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ABSTRACT A multiple-trait Bayesian LASSO (MBL) for genome-based analysis and prediction of quantitative traits is presented and
applied to two real data sets. The data-generating model is a multivariate linear Bayesian regression on possibly a huge number of
molecular markers, and with a Gaussian residual distribution posed. Each (one per marker) of the T 3 1 vectors of regression
coefficients (T: number of traits) is assigned the same T2variate Laplace prior distribution, with a null mean vector and unknown
scale matrix Σ. The multivariate prior reduces to that of the standard univariate Bayesian LASSO when T ¼ 1: The covariance matrix of
the residual distribution is assigned a multivariate Jeffreys prior, and Σ is given an inverse-Wishart prior. The unknown quantities in the
model are learned using a Markov chain Monte Carlo sampling scheme constructed using a scale-mixture of normal distributions
representation. MBL is demonstrated in a bivariate context employing two publicly available data sets using a bivariate genomic best
linear unbiased prediction model (GBLUP) for benchmarking results. The first data set is one where wheat grain yields in two different
environments are treated as distinct traits. The second data set comes from genotyped Pinus trees, with each individual measured for
two traits: rust bin and gall volume. In MBL, the bivariate marker effects are shrunk differentially, i.e., “short” vectors are more strongly
shrunk toward the origin than in GBLUP; conversely, “long” vectors are shrunk less. A predictive comparison was carried out as well in
wheat, where the comparators of MBL were bivariate GBLUP and bivariate Bayes Cp—a variable selection procedure. A training-
testing layout was used, with 100 random reconstructions of training and testing sets. For the wheat data, all methods produced
similar predictions. In Pinus, MBL gave better predictions that either a Bayesian bivariate GBLUP or the single trait Bayesian LASSO. MBL
has been implemented in the Julia language package JWAS, and is now available for the scientific community to explore with different
traits, species, and environments. It is well known that there is no universally best prediction machine, and MBL represents a new
resource in the armamentarium for genome-enabled analysis and prediction of complex traits.
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TWO main paradigms have been employed for investi-
gating statistical associations between molecular

markers and complex traits: marker-by-marker genome-
wide association studies (GWAS) and whole-genome re-
gression approaches (WGR). GWAS is dominant in human
genetics; Visscher et al. (2017) present a perspective and

Gianola et al. (2016) formulate a statistically orientated
critique. WGR was developed mostly in animal and plant
breeding (e.g., Lande and Thompson 1990; Meuwissen
et al. 2001; Gianola et al. 2003) primarily for predicting
future performance, but it has received some attention in
human genetics as well (e.g., de los Campos et al. 2010;
Yang et al. 2010; Lee et al. 2011; Makowsky et al. 2011;
López de Maturana et al. 2014). de los Campos et al.
(2013), Gianola (2013) and Isik et al. (2017) reviewed
an extensive collection of WGR approaches. Other studies
noted that WGR can be used both for “discovery” of asso-
ciations and for prediction (Moser et al. 2015; Goddard
et al. 2016; Fernando et al. 2017). Hence, WGR methodol-
ogy is an active area of research.
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Multiple-trait analysis has long been of great interest in
plant and animal breeding, mainly from the point of view of
joint selection for many traits (Smith 1936; Hazel 1943;
Walsh and Lynch 2018). Henderson and Quaas (1976) de-
veloped multi-trait best linear unbiased prediction of breed-
ing values for all individuals and traits measured in a
population of animals—a methodology that has gradually
become routine in the field. For example, Gao et al. (2018)
described an application of a nine-variate model to data rep-
resenting close to 7 million and 4 million Holstein and Nor-
dic Red cattle, respectively; the nine traits were milk, fat, and
protein yields in each of the first three lactations of the cows.

A multiple-trait analysis is also a natural choice in quests
for understanding and dissecting genetic correlations be-
tween traits using molecular markers, e.g., evaluating
whether pleiotropy or linkage disequilibrium are at the
root of between-trait associations (Gianola et al. 2015;
Cheng et al. 2018a). For instance, Galesloot et al. (2014)
compared six methods of multivariate GWAS via simula-
tion and found that all delivered a higher power than sin-
gle-trait GWAS, even when genetic correlations were
weak. Many single-trait WGR methods extend directly to the
multiple-trait domain, e.g., genomic best linear unbiased pre-
diction (GBLUP; VanRaden 2007). Other procedures, such as
Bayesian mixture models, are more involved, but extensions
are available (Calus and Veerkamp 2011; Jia and Jannink
2012; Cheng et al. 2018a). The mixture model of Cheng
et al. (2018a) is particularly interesting because it provides
insight into whether markers affect all, some, or none of the
traits addressed. For example, the proportion of markers in
each of the ð0; 0Þ; ð0; 1Þ; ð1; 0Þ and ð1; 1Þ categories, where
ð0; 0Þmeans “no effect,” and ð1; 1Þ denotes “effect” on each of
two disease traits in Pinus taedawas estimated by Cheng et al.
(2018a) using single nucleotide polymorphisms (SNPs). The
proportion of Markov chain Monte Carlo (MCMC) samples
falling into the ð1; 1Þ class was ,3%, with �140 markers
appearing as candidates for further scrutiny of pleiotropy;
97% of the SNP were in the ð0; 0Þ class, and 0.5% were in
the ð0; 1Þ and ð1; 0Þ classes. It must be noted that Cheng
et al. (2018a) used Bayesian model averaging, so posterior
estimates of effects, and of their uncertainties, constitute av-
erages over all possible configurations. The resulting “average
model” is not truly sparse, as Bayesian mixture models always
assign some posterior probability to each of the possible con-
figurations. An alternative to a mixture is to use a prior distri-
bution that produces strong shrinkage toward the origin of
“weak” vectors of marker effects; here, each marker has a
vector with dimension equal to the number of traits.

The LASSO (least absolute shrinkage and selection oper-
ator) method presented by Tibshirani (1996) is a single-
response method based on minimizing a linear regression
residual sum of squares subject to a constraint based on an
L1 norm. It can produce a sparse model, i.e., if the linear
regression model has p regression coefficients, the LASSO
yields a smaller model (i.e., model selection), but with a
complexity that cannot exceed N; the number of

observations. Tibshirani (1996) noted that the LASSO solu-
tions can also be obtained by calculating the mode of the
conditional posterior distribution of the regression coeffi-
cients in a Bayesian model in which each coefficient is
assigned the same conditional double exponential (DE) or
Laplace prior. Using a ridge regression reformulation of
LASSO, it can be seen that its Bayesian version shrinks
small-value regression coefficients very strongly toward zero,
whereas large-effect variants are regularized to a much lesser
extent than in ridge regression (Tibshirani 1996; Gianola
2013). Yuan and Lin (2006) and Yuan et al. (2007) consid-
ered the problem of clustering regression coefficients into
groups (factors), with the focus becoming factor selection,
as opposed to the predictor variable selection that takes place
in LASSO. For instance, a cluster could consist of a group of
markers in tight physical linkage. These authors noted that, in
some instances, grouping enhances prediction performance
over ridge regression, while in others, it does not. Such find-
ings are consistent with knowledge accumulated in close to
two decades of experience with genome-enabled prediction in
animal breeding: there is no universally best prediction ma-
chine. A multiple-trait application of a LASSO penalty on re-
gression coefficients was presented by Li et al. (2015). These
authors assigned a multivariate Laplace distribution to the
model residuals, and a group-LASSO penalty (Yuan and Lin
2006) to the regression coefficients. The procedure differs
from Tibshirani’s LASSO in that the model selects vectors of
regressors (corresponding to regressions of a given marker
over traits) as opposed to single-trait predictor variables.

