, fixed in 10% formalin, and embedded in paraffin.

Sections that were 10 lm in thickness were stained using

the standard periodic acid/Schiff method. Mouse anti-8-hy-

droxy-20-deoxyguanosine (8-OHdG) antibody (ab48508,

1 : 100 dilution; Abcam, Cambridge, UK), rabbit anti-glu-

tathione peroxidase 1 (GPX1) antibody (ab22604, 1 : 1000

dilution; Abcam), rabbit anti-F4/80 antibody (ab111101,

1 : 100 dilution; Abcam), rabbit anti-optic atrophy type 1

(OPA1) antibody (ab157457, 1 : 500 dilution; Abcam),

Vectastain Elite ABC rabbit IgG kit (PK-6101; Vector

Laboratories, Burlingame, CA, USA), Vectastain Elite

ABC mouse IgG kit (PK-6102; Vector Laboratories), and

DAB chromogen tablets (Muto Pure Chemicals, Tokyo,

Japan) were used for immunohistochemical staining.

Images were randomly captured from each tissue section,

and the measurement of the kidney and glomerular sizes

and the quantitative analysis of areas and/or cells stained

positively for 8-OHdG, GPX1, OPA1, and F4/80 were

performed using the IMAGEJ software (version 1.6.0_20;

National Institutes of Health, Bethesda, MD, USA) as

reported previously [33]. Liver tissue samples were col-

lected at the appropriate time points, fixed in 10% forma-

lin, and embedded in paraffin. Sections (10 lm) were

stained with standard hematoxylin and eosin.

Biochemical analyses

Blood samples were collected from the animals following a

12-h fasting period for all instances, as previously reported

[25]. Fish were kept on ice for 1 min; thereafter, they were

bled by cutting the ventral portion of the tail fin. Blood

was collected in a heparinized microcapillary tube (VC-

H075H; Terumo, Tokyo, Japan) and centrifuged at 1200 g

for 12 min at 22 °C. Blood glucose levels were analyzed

using a glucometer (Glucocard G Black, GT-1830; Arkray,

Kyoto, Japan).

Statistical analyses

Data were analyzed using one-way or two-way analysis of

variance with repeated measures followed by Bonferroni’s
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multiple comparison test. A P value ≤ 0.05 was considered

to indicate statistical significance.

Results

Effect of Tofo on blood glucose and kidney size

in the medaka model of NASH

We first evaluated the effect of Tofo on changes in

blood glucose levels over time in chow-fed (chow),

HFD-fed (HFD), and HFD-fed and Tofo-treated

(HFD + Tofo) groups (Fig. 1A). Over 12 weeks,

whereas blood glucose levels did not show significant

changes in the chow group over 12 weeks, the HFD

group exhibited a significant increase from the control

level of 36.4 � 4.4 mg�dL�1 to 102.8 � 78.3,

132.2 � 112.3, and 146.0 � 121.8 mg�dL�1 in 4, 8,

and 12 weeks, respectively. Importantly, the blood glu-

cose levels were modestly decreased to 78.3 � 19.7,

112.3 � 22.3, and 121.8 � 54.2 mg�dL�1 in 4, 8, and

12 weeks, respectively, in the HFD + Tofo group

(P < 0.05 in 4 weeks) (Fig. 1A). The liver tissue

showed successful development of significant fatty

infiltration in the liver (Fig. 1B) and that Tofo amelio-

rates the changes (Fig. 1C) as previously reported [25].

The HFD group exhibited enlargement of the renal

size from the control level of 737.7 � 101.3 µm
to 1645.5 � 109.8 µm following 12 weeks of HFD

feeding, whereas the HFD + Tofo group showed

milder enlargement to 1343.3 � 92.5 µm (P < 0.01)
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Fig. 1. Effects of Tofo on blood glucose, renal size, histological changes, and the glomerular size in the kidney of the medaka model of