Park and Casella (2008) introduced a fully Bayesian LASSO
(BL). Contrary to LASSO, BL produces a model where all re-
gression coefficients are non-null (even if p.N); most regres-
sions are often tiny in value, except those associated with
covariates (markers) with strong effects. In short, LASSO pro-
duces a sparse model, whereas BL yields an effectively sparse
specification, similar to Bayesian mixture models such as Bayes
B (Meuwissen et al. 2001). The first application of BL in quan-
titative genetics was made by Yi and Xu (2008) in the context
of quantitative trait locus (QTL) mapping, with subsequent
applications reported in de los Campos et al. (2009), Legarra
et al. (2011), Li et al. (2011) and Lehermeier et al. (2013).

Itappearsthatnomultiple-traitgeneralizationoftheBLhasyet
been reported. Thepresent paperdescribes amulti-trait Bayesian
LASSO (MBL) model based on adopting a multivariate Laplace
distribution with unknown scale matrix as prior distribution
for the markers or variants under scrutiny. The MBL is intro-
duced and compared with a multiple-trait GBLUP (MTGBLUP)
using wheat and pine tree data sets. The section Multi-Trait
Regression Model describes MBL, including a MCMC sampling
algorithm. Subsequently, MBL is compared with MTGBLUP
using a wheat data set. Finally, bivariate MBL and bivariate
MTGBLUP are contrasted from a predictive perspective, show-
ing a better performance of MBL over BLUP and over a single-
trait Bayesian LASSO specification, corroborating the usefulness
of multiple-trait analyses. The paper concludes with a general
discussion and technical details are presented in Appendices.
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Multi-Trait Regression Model

Assume there are T traits observed in each of N individuals,
and let bj ¼ fbjtg be a T3 1 vector of allelic substitution
effects at marker j ¼ 1; 2; . . . ; p; with bjt representing the ef-
fect of marker j on trait t ðt ¼ 1; 2; . . . ;TÞ. The multi-trait
regression model (assuming no nuisance location effects
other than a mean) for the T responses is

yi ¼ mþ
Xp
j¼1

xijbj þ ei; i ¼ 1; 2:::;N; j ¼ 1; 2; . . . ; p; (1)

where yi is a T3 1 vector of responses observed in individual
i;m ¼ fmtg is the vector of trait means, and xij is the genotype
individual i possesses at marker locus j. The residual vector
ei ðT3 1Þ is assumed to follow the Gaussian distribution
eijR0 � Nð0;R0Þ; where R0 is a T3T covariance matrix.
All ei vectors are assumed to be mutually independent and
identically distributed.

If traits are sortedwithin individuals, the probabilitymodel
associated with Equation 1 can be represented as
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where
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Xp
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xijbj

!9
(3)

is a T3T matrix of sums of squares and products of the un-
observed regression residuals.

The regression model can be formulated in an equivalent
manner by sorting individuals within traits; hereafter, we will
use T ¼ 3. Let y*1; y

*
2 and y*3 be response vectors of order N

each observed for traits 1, 2, and 3, respectively. The repre-
sentation of the model is
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¼ ðI351NÞmþ ðI35XÞb* þ e*; (4)

where 1N is an N31 vector of 19s; X ¼ fxijg is an N3 p
matrix of marker genotypes, and b*

t ðp3 1Þ and e*t ðN3 1Þ
are vectors of regression coefficients and of residuals for

trait t, respectively. Above, b* ¼ vecðb*
1;b

*
2;b

*
3Þ is a 3p3 1

vector and e* ¼ vecðe*1; e*2; e*3Þ has dimension 3N3 1. Note
that Varðe*Þ ¼ R05I ¼ R. Putting �y*ðm;b*Þ ¼ ðI351NÞmþ
ðI35XÞb*; the probability model is
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: (5)

Wewillworkwith either (1) or (4), depending on the context.

Bayesian prior assumptions

Parameters m and R0: The vector m will be assigned a “flat”
improper prior, and Jeffreys noninformative prior (e.g.,
Sorensen and Gianola 2002) will be adopted for R0 so that
their joint prior density is

pðm;R0Þ} jR0j
2

�
T þ 1
2

�
: (6)

Multivariate laplace prior distribution for marker effects:
The same T-variate Laplace prior distribution with a null
mean vector will be assigned to each of the T3 1 vectors bj
ð j ¼ 1; 2; . . . ; pÞ, assumed mutually independent, a priori.
Gómez et al. (1998) presented a multi-dimensional version
of the power exponential family of distributions; one special
case is the multivariate Laplace distribution (MLAP). The
density of the MLAP with a zero-mean vector used here is

pðbjjΣÞ ¼
T  G
�
T
2

�
jΣj12 pT

2 Gð1þ TÞ2ð1þTÞ
exp
�
2
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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21bj

q �
;

j ¼ 1; 2; . . . ; p;

(7)

where Σ ¼ fΣtt9g is a T3T positive-definite scale matrix. The
variance–covariance matrix of MLAP is

VarðbjjΣÞ ¼ 4ðT þ 1ÞΣ ¼ B; (8)

note that the absolute values of the elements of B; the inter-
trait variance–covariance of marker effects, are larger
than those of Σ. Hence, bjt � ð0;s2

b;tÞ for "j; where
s2
b;t ¼ 4ðT þ 1ÞΣtt is the appropriate diagonal element of B;

likewise, sb;tt9¼ 4ðT þ 1ÞΣtt 9is the covariance of marker ef-
fects between traits t and t9; for all j: Putting T ¼ 1 in (7)
yields

pðbjΣÞ ¼ 1
2
ffiffiffiffiffiffi
4Σ

p exp
�
2

jbjffiffiffiffiffiffi
4Σ

p
�
: (9)

The preceding is the density of a DE distribution with
null mean, parameter

ffiffiffiffiffiffi
4Σ

p
and variance VarðbÞ ¼ 8Σ. As

mentioned earlier, Tibshirani (1996) and Park and Casella
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(2008) used the DE distribution as conditional (given Σ)
prior for regression coefficients in the BL—a member of the
“Bayesian Alphabet” (Gianola et al. 2009). Gianola et al.
(2018) assigned the DE distribution to residuals of a linear
model for the purpose of attenuating outliers, and Li et al.
(2015) used the MLAP distribution for the residuals in a
“robust” linear regression model for QTL mapping.

MLAP is therefore an interesting candidate prior formulti-
trait marker effects in a multiple trait generalization of the
Bayesian LASSO (MBL). A zero-mean MLAP distribution has
a sharp peak at the 0 coordinates, although, when T ¼ 1
MLAP reduces to a DE distribution, the marginal and condi-
tional densities of MLAP are not DE. Gómez et al. (1998)
showed that such densities are elliptically contoured, and,
thus, not DE. Appendix A and Supplemental Material, Fig-
ures S1–S3 in the Supplemental material give background
on MLAP.

Gómez-Sánchez-Manzano et al. (2008) showed that
MLAP can be represented as a scaled mixture of normal dis-
tributions under the hierarchy: (1) ½bj

��Σ; v2j � ¼ NTð0; v2j ΣÞ;
and (2) v2j � Gamma

�
Tþ1
2 ; 18

�
for j ¼ 1; 2; . . . ; p; NTð0;Σv2j Þ

denotes a T2variate normal distribution with null mean
and covariance matrix Σv2j : The density of v2j is
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Let the collection of all marker effects over traits be repre-
sented by the Tp3 1 vector

b ¼ �b19 b29 : : : bp9
�9: (11)

If independent and identical MLAP prior distributions are
assigned to each of the subvectors, the joint prior density of
all marker effects, given Σ, can be represented as
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When individuals are sorted within traits (e.g., T ¼ 3), note
that ½b*

��Σ; v2� is a Tp2dimensional normal distribution, with
null mean vector and covariance matrix
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where D ¼ diagðv21; v22; . . . ; v2pÞ is a diagonal matrix. Hence,
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: (15)

Scale matrix Σ: The scale matrix Σ of MLAP can be given a
fixed value (becoming a hyper-parameter), or inferred, in
which case a prior distribution is needed. Here, an in-
verse-Wishart ðIWÞ distribution with scale matrix Vb

and nb degrees of freedom will be assigned as prior. The
density is
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(16)

Joint posterior and fully conditional distributions

The joint posterior distribution, including v2 ¼ fv2j g from the
scale-mixture of normals representation of the prior distribu-
tion of b, was assumed to take the form

p
�
m;b*;R0;Σ; v2

��y*;H�} p
�
y*
��m;b*;R0

�
pðR0jHÞ

3 p
�
b*
��Σ; v2�p�v2�pðΣjHÞ; (17)

where H denotes the hyper-parameters; recall that y* is
the data vector sorted by individuals within trait. The
fully conditional distributions are presented below,
with ELSE used to denote all parameters that are
kept fixed, together with H, in a specific conditional
distribution.

Parameters m and b* given ELSE: From (17,) and using
representations (4) and (15), the fully conditional posterior
distribution of m and b* has density
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: (18)

The preceding is a multivariate normal density (e.g.,
Sorensen and Gianola 2002). The mean vector of the distri-
bution is

	
m

b*
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(19)

and the variance–covariance matrix is
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A more explicit representation is presented in Appendix B for
the case T ¼ 3:

Fully conditional distributions of partitions of the loca-
tion vector: For details, see VanTassell and VanVleck (1996)
and Sorensen and Gianola (2002). Since the joint posterior of
the location parameters, given Σ; v2; and R0; is multivariate
normal, all conditionals and linear combinations thereof are
normal as well. In particular ðT ¼ 3Þ,
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Fully conditional distributions of R0 and Σ: From (17),
using (2) and (6)
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so ½R0jELSE� is an IW distribution with N þ T degrees of
freedom and scale matrix Se. In IW; the kernel of the
density is often written as expf21

2 tr½R21
0 ðN þ TÞÞ�Se�g; where
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Recall that
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where
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Xp
j¼1
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bjb9j
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�
þVb (28)

is a T3Tmatrix. Hence the conditional posterior distribution
of Σ is IWðpþ T þ nb;SbÞ. The kernel of the density of Σ is
often represented as expf21

2 tr½Σ21
0 ðpþ T þ nbÞ�Sb�g, where

�Sb ¼ Sb=ðpþ T þ nbÞ:

Fully conditional distribution of v2: From (17), and
using (13),
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The preceding density is not in a recognizable form. Appen-
dix C gives details of a Metropolis-Hastings algorithm tailored
for making draws from the distribution having density (29). A
brief description of the procedure follows.

MCMC algorithm

Starting values for R0 and Σ can be obtained “externally”
from some estimates of R0 and B (the T3T matrix of

Multiple-Trait Bayesian Lasso 309



variances and covariances of marker effects) calculated
with standard methods such as maximum likelihood. Re-
call that Σ ¼ B=½4ðT þ 1Þ�:

Sample each v2j ð j ¼ 1; 2; . . . ; pÞ using the followingMetropolis-
Hastings sampler:
1. At round t, draw y from Y � IGða ¼ 1

2;b ¼ 1
4Þ; and eval-

uate y as proposal; IG stands for an inverse-gamma
distribution.

2. Draw U � Uð0; 1Þ; with the probability of move being
minð1;RÞ, with R as in Appendix C.

3. If U,R; set w½tþ1�
j ¼ y and form v2½tþ1�

j ¼ 2=w½t�
j as a

new state. Otherwise, set v2½tþ1�
j ¼ v2½t�j ; j ¼ 1; 2; . . . ; p:

In a “single-pass” sampler, use (19) and (20) for sampling
the entire location vector jointly. Otherwise, adopt a
blocking strategy; for example draw m and b* using
(21), (22), (23) and (24).

Sample R0 from IWðN þ T;SeÞ and Σ from IWðpþ T þ nb;SbÞ.

Remarks

Appendix E shows that the degree of shrinkage of marker
effects results from a joint action between Σ and the strength

of marker effects. A vector of effects of a marker with a short
Mahalanobis distance away from 0 is more strongly shrunk
toward the origin (i.e., the mean of prior distribution) than
vectors containing strong effects on at least one trait. MLAP
preserves the spirit of BL, producing “pseudoselection” of
covariates: all markers stay in the model, but some are effec-
tively nullified. A marker with strong marginal and joint ef-
fects on the traits under consideration could flag potentially
pleiotropic regions.

Missing records for some traits

Often, not all traits aremeasured in all individuals, a situation
that is more common in animal breeding than in plant
breeding. A standard approach (“data augmentation”) treats
missing phenotypes as unknowns in an expanded joint
posterior distribution. As shown in Appendix F, a predictive
distribution can be used to produce an imputation of missing
data.

Alternative Formulation in TN Dimensions

The MCMC sampler described above is based on a regression
on markers formulation stemming from either (1) or (4). In a

Figure 1 Bivariate Bayesian LASSO: trace plot and posterior density of residual correlation.
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“single-pass” sampler, Tð1þ pÞ parameters must be drawn
together; when p is very large, direct inversion is typically
unfeasible, so the scheme must be reformulated into a
“block-sampling” one, i.e., by drawing some of the location
parameters jointly by conditioning on the other location
parameters, or by using a single-site sampler (Sorensen
and Gianola 2002). Blocking or single-site sampling facili-
tate computation at the expense of slowing down conver-
gence to the target distribution. Appendix D gives a scheme
in which Tð1þ NÞ effects (trait means and bivariate geno-
mic breeding values) are inferred, and the Tpmarker effects
are calculated indirectly, following ideas of Henderson
(1977) and adapted by Goddard (2009) to a genome-based
model.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. The wheat yield data set in the R package
BGLR (Pérez and de los Campos 2014) was employed to
contrast MBL with GBLUP and Bayes Cp. This wheat data
set has been studied extensively, e.g., by Crossa et al.
(2010), Gianola et al. (2011, 2016), and Long et al. (2011).
There are n ¼ 599 wheat inbred lines, each genotyped with
p ¼ 1279 DArT (Diversity Array Technology) markers, and
each planted in four environments. The DArT markers are
binary ð0; 1Þ; and denote the presence or absence of an allele
at amarker locus in a given line. Grain yields in environments
1 and 2 were employed to compare outcomes between anal-
yses based on bivariate GBLUP and the bivariate BL. In the
bivariate model, yields in the two environments are treated
as distinct traits, conceptually—an idea that dates back to
Falconer (1952). This type of setting arises in breeding of

dairy cattle, where milk production of daughters of bulls in
different countries are regarded as different traits and in
multi-environment situations in plant breeding; both in-
stances can be represented as special cases of a multiple-trait
mixed effects model.

A publicly available Loblolly pine ðPinus  taedaÞ data de-
scribed in Cheng et al. (2018a) was used to carry out a pre-
dictive comparison between a Bayesian bivariate GBLUPwith
the bivariate Bayesian LASSO, as well as the latter vs. a single-
trait Bayesian LASSO. After edits, there were n ¼ 807 indi-
viduals with p ¼ 4828 SNP markers with measurements on
rust bin scores and rust gall volume—two disease traits; see
Cheng et al. (2018a). Supplemental material available at fig-
share: https://doi.org/10.25386/genetics.10689380.