NASH. (A) The time-dependent changes in the blood glucose serum biochemical markers. The values represent mean � SD values (n = 15

for each group). Two-way ANOVA followed by Bonferroni’s multiple comparison test. *P < 0.05. Representative microscopic findings of

medaka liver tissues stained with hematoxylin and eosin staining from medaka fed with HFD (B) and HFD + Tofo (C) for 12 weeks. Scale

bar represents 100 µm. (D) The time-dependent changes in the renal size in each group. The values represent mean � SD values (n = 15

for each group). *P < 0.05, **P < 0.01, ***P < 0.001, and NS, no statistical significance. One-way ANOVA followed by Bonferroni’s multiple

comparison test. Representative microscopic findings of medaka kidney tissues stained with the periodic acid/Schiff method. (E) Chow-fed

medaka. (F–K) Medaka fed with HFD and HFD + Tofo for 4, 8, and 12 weeks. Scale bar represents 50 µm. (L) Quantitative analysis of

glomerular size in the medaka kidneys. The values represent mean � SD values (n = 15 for each group). *P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001, and NS, no statistical significance. One-way ANOVA followed by Bonferroni’s multiple comparison test.
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(Fig. 1D). Mild and statistically nonsignificant changes

in renal size were seen over the 12-week period in the

chow group. And the differences between Chow and

HFD showed the evidence of successful development

of NASH-related kidney disease. These results con-

firmed that in the HFD-induced NASH model in

medaka, Tofo was effective in reducing elevated blood

glucose level and renal swelling induced by elevated

blood glucose.

Effect of Tofo on glomerular size in the medaka

model of NASH

To determine whether glomerular enlargement, a char-

acteristic of HFD-induced renal injury associated with

mesangial expansion and glomerular capillary dilata-

tion, was suppressed by Tofo, we assessed time-depen-

dent changes in glomerular size in our medaka fish

model of NASH. The HFD group exhibited a signifi-

cant, time-dependent increase in glomerular size to

140 µm compared with the glomerular size of 60 µm
in the chow group over 12 weeks (Fig. 1E–H), and this

increase was milder when Tofo was administered

(P < 0.05) (Fig. 1I–K). No significant changes in the

glomerular size were seen in the chow group, and no

difference in expansion of the renal matrix was seen in

the HFD and HFD + Tofo groups (Fig. 1L). These

results suggested that Tofo slowed down HFD-induced

glomerular enlargement in the medaka model of

NASH.

Effect of Tofo on oxidative stress in the kidney of

the medaka model of NASH

To further elucidate the mechanism underlying the

effect of Tofo on HFD-induced renal injury in the

medaka model of NASH, we assessed the expression

levels of 8-OHdG and GPX1 in the renal tissues using

immunohistochemical analyses (Fig. 2). The HFD

group showed increases in the percentage of 8-OHdG-

positive areas in the renal tissue in a time-dependent

manner, from 8.1 � 0.5% in the control group

(Fig. 2A) to 12.0 � 0.8%, 17.8 � 0.5%, and

18.7 � 1.0% (Fig. 2B–D) at 4, 8, and 12 weeks in the

HFD group, respectively. The percentage of 8-OHdG-

positive areas was significantly suppressed to

9.2 � 0.3%, 10.8 � 1.1%, and 11.8 � 1.1% at 4, 8,

and 12 weeks, respectively, in the HFD + Tofo group

(Fig. 2E–H). Conversely, the percentage of GPX1-pos-

itive areas was significantly decreased from the control

level of 6.4 � 0.6% (Fig. 2I) to 4.4 � 0.5%,

3.3 � 0.6%, and 3.1 � 0.3% (Fig. 2J–L) at 4, 8, and

12 weeks in the HFD group, respectively, and was

significantly suppressed to 5.6 � 0.3%, 5.3 � 0.4%,

and 4.2 � 0.1% by Tofo administration (Fig. 2M–P).
The differences between Chow and HFD (Fig. 2H,P)

suggested that the HFD-induced renal injury led to

oxidative stress represented by the accumulation of

8-OHdG and the decrease in GPX1-positive staining,

both of which were effectively alleviated by Tofo,

although the effect is milder in later stage of 12 weeks.

Accumulation of F4/80-positive cells in the

kidney of the medaka model of NASH

To examine the HFD-induced inflammation in the kid-

ney, we next determined whether there was macro-

phage accumulation in the kidneys of medaka fish in

the HFD-induced NASH model and whether this

could be ameliorates by Tofo. Therefore, we deter-

mined the number of cells positively stained with F4/

80. While no increase with aging in 12 weeks was

observed in the chow group (50–60 cells per high-

power field) (Fig. 3A), the HFD group showed

increases in the F4/80-positive cells over time to

110.1 � 16.9, 187.6 � 14.5, and 152.6 � 25.6 at 4, 8,

and 12 weeks, respectively (Fig. 3B–D). This increase

was significantly suppressed to 77.5 � 12.7,

118.5 � 25.4, and 125.7 � 26.8 at 4, 8, and 12 weeks,

respectively, by Tofo administration (Fig. 3E–H). The

differences between Chow and HFD (Fig. 3H) pro-

vided evidence that HFD-induced inflammation and

oxidative stress led to an increase in the number of

macrophages, which was suppressed by Tofo adminis-

tration in our animal model although the effect is

milder in later stage of 8 and 12 weeks.