Bivariate Analysis of Wheat Yield: MBL vs. GBLUP

Genomic BLUP and Bayesian BLUP

The bivariate model was	
y1
y2



¼
	
1m1
1m2



þ
	
g1
g2



þ
	
e1
e2



; (30)

where y1ðy2Þ is the vector of grain yields in environment 1ð2Þ
of the 599 inbred lines; m1 and m2 are the trait means in the
two environments, and 1 is a 5993 1 incidence vector of
ones; g1 and g2 are the “additive genomic values” of the lines,
and e1 and e2 are model residuals. In GBLUP (VanRaden
2008) the genetic signals captured by markers are repre-
sented as g1 ¼ X  b1 and g2 ¼ X  b2; where X is a
5993 1279 centered and scaled matrix of genotype codes,
and b1ðb2Þ contains the marker allele substitution effects on
trait 1ð2Þ: The residual distribution was

Figure 2 Bivariate Bayesian LASSO: trace plot and posterior density of correlation between marker effects.
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e1
e2



� Nð0;R05IÞ; (31)

where, as before, R0 is the 23 2 between-trait residual
variance–covariance matrix. Effects of environment 1 are
expected to be uncorrelated with those of environment 2.
However, allowance was made for a non-null residual covari-
ance because the additive genomic model may not capture
extant epistasis involving additive effects, potentially creat-
ing correlations among residuals of the same lines in different
environmental conditions.

GBLUP assumed b1 � Nð0; Is2
b1
Þ; b2 � Nð0; Is2

b2
Þ and

Covðb1;b92Þ ¼ Isb1b2
; so

B ¼
"

s2
b1

sb1b2

sb1b2
s2
b2

#
(32)

is the variance–covariancematrix of marker effects. It follows
that 	

g1
g2



� N

�	
0
0



;G05G

�
; (33)

where

G0 ¼ pB ¼
"
s2
g1 sg12

sg12 s2
g2

#
; (34)

is a between-trait variance–covariance matrix of the additive
genomic values (here, e.g., s2

g1 ¼ ps2
b1
) and G ¼ XX9=p is a

genomic-relationship matrix describing genome-based simi-
larities among the 599 lines. The preceding assumptions in-
duce the marginal distribution

	
y1
y2



� N

�	
1m1
1m2



;V ¼ G05Gþ R05I

�
; (35)

where V is the phenotypic covariance matrix. The bivariate
best linear unbiased predictor of g1 and g2 (Henderson 1975)
is:

	
ĝ1
ĝ2



¼ ðG05GÞV21

�	
y12 1m̂1
y22 1m̂2


�
; (36)

where

	
m̂1
m̂2



¼
�	

19 0
0 19



V21

	
1 0
0 1


�21�	 19 0
0 19



V21

	
y1
y2


�
;

(37)

is the bivariate generalized least-squares (GLS) estimator of
the trait means.

BLUP and GLS require knowledge of G0 and R0; and we
replaced these unknown matrices by estimates obtained us-
ing a crude, but simple, procedure. Genomic and residual
variance components were obtained by univariate maximum
likelihood analyses of traits 1, 2, and 1þ 2; and covariance
component estimates were calculated from the expression
CovðX; YÞ ¼ ½VarðX þ YÞ2VarðXÞ2VarðYÞ�=2: The result-
ing estimates of G0 and R0 were inside their corresponding
parameter spaces. An estimate of Bwas obtained by applying
relationship (34) to the estimated G0:

Henderson (1977) showed how BLUP of vectors that are
not likelihood identified can be obtained from best linear
unbiased predictions of likelihood-identified random effects
(see Gianola 2013). Goddard (2009) and Strandén and
Garrick (2009) used this property to obtain predictions of

Figure 3 Bivariate GBLUP vs. bivariate Bayesian LASSO (posterior mean) estimates of marker effects on wheat grain yield.
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marker effects ðbÞ given predictions of signal ðgÞ. If b and g
have a joint normal distribution, under (30) one has

E
�	

b1
b2



j
	
g1
g2


�
¼ �BG21

0 5X9G21�	 g1
g2



:

Using iterated expectations, and recalling that BLUP can be
viewed as an estimated conditional expectation (with fixed
effects replaced by their GLS estimates), BLUP of marker
effects is expressible as	
b̂1
b̂2



¼ Ê

�	
b̂1
b̂2



j
	
y1
y2


�
¼ �BG21

0 5X9G21�	 ĝ1
ĝ2




¼ �BG21
0 5X9G21�V21

�	
y12 1m̂1 y22 1m̂2


�
; (38)

with b̂i ¼ Êðbijy1; y2Þ; i ¼ 1; 2: After lengthy algebra,
and using Henderson (1975), the prediction error

variance–covariance matrix of the BLUP of marker effects is
given by

Var
�	

b̂1 2b1
b̂2 2b2


�

¼ �B5Ip
�
2 ðB5X9Þ

	
I2n þ V21 2

V21119V21

19V211



ðB5X9Þ9:

(39)

A set of t2 statistics can be formed by taking the ratio
between the BLUP of a given marker effect as in (38),
and the square root of the corresponding diagonal ele-
ment of (39). The statistic is a crude criterion for associ-
ation between marker and phenotype as it ignores
uncertainty associated with the fact that B and R0 are
estimated from the data, as opposed to being “true val-
ues” required by BLUP theory.

Figure 4 t-Statistics for marker effects on wheat grain yield: GBLUP vs. bivariate Bayesian LASSO (MBL)
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The Bayesian bivariate GBLUP model used standard as-
sumption as in Sorensen and Gianola (2002), i.e., it was a
multivariate normal-inverse Wishart hierarchical specifica-
tion. The only difference with GBLUP is that, in the Bayesian
treatment, G0 and R0 were treated as unknown parameters,
with the uncertainty about their values accounted for.

Bivariate LASSO

OurMCMC implementation for MBL was applied to markers
directly, as opposed to inferring their effects from signal
indirectly, as it is done for GBLUP. The model was as in
(4) with T ¼ 2: Each marker was assigned a conditional bi-
variate Laplace prior distribution with scale matrix Σ in
turn, Σ was given a two-dimensional (2D) inverse Wishart
distribution on nb ¼ 4 degrees of freedom and with
scale matrix Vb ¼ nbB=12 ¼ B=3: The residual variance–
covariance matrix R0 was assigned the 2D Jeffreys improper
prior in (6).

The MCMC scheme employed the scale mixture of normal
representation of the bivariate Laplace distribution. First, six
independent chains of 1500 iterations each were run. The
shrinkage diagnostic metric of Gelman and Rubin (1992) was
calculated form1, m2; R0; and Σ, for the effect of marker 10 on
trait 1, and for the effect of marker 200 on trait 2; the R
package CODA was used for this purpose. Figures S4–S13
gave no strong evidence of lack of convergence, as indicated
by shrinkage factor values close to 1.

Post burn-in samples were collected for an additional
2000 iterations in each chain, so a total of 12,000 samples
(without thinning) was used for inference. Figures S14 and
S15 depict post burn-in trace plots for the elements of R0 and
Σ, respectively. The six chains “joined” eventually, and sample
values fluctuated thereafter within what seemed to be sta-
tionary distributions. To assess convergence further, a test
suggested by Geweke (1992) was applied to the combined
12,000 samples from the posterior distributions of m1; re12

Figure 5 t-Statistics for marker effects on wheat grain yield: ordinary least-squares (OLS) vs. bivariate Bayesian LASSO (MBL) and bivariate GBLUP.
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(residual correlation between yields in environments 1 and
2) and rb12

, the correlation between effects of a marker on the
two traits. The test compared means of two parts of the com-
bined collection of 12,000 samples at each of 10 segments of
the collection: there was no evidence of lack of convergence.
In short, the implementation met successfully the conver-
gence tests applied.