Effect of Tofo on mitochondrial function in renal

tubules in the medaka model of NASH

To determine whether HFD led to mitochondrial dam-

age, we assessed the kidney tissue samples in the

medaka model of NASH by OPA1 staining. While no

change in the percentage of OPA1-stained areas was

observed in the chow group, with 6%–7% OPA1-posi-

tive areas in the control (Fig. 4A), the HFD group

exhibited significant decreases in the percentage of

OPA1-positive areas to 5.5 � 0.6%, 4.2 � 0.2%, and

3.9 � 0.3% at 4, 8, and 12 weeks, respectively

(Fig. 4B–D). These decreases were reversed with signif-

icant increases in the percentage of OPA1-positive

areas to 6.4 � 0.5%, 6.2 � 0.3%, and 5.2 � 0.3% at

4, 8, and 12 weeks, respectively, by Tofo administra-

tion (Fig. 4E–H). The differences between Chow and

HFD (Fig. 4H) suggested that HFD-induced renal

injury was associated with damaged mitochondrial
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function in the renal tubules represented by OPA1

expression, a key GTPase necessary for mitochondrial

fusion and maintenance of mitochondrial homeostasis,

which was suppressed by Tofo administration in our

animal model although the effect is milder in later

stage of 12 weeks.

Discussion

With increasing incidence, NAFLD is becoming the

most common chronic liver disease. Disease progres-

sion is related to obesity, diabetes, hyperlipidemia,

hypertension, and insulin resistance [1–3], and chronic

renal injury and cardiovascular disease are common

complications that aggravate each other and are

associated with bad prognosis in patients with

NAFLD/NASH [34]. These complications are known

to be induced by inflammation and oxidative stress,

which aggravate glucotoxicity and lipotoxicity of meta-

bolic syndrome [27,34]. Specifically, NASH-related

renal injury shares several features with diabetic kid-

ney disease and is associated with renal changes

including glomerular enlargement, focal segmental

glomerulosclerosis, and renal tubular damage [35–37].

The causative factors underlying these features of

chronic renal injury include changes in adipokine levels

such as a reduction in adiponectin, which mediates

fatty acid metabolism by increasing peroxisome prolif-

erative-activated receptor-a expression and inducing

AMP-activated protein kinase phosphorylation [38].
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Fig. 2. Effects of Tofo on the level of 8-

OHdG and GPX1 in the kidney of the

medaka model of NASH. Representative

microscopic findings of medaka kidney

tissues stained with anti-8-OHdG antibody.

(A) Chow-fed medaka. (B–G) Medaka fed

with HFD and HFD + Tofo for 4, 8, and

12 week. Scale bar represents 100 µm.

(H) Quantitative analysis of positively

stained area with anti-8-OHdG antibody in

the medaka kidneys. The values represent

mean � SD values (n = 15 for each

group). *P < 0.05, ***P < 0.001,

****P < 0.0001, and NS, no statistical

significance. One-way ANOVA followed by

Bonferroni’s multiple comparison test.

Representative microscopic findings of

medaka kidney tissues stained with anti-

GPX1 antibody. (I) Chow-fed medaka. (J–

O) Medaka fed with HFD and HFD + Tofo

for 4, 8, and 12 weeks. Scale bar

represents 100 µm. (P) Quantitative

analysis of positively stained area with

anti-GPX1 antibody in the medaka kidneys.

The values represent mean � SD values

(n = 15 for each group). *P < 0.05,

**P < 0.01, ***P < 0.001, and NS, no

statistical significance. One-way ANOVA

followed by Bonferroni’s multiple

comparison test.
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Basic and clinical studies that provide evidence for

these mechanisms used renal histological analyses in

HFD-induced diabetic nephropathy models and

reported inflammation, macrophage activation in

glomerular as well as interstitial lesions, accumulation

of oxidative stress [39–41], and mitochondrial damage

in renal tubules [29,37]. However, few studies have

investigated the effect of SGLT2Is on NASH-related

renal injury in an animal model. Therefore, we have

examined the renal inflammation, oxidative stress,

and mitochondrial function in a medaka model of

HFD-induced renal injury that recapitulates changes

in NASH-associated renal injury [26], because of the

ease of maintenance of these animals under the same

concentrations of chemical compounds dissolved in

water and their high fecundity. In this model, we pre-

viously reported that Tofo attenuated the fatty and

fibrotic changes in the liver [25]. In the current study,

we examined the effect of Tofo, a selective SGLT2I,

on NASH-related renal injury by assessing macro-

scopic and microscopic changes in the kidneys, mark-

ers of inflammation and oxidative stress, and

mitochondrial function in the renal tubules. Compar-

ison of the Chow and HFD groups with regard to the

A

B E

H

C F

D G

Fig. 3. Effects of Tofo on the

accumulation of macrophages in the

kidney of the medaka model of NASH.

Representative microscopic findings of

medaka kidney tissues stained with anti-

F4/80 antibody. (A) Chow-fed medaka. (B–

G) Medaka fed with HFD and HFD + Tofo

for 4, 8, and 12 weeks. Scale bar

represents 100 µm. (H) Quantitative

analysis of the number of positively

stained cells per high-power field with

anti-F4/80 antibody in the medaka kidneys.

The values represent mean � SD values

(n = 15 for each group). **P < 0.01,

***P < 0.001, ****P < 0.0001, and NS,

no statistical significance. One-way

ANOVA followed by Bonferroni’s multiple

comparison test.

A
H

B E

C F

D G

Fig. 4. Effects of Tofo on the expression

of OPA1 in the renal tubules in the kidney

of the medaka model of NASH.

Representative microscopic findings of

medaka kidney tissues stained with anti-

OPA1 antibody. (A) Chow-fed medaka. (B–

G) Medaka fed with HFD and HFD + Tofo

for 4, 8, and 12 weeks. Scale bar

represents 100 µm. (H) Quantitative

analysis of the number of positively

stained cells with anti-OPA1 antibody in

the renal tubules in the medaka kidneys.

The values represent mean � SD values

(n = 15 for each group). *P < 0.05,

***P < 0.001, ****P < 0.0001, and NS,

no statistical significance. One-way

ANOVA followed by Bonferroni’s multiple

comparison test.
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levels of blood glucose, sizes of the kidneys and

glomerulus (Fig. 1), and levels of 8-OHdG (Fig. 2),

GPX1 (Fig. 2), F4/80 (Fig. 3), and OPA1 (Fig. 4) indi-

cated the successful development of NASH-related

kidney diseases. Additionally, after demonstrating the

effect of Tofo on blood glucose levels in the medaka

model of NASH, we showed that Tofo slowed

glomerular enlargement that led to renal swelling

induced by HFD. However, our results indicated that

Tofo did not affect the mesangial expansion, which is

consistent with the findings of a previous report

[11,28,31]. In addition, in our medaka model of

NASH, we showed that these changes associated with

Tofo administration were related to the amelioration

of macrophage accumulation and oxidative stress in

the kidney as well as the maintenance of mitochondrial

function in the renal tubules in HFD-induced renal

injury in this medaka model of NASH. Our study

appeared to have a limitation in the analysis of renal

function (including proteinuria and the estimated

glomerular filtration rate) because the urinary volume

of medaka has been reported to be 1 mL�h�1�kg�1 and

urine is difficult to collect appropriately [42]. The com-

parison of the Chow and HFD + Tofo groups demon-

strated that the effect of Tofo became mild with

continuous feeding of HFD for 12 weeks, indicating

that further analyses regarding the doses and combina-

tions with other antidiabetic drugs, lipid-lowering

drugs, etc., will help improve its effectiveness.

In conclusion, we showed that the highly specific

SGLT2I Tofo prevented the progression of NASH-re-

lated renal injury by reducing oxidative stress and

macrophage accumulation and maintaining mitochon-

drial function in the renal tubules. Additionally, the

medaka model might be a useful platform for cost-ef-

fective evaluation of the efficacy of therapeutic

approaches in NASH-related complications. Therefore,

further analyses involving testing of various medicines

in the medaka NASH model will help reveal better

combinations of medicines for the treatment and pre-

vention of NASH and its complications.
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