Figure 1 and Figure 2 display estimated posterior densities
of re12 and rb12

: Mixing for rb12
was poorer than for re12; the

effective number of samples was 220.6 and 979.0, respec-
tively, and Monte Carlo errors were small enough. The re-
sidual correlation (posterior mean, 0.17) was positive and
different from 0, whereas the rb12

parameter was estimated
at 20.35, also different from zero. However, the posterior
densities were not sharp enough for precise inference, prob-
ably due to the small sample size ðn ¼ 599Þ and low density
of the marker panel ðp ¼ 1279Þ. The quality of these esti-
mates is of subsidiary interest here as our objective was to
demonstrate the MBL in a comparison with bibariate BLUP of
marker effects.

Location parametersmixedwell. For example, the average
effective sample size of m1 over the six chains during burn-in
was 1499 for a nominal 1500 iterations. For marker 10 effect
on trait 1, it was 962 out of 1500, and, for marker 200 effect
on trait 2, the effective size was 1130 out of 1500. These
numbers suggest that all 2558 marker effects were estimated
with a very small Monte Carlo error in our MBL implementa-
tion with 12,000 samples used for inference.

MBL vs. BLUP estimates of marker effects

Figure 3 gives a comparison between bivariate BLUP and
posterior mean estimates of effects from MBL. The upper
panel shows good alignment between estimates, except at

the extremes of the scatter plots. The lower panel depicts that
markers with the strongest absolute effects, as estimated by
BLUP, had an even stronger effect when estimated under the
bivariate BL. Figure 4 presents standardized estimates of
each of the 1279 marker effects, by trait. For GBLUP the
t2 statistic was the estimated marker effect divided by the
square root of its prediction error variance; for MBL, it was
the posterior mean divided by its posterior standard devia-
tion. There is no evidence that any of the markers had an
effect differing from 0, corroborating the view that wheat
yield is a typical quantitative trait affected by many variants
each having small effects (Singh et al. 1986; Sleper and
Poehlman 2006). Using a univariate least-squares, GWAS-
type analysis, there were 29 (yield 1) and 56 (yield 2) signif-
icant hits after a Bonferroni correction (1279 tests, a ¼ 0:05)
A comparison between the t2 statistics from the GWAS-type
analysis with the standardized BLUP and MBL effects is pro-
vided in Figure 5. As expected, shrinkage toward null-mean
distributions (bivariate Gaussian in BLUP and bivariate Lap-
lace in MBL) made t2 statistics much smaller in absolute
value than the corresponding ones from GWAS.

StandardGWASaims tofind connections betweenmarkers
and genomic regions having an effect on a single trait (e.g.,
Manolio et al. 2009, Visscher et al. 2012; Gianola et al. 2016;
Schaid et al. 2018) A search for pleiotropy, on the other hand,
focuses on markers having multi-trait effects. The latter can
be viewed as a search for vectors of effects with non-null
coordinates that are distant from a T2dimensional 0 origin.
Mahalanobis squared distances ðm2

j Þ away from ð0; 0Þ for
each the 1279 bivariate vectors of marker effects were calcu-
lated for both BLUP and MBL. For BLUP and marker j; the
squared distance was computed asm2

Blup;j ¼ b9Blup; jB
21bBlup; j;

and for MBL it was m2
MBL; j ¼ b9MBL; jð12ΣÞ21bMBL; j; where b:; j

are effect estimates for marker j, and Σ is the estimated pos-
terior expectation of Σ. For BLUP, m2

Blup;j had median and
maximum values of 0.16 and 2.94, respectively, over
markers. For MBL the corresponding values were 0.14 and
3.83. Figure 6 shows that the largest estimated distances
were obtained with MBL, supporting the view that the
method produces less shrinkage of multiple-trait effect sizes
than BLUP. If the 95% percentile of a chi-squared distribution
on 2 degrees of freedom (5.99 and 14.4 without and with a
Bonferroni correction at a ¼ 0:05) is used as “significance
threshold”, none of the 1279 markers could be claimed to
have a bivariate effect on the trait, which is consistent with
the t2 statistics:

Predictive Comparison between MBL, MTGBLUP, and
MT-BayesCp: Wheat

Bivariate Bayesian GBLUP and BayesCp models (Cheng
et al. 2018a) were also fitted to the wheat data set. Multiple-
trait Bayesian linear models are well known (e.g., Sorensen and
Gianola 2002); BayesCp consisted of a bivariate mixture in
which each of the 1279 markers was allowed to fall, a priori;

Figure 6 Mahalanobis squared distance (M) away from (0, 0) for bivar-
iate effects on grain yield of 1279 markers: GBLUP vs. bivariate Bayesian
LASSO (BLASSO)
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into oneof four disjoint classes: ð0; 0Þ; ð0; 1Þ; ð1; 0Þ; and ð1; 1Þ,
where ð0; 0Þ means that a marker has no effect on either
trait, ð0; 1Þ indicates that a marker affects yield 2 only, and
so on. The prior for the four probabilities of membership was
a Dirichletð1; 1; 1; 1Þ distribution. All three methods were
run in each of 100 randomly constructed training sets,
and predictions were formed for lines in corresponding
testing sets. Training and testing set sizes had 300 and
299 wheat lines, respectively, in each of the 100 runs. For
all methods, the MCMC scheme was a single long chain of
50,000 iterations, with a burn-in period of 1000 draws. The
analyses were run using the JWAS package written in the
JULIA language (Cheng et al. 2018b).

Figure 7 and Figure 8 present pairwise plots (bivariate
Bayesian GBLUP denoted as RR-BLUP in the plots) of pre-
dictive correlations and predictive mean-squared errors, re-
spectively; the plots display ,100 ðX; YÞ points because
numbers were rounded to two decimal points. There were
no appreciable differences in predictive performance be-
tween the three methods, supporting the view that cereal
grain yield is multi-factorial and that there are none, if any,
genomic regions, with large effects. The variability among
replications of the training-testing layout is essentially ran-
dom, reinforcing the notion of the importance of measuring

uncertainty of prediction (Gianola et al. 2018). Many studies
fail to replicate, and often claim differences between, meth-
ods based on single realizations of predictive analyses.

Predictive Comparison between MBL vs. MTGBLUP
and MBL vs. Single Trait Bayesian LASSO: Pinus

Figure 9 and Figure 10 present scatter-plots of the predictive
performance (mean squared error and correlation, respec-
tively) of the bivariate Bayesian LASSO and bivariate Bayes-
ian GBLUP (MTGBLUP, denoted as RR-BLUP in the plots) in
the 100 testing sets. There were no obvious differences in
mean-squared error for either rust bin or gall volume al-
though, for the latter trait, a slight superiority of MBL was
noted (Figure 9); the plot contains distinct 12 points because
the overlap in numerical values produced “clusters” of points.
On the other hand, there was a decisive superiority (Figure
10) of MBL over MTGBLUP in predictive correlation.

Figure 11 contrasts the predictive performance of the bi-
variate Bayesian LASSO over the single trait Bayesian LASSO
for gall volume. The two trait analysis tended to produce
larger predictive correlations and smaller mean-squared er-
rors, illustrating instances in which a multiple-trait specifica-
tion clearly constitutes a better prediction machine.

Figure 7 Predictive correlations for wheat grain yield: bivariate Bayesian LASSO (Bayes L) vs. bivariate GBLUP (RR-BLUP).
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Conclusion

Our study is possibly the first report in the quantitative
genetics literature of a MBL, inspired by the BL of Park and
Casella (2008). MBL assumes that vectors of marker effects
on T traits follow a null-mean multivariate Laplace distribu-
tion, a priori: This distribution has a sharp peak at the origin,
and reduces to the DE prior of the BL when applied to a single
trait. The implementation of MBL requires MCMC sampling,
and a relative simpleMetropolis-Hastings algorithm based on
a scaledmixture of normals representation (Gómez-Sánchez-
Manzano et al. 2008) was presented. The algorithm was
tested thoroughly with a wheat data set and found to mix
well, with no evidence of lack of convergence to the posterior
distribution, and with a small Monte Carlo error.

A question that arises often in practice, is the extent to
which a multiple-trait method will produce a better perfor-
mance thana single-trait specification. If theparameters of the
model (assuming it holds) representing the inter-trait distri-
bution are either known or well estimated, one should expect
more power for QTL detection and a better predictive perfor-
mance for the multivariate specification. In our study, we
found that MBL outperformed the single trait in terms of
delivering a better predictive performance for gall volume but
not for rust bin in Pinus. On the other hand, a multiple-trait

analysis is more complex and requires more assumptions, so
it may be less robust than a single trait procedure, and fail to
deliver according to expectation in real-life circumstances. It
is risky to make sweeping statements arguing in favor of a
specific treatment of data, as outcomes are heavily dependent
on the biological architecture of the traits considered, and on
the data structure as well. The picture emerging from two
decades of experience in genome-enabled prediction in the
fields of animal and plant breeding is that, in view of the large
variability of performance with respect to data structure for
any given prediction machine, it is largely futile to categorize
methods in terms of expected predictive performance using
broad criteria (Morota and Gianola 2014; Gianola and Rosa
2015; Momen et al. 2018; Montesinos-López et al. 2018 a,b,
2019a,b; Azodi et al. 2019).

MBL is expected to shrink more strongly toward zero
vectors of markers with small effects in their coordinates,
thus producing differential shrinkage and preserving the
modus operandi of BL. Mimicking the single-trait argument
in Tibshirani (1996), which shows equivalence between
LASSO and a posterior mode, the representation in Appendix
E illustrates that the degree of shrinkage of the vectorial
effects of a marker (j, say) on a set of traits is inversely pro-
portional to the quadratic form b9jΣ21bj. Thus, multivariate

Figure 8 Predictive mean-squared error for grain yield: bivariate Bayesian LASSO (Bayes L), bivariate GBLUP (RR-BLUP), and bivariate Bayes Cp.
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Bayesian pseudosparsity is induced by MBL to an extent
depending on the heterogeneity of b9jΣ21bj over markers.

We note, in passing, that the term
Pp
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9jΣ21bj

q
given in

(66) in Appendix E is the counterpart of
PG
g¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

b2
gt

s
, part

of the “group-penalty” in Li et al. (2015), where g is some
meaningful group of markers arrived at, say, on the basis of
biological considerations, and b2

gt is the group regression co-
efficient for trait t. The latter penalty assigns the same weight
to these regressions over traits, contrary to MBL, where
weights and coweights are driven by Σ21: The BL or MBL
can be adapted to situations where a group structure may
be needed via hierarchical modeling; this fairly straightfor-
ward issue is outside of the scope of the paper, but may pur-
sued in future extensions of MBL. Actually, Liquet et al.
(2017) described a Bayesian multiple-trait analysis where
a LASSO-type penalty is assigned to group effects, and a

spike-slab prior induces additional Bayesian sparsity at
the level of individual regression coefficients. The authors
did not address the predictive ability of their method so it
would be interesting to compare it against MBL and the
multiple-trait mixture model of Cheng et al. (2018a). We
plan to carry out this comparison in collaboration with
CIMMYT (Centro Internacional de Mejoramiento de Maíz
y Trigo, México) using a large number of data sets in var-
ious cereal crops.

Knowledge of the genetic basis of complex traits is lim-
ited, and not vast enough to enable formulation of a priori
prescriptions for any specific trait or situation. The number,
location, and effects of causal variants, the linkage disequi-
librium structure between such variants andmarkers, and the
mode of gene action of QTL are largely unknown, this hold-
ing for all species of domesticated plants and animals, and for
most common diseases in humans. Theoretically, MBL is
expected to perform better than multiple-trait BLUP when-
ever appreciable heterogeneity exists over the effects of the

Figure 9 Mean-squared error of prediction for rust
bin and gall volume in pine trees: bivariate Bayesian
LASSO (Bayes L) vs. bivariate Bayesian GBLUP
(RR-BLUP).
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markers in the panel employed, while behaving as multiple-
trait GBLUP when all markers have tiny and similar effects.
This consideration follows directly from the structure of
the method, and computer simulations could be easily tai-
lored to create scenarios where MBL has a better or a worse
performance simply by design but without necessarily being
relevant to a real-life inferential or predictive problem.

The expectation stated above was verified empirically:
markers with stronger (positive or negative) effects on the
wheat yields examined had larger Mahalanobis distances
away from zero than markers with small effects. Further,
markers with short distances in GBLUP had even shorter
distances under MBL. Neither of the two methods was able
to detect variants having a strong effect on wheat yield,
contrary to least-squares GWAS. However, outcomes from
GWAS are not strictly comparable with those from shrinkage-
based procedures. In single-marker least-squares, the estima-
tor is potentially biased because other genomic regions are

ignored in the model; further, short- and long-range linkage
disequilibria create statistical ambiguity (Gianola et al. 2016).
In WGR, on the other hand, regressions are akin to partial
derivatives, i.e., the coefficient gives the net effect of the
marker given that the other markers are fitted; typically, re-
gressions become smaller as p is increased at a fixed n:

In plant andanimal breeding, a focal point is the evaluation
of genetic merit of candidates for artificial selection, and the
prediction of expected performance in either collateral rela-
tives or in descendants. Under the assumptions of additive
inheritance, genome-enabled prediction (Meuwissen et al.
2001) produces estimates of marked additive genomic value,
g; or signal as referred to in our paper. In MBL, g and marker
effects can be inferred from their posterior mean or from a
modal approximation (MAP-MBL) that does not involve
MCMC that is described in Appendix E. A rough comparison
between GBLUP, MBL, and MAP-MBL was carried out with
the wheat data. For the latter, we used Σ ¼ G0=ð12pÞ; and

Figure 10 Predictive correlation for rust bin and gall
volume in pine trees: bivariate Bayesian LASSO (Bayes
L) vs. bivariate Bayesian GBLUP (RR-BLUP).
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starting values for the iteration were calculated using BLUP
estimates of marker effects. MAPwith T ¼ 2were iterated for
500 rounds. Figure S16 shows that, at iteration 500, the
metric used for monitoring convergence had stabilized at
the third decimal place, but, for our purposes, iteration could
have stopped after 200 rounds. Figure S17 presents a scatter
plot of the 2558 (bivariate) marker effect solutions at itera-
tions 1 and 500 against the corresponding BLUP or MBL
posterior mean estimates. Clearly, the MAP approach gave
markedly different results, producing a stronger shrinkage
to 0 of small-effect markers and, thus, an effectively sparser
model. Figure S18 gives a comparison of the fitted genomic
values, i.e., g1 ¼ X  b*

1 and g2 ¼ X  b*
2 for the two traits.

GBLUP and MBL estimates were closely aligned and fit the
data in a similarmanner. On the other hand,MAP-MBL gave a
larger mean-squared error of fit, and a smaller correlation
between fitted and observed phenotypes, possibly because
of the larger effective sparsity of MAP-MBL. A worse fit to

the data does not necessarily imply a poorer predictive ability.
A thorough comparison of predictive ability between MBL
and MAP-MBL will be carried out in future research.

Our predictive comparison in wheat involved three bivar-
iate models: GBLUP, MBL and BayesCp; which employs
Bayesian model averaging. A training-testing validation rep-
licated 100 times at random indicated no differences among
methods. However, it was found that MBL was better than
MT Bayesian BLUP for the two pine tree traits. After almost
two decades of genome-enabled prediction it is now clear
that no universally best prediction machine exists (Gianola
et al. 2011; Heslot et al. 2012; de los Campos et al. 2013;
Momen et al. 2018; Bellot et al. 2018;Montesinos-López et al.
2018a,b, 2019a,b), even when nonparametric or deep learn-
ing techniques are brought into the comparisons. For this
reason, we refrain from making any sweeping claim about
the superiority (inferiority) of MBL over any other competing
multiple-trait Bayesian regression method. If the situation is

Figure 11 Predictive mean squared error and correla-
tion for gall volume in pine trees: bivariate Bayesian
LASSO (MTBayesL) vs. univariate Bayesian LASSO
(STBayesL).

320 D. Gianola and R. L. Fernando



such that multiple-trait vectors of effects are fairly homoge-
neous over makers, it is to be expected that most methods
will have a similar performance. On the other hand, if there is
underlying heterogeneity of vectors of effects, possibly
reflecting “structural sparsity” at the QTL level, it is quite
likely that MBL and multiple-trait Bayesian variable selec-
tion methods (e.g., Cheng et al. 2018a) will outperform
MTGBLUP or a multiple-trait version of Bayes A. Unfortu-
nately, is it difficult to anticipate a priori which method will
deliver the best performance, given the limited knowledge of
the biological architecture of complex traits, the strong influ-
ence of the data structure, and the variability of X matrices
over data sets, in dimension and content.

As far as we know, our paper represents the first report in
the quantitative genetics literature of a multiple-trait LASSO,
implemented in a Bayesian or empirical Bayes (Appendix E)
manner.MBL adds to the armamentariumof genome-enabled
prediction, andexpands the familyofmembersof theBayesian
alphabet (Gianola et al. 2009; Habier et al. 2011; Gianola
2013). Further, it has been implemented in the publicly avail-
able JWAS software (Cheng et al. 2018b). We take the view
that every prediction problem is unique, and that no claims
about the superiority of a specific procedure over others
should be made without qualification. For instance, MBL
could perform worse or better than here when applied to
other species, traits, or when confronted with different data
structures. Most quantitative and disease traits are truly com-
plex, and it is dangerous to offer simplistic solutions or pre-
dictive panaceas (Goddard et al. 2019).
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13 Appendices

13.1 Appendix A: Excursus on the MLAP distribution

13.1.1 Three bivariate Laplace distributions
For illustration, consider three bivariate Laplace distributions, all having null means but distinct scale matrices, as follows:

Σ1 ¼
	
1 0
0 1



;Σ2 ¼

	
1 0:2
0:2 1



;Σ3 ¼

	
1 20:8

20:8 1



: (40)

Using (7), the density under Σ1 is

pðb1;b2jΣ1Þ ¼ 1
8p

exp
�
2
1
2
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The covariance matrix here, B1 ¼ 12Σ1, is diagonal, so the random variables are uncorrelated but not independent, since (41)
cannot be written as the product of two marginal densities. Under Σ2 and Σ3, the densities are
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and
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Five bivariate Laplace densities are shown in Figure S1: (a) gives the density of the distribution of the twouncorrelated bivariate
Laplace random variables ðΣ1Þ, and (b) and (c) show the positively (i.e., with Σ2) and negatively (with Σ3) correlated
situations, respectively. These three densities have a sharp mode at b1 ¼ b2 ¼ 0; indicating that a bivariate Laplace prior
would strongly shrink vectors to the ð0; 0Þ point, acting similarly to the DE prior in the univariate Bayesian LASSO. (d) and (e)
display bivariate Laplace densities of distributions with non-null means.

13.1.2 Conditional distributions
Dropping subscript j denoting a specific marker, partitions the T3 1 vector of effects into b9 ¼ ðb19;b29Þ; where the subvectors
have orders T1 and T2; respectively; recall that T is the number of traits. Correspondingly, put

Σ ¼
	
Σ11 Σ12
Σ21 Σ22



: (44)

According to J. M. Marín (personal communication), the conditional distribution ½b2jb1� has density
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where m2j1 ¼ Σ22Σ21
11 b1; Σ2j1 ¼ Σ222Σ21Σ21

11 Σ12 and q1 ¼ b19 Σ21
11 b1: Similar to multivariate normal distribution, the condi-

tional expectation is linear on the conditioning variable, and Σ2j1 does not involve b:

13.1.3 Simulation of a multivariate Laplace distribution
Gómez et al. (1998) showed that S independent draws from a MLAP distribution with a null mean vector can be made as

bi ¼ riC9ui; i ¼ 1; 2; . . . ; S; (46)
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where C9 results from the Cholesky decomposition Σ ¼ C9C, u is a T3 1 vector uniformly distributed on a T-dimensional unit
sphere, and r is a realization of a Gamma distribution with shape parameter T and scale 2. Vector u can be simulated by
effecting T independent draws ðxi; i ¼ 1; 2; . . . ;TÞ from a Nð0; 1Þ distribution, and then forming the tth element of u as

ut ¼ xt

, ffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

x2t

s
, t ¼ 1; 2; . . . ;T:

Marginal distributions for the three bivariate Laplace distributions with scale matrices Σ1; Σ2; and Σ3 given above were
estimated by sampling S ¼ 300; 000 independent realizations; Equation 46 was employed. Using the samples, zero-mean DE
and normal distributions with the same variances were fitted, and the resulting densities were compared with the estimated
densities based on the draws. As shown in Figure S2, a normal distribution provided a poor approximation to the marginals
from the three bivariate Laplace cases, and the sharp peak at 0, characteristic of a DE density, was not matched by such
marginals. This is a corroboration of theoretical results in Gómez et al. (1998): marginals from MLAP distributions are
elliptically contoured and not DE.

13.2 Appendix B: Mean vector of location parameters given ELSE

Consider (Equation 19). For T ¼ 3; let

R21
0 ¼

2
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3
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Expansion of the Kronecker products in (Equation 19) produces the system

r11N r12N r13N r111N9 X r121N9 X r131N9 X

r21N r22N r23N r211N9 X r221N9 X r231N9 X

r31N r32N r33N r311N9 X r321N9 X r331N9 X

r11X91N r12X91N r13X91N r11X9Xþ Σ11D21 r12X9Xþ Σ12D21 r13X9Xþ Σ13D21

r21X91N r22X91N r23X91N r21X9Xþ Σ21D21 r22X9Xþ Σ22D21 r23X9Xþ Σ23D21

r31X91N r32X91N r33X91N r31X9Xþ Σ31D21 r32X9Xþ Σ32D21 r33X9Xþ Σ33D21
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Observe how phenotypes for all traits contribute to the solutions of trait-specific effects.

13.3 Appendix C: Sampling from the conditional posterior distribution of v2
j

Consider (29). Let Q ¼ bj9 Σ21bj take values
1
2; 1; 4; and 10, say. Numerical integration of (29) between 0 and 1000 produces

3:5203; 3:040  7; 1:844  3; 1:031  4 as reciprocal of the resulting integration constants, with the normalized densities shown in
Figure S3. The distributions are skewed, and, as Q increases, the density becomes flatter.

Let S1
2
ð y;sÞ be the Lévy density of a positive random variable Y having a positive stable distribution with parameter s

(Samorodnitsky and Taqqu 2000). From Gómez et al. (1998) and Gómez-Sánchez-Manzano et al. (2008), the Lévy density is
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which is that of an inverse Gamma ðIGÞ distributionwith parametersa ¼ 1
2 andb ¼ s

4:Consider now the transformation (Gómez
et al. 1998) wj ¼ 2=v2j so using (29)
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Consider a Metropolis-Hastings ratio R using (49) with s ¼ 1 as proposal distribution, and (18) let yj be a proposed value, and
wj be a member of the target distribution. The ratio is then
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; j ¼ 1; 2; . . . ; p: (51)

Hence, if a proposal yj is drawn from IG ða ¼ 1
2;b ¼ 1

4Þ it can be accepted as belonging to the conditional posterior distribution of
wj, with probability equal to R above. If accepted, a “new” v2j ¼ 2=wj is a member of pðv2j

��ELSEÞ with probability R as well;
otherwise stay with the current v2j :

13.4 Appendix D: Alternative algorithm for indirect sampling of marker effects

An alternative sampling scheme that uses an equivalent formulation of the model is presented; a two-trait ðT ¼ 2Þ situation is
employed for ease of presentation. Let g1 ¼ X  b*

1 and g2 ¼ X  b*
2 be the genomic values of the N individuals for each of the

traits. A model could be �
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where residuals are as before. In a standard genomic best linear unbiased prediction (GBLUP, Van Raden 2008) setting, it is
assumed that 	
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where G is an N3N marker-based matrix of “genomic relationships,” and
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is a matrix containing the trait-specific genomic variances and their covariances. Specifically, from the definition of g1 and g2;
and, assuming that b*
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for G ¼ XX9=p and s2
gi ¼ ps2

bi
: Similarly, Covðg1; g29

��X;sb12
Þ ¼ Gsg12, where sg12 ¼ psb12

and sb12
is the covariance between

marker effects on traits 1 and 2. Let B ¼ fsbtt9
g be the 23 2 variance–covariance matrix of marker effects

326 D. Gianola and R. L. Fernando



For a bivariate Bayesian LASSO model, conditionally on the p3 1 vector v2; one has
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Let CCond ¼ Σ5XDX9: Further,
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After assigning a flat prior to each of m1 and m2, standard results give that posterior distribution of the genotypic values given
Σ; v2;R0 is normal, with mean vector
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Further (Henderson 1975)

Var
�	

g1
g2



jΣ; v2;R0; y

�

¼ CCond 2CCondV
21
CondCCond þ CCondV

21
Cond1

�
19V21

Cond1
�
19V21

CondCCond

¼ CCond2CCond
�
V21
Cond 2V21

Cond1
�
19V21

Cond1
�
19V21

Cond
�
CCond: (61)

Hence, draws from the conditional posterior distribution of g ¼ ½ g1 g2 �9 givenΣ; v2; andR0 can be obtained by sampling from
a multivariate normal distribution with mean vector (60) and covariance matrix (61).
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Assuming that, given Σ; v2 and R0, the vector
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13.5 Appendix E: A conditional posterior mode approximation to marker effects

Despite of important advances in high-throughput computing, routine genetic evaluation of plants and animals is seldom done
with MCMC methods. As an alternative to MCMC, we describe an iterative algorithm that produces point estimates of marker
effects (and of linear functions thereof) and approximate measures of uncertainty in a computationally simpler manner. The
algorithmuses a reweighted set of linear “mixedmodel equations,” forwhich extremely efficient solvers exist. It is assumed that
“good” estimates of R0 (the residual covariance matrix) and of B (the T3T variance-covariance matrix of markers effects) are
available. From (8) Σ ¼ B=½4ðT þ 1Þ�; e.g., for T ¼ 3 then Σ ¼ B=16; hence, an assessment of the scale matrix of the MLAP
distribution is easily available.

We make use of (2) and (7), but employ the “markers within trait” representation given in (4). Letting u ¼ ðm9;b9Þ9; the
logarithm of the joint (conditionally on the dispersion matrices) posterior density of location effects, apart from a constant, is
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Let
LðuÞ ¼ Llik
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where Llikðm;b*Þ and LpriorðbÞ are the two terms in (66). Then
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Observe now that the relationship betweenb andmarker effects sorted within traits ðb*Þ can be expressed asb ¼ Lb*;where L
is a 3p3 3p nonsingular matrix of elementary operators that rearrange rows and columns. For example, for T ¼ 3 and p ¼ 2;
and with bjt representing the effect of marker j on trait t;2
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Since L is a matrix of elementary operators, L21 ¼ L9 (orthogonality) and b* ¼ L9b; the absolute value of the Jacobian of the
transformation from b to b* is equal to 1. The contribution of the prior to the gradient for marker effects is then
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where mj ¼ 2
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q
is proportional to the Mahalanobis distance of bj away from ð0; 0; 0Þ for T ¼ 3: Hence, the 3p3 1

vector of derivatives with respect to all marker effects, sorted by traits within individuals is
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whereM ¼ Diagfmjg is a p3 p diagonalmatrix with typical elementmj. Rearranging the differentials such that the sorting is by
markers within traits @
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Collecting (69) and (73),
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Setting (68) and (74) simultaneously to 0 produces the system of equations (not explicit)"
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Expanding the equations above for T ¼ 3 yields2
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where b is iterate round. Matrix M ¼ DiagðmjÞ changes at every round of iteration, so the system needs to be reconstituted
repeatedly. Marker effects producing small values of the Mahalanobis distance away from 0 result in tiny m2 values and,
consequently, M21 will have large diagonal elements. Hence, vectors of markers with weak effects are more strongly shrunk
toward the 0 coordinate than those having strong effects in at least one trait

The variance–covariance matrix of the conditional posterior distribution can be approximated as
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with N indicating parameters evaluated at converged values, assuming that convergence has been attained at a hopefully
global mode.

13.6 Appendix F: Treatment of missing data

Let a multi-trait data point ðT3 1Þ on individual i be represented as

ycomplete
i ¼

�
ymiss
i ; yobsi

�
; (78)

330 D. Gianola and R. L. Fernando



where miss denotes a missing record, e.g., if T ¼ 2; a record could be missing for trait 1 or for trait 2; yobsi represents the
phenotypes for the traits observed in individual i. The posterior predictive distribution of ymiss

i has density

p
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i
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� ¼ Z
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Z
Rb

p
�
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pðm;b;R0;ΣjyÞdmdbdR0dΣ; (79)

provided that data points in i are conditionally (given m;b;R0) independent of any other i9 in the sample, and with y being all
observed data. The preceding formulae implies that ymiss

i can be imputed by sampling m;b;R0;Σ from their posterior distri-
bution, and then drawing from
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Since the sampling model is normal, for T ¼ 3; one has
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e½obs�;

where d1; d2; d3 take the value 1 when a given trait is missing in case i; or denote “exclude from formula” otherwise; R½obs;obs�
0 is

the part of R0 pertaining to observed phenotypes for case i; and R½miss;obs�
0 is the submatrix of residual covariances between

missing and observed traits. Further,
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For example, let T ¼ 3 and suppose that trait 1 is missing in case 250, but that traits 2 and 3 have been recorded; here

E
�
ymiss
250 jm;b;R0; yobs250

�
¼ m1 þ x2509b*

1 þ ½ r12 r13 �
	
r22 r23
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and
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¼ r112 ½ r12 r13 �
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r32 r33


21	 r12
r13



: (84)

In the MCMC algorithm, missing data are sampled independently across cases, but dependently within case by addressing the
pattern of missingness peculiar to each observation. Samples for missing observations can be used to estimate predictive
distributions for the missing data (Gelfand et al. 1992; Sorensen and Gianola 2002; Gelman et al. 2014).
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