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Adaptation of Plasmodium falciparum to humans
involved the loss of an ape-specific erythrocyte
invasion ligand
William R. Proto 1, Sasha V. Siegel 1, Selasi Dankwa 2, Weimin Liu3,4, Alison Kemp1, Sarah Marsden1,

Zenon A. Zenonos1, Steve Unwin5,7, Paul M. Sharp 6, Gavin J. Wright1, Beatrice H. Hahn 3,4,

Manoj T. Duraisingh2 & Julian C. Rayner 1,8

Plasmodium species are frequently host-specific, but little is currently known about the

molecular factors restricting host switching. This is particularly relevant for P. falciparum, the

only known human-infective species of the Laverania sub-genus, all other members of which

infect African apes. Here we show that all tested P. falciparum isolates contain an inactivating

mutation in an erythrocyte invasion associated gene, PfEBA165, the homologues of which are

intact in all ape-infective Laverania species. Recombinant EBA165 proteins only bind ape, not

human, erythrocytes, and this specificity is due to differences in erythrocyte surface sialic

acids. Correction of PfEBA165 inactivating mutations by genome editing yields viable para-

sites, but is associated with down regulation of both PfEBA165 and an adjacent invasion

ligand, which suggests that PfEBA165 expression is incompatible with parasite growth in

human erythrocytes. Pseudogenization of PfEBA165 may represent a key step in the emer-

gence and evolution of P. falciparum.
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P lasmodium falciparum emerged from a group of seven
Plasmodium species that infect African apes, collectively
referred to as the Laverania sub-genus1–3. The closest

extant relative of P. falciparum is P. praefalciparum, a parasite
that infects western lowland gorillas. All existing P. falciparum
strains form a monophyletic clade within the P. praefalciparum
radiation4, suggesting that the jump to humans may have hap-
pened only once1. There is currently no evidence that ape
Laverania species infect humans, even among populations living
in close proximity to wild apes5–7. Laverania species appear to be
largely ape species-specific, even when their hosts are sympatric8,
although in captivity these restrictions are not absolute9. This
host specificity is in contrast to other primate-infective Plasmo-
dium species such as P. knowlesi, which transitions readily
between rhesus macaques and humans10. The cause(s) of
Laverania host specificity are currently unknown but are
important to understand, given that the breaching of such a host
barrier led to the establishment of P. falciparum as a human
parasite.

Plasmodium host specificity could be the result of incompat-
ibilities at the vector-host, vector-parasite and/or host-parasite
interfaces. Of these, host-parasite interactions, particularly during
Plasmodium blood stages, have been most strongly implicated in
Laverania species-specificity to date. Laverania core genomes are
generally highly conserved, but multiple genes involved in ery-
throcyte invasion have been gained and lost between Laverania
species4,11, and in one case horizontal gene transfer has moved
two essential erythrocyte invasion genes into an ancestor of P.
falciparum12. One of these, PfRH5, has been under adaptive
evolution during the diversification of the Laverania13, and binds
to its receptor Basigin in a host-specific manner14.

PfRH5 is unlikely to be the only factor restricting Laverania
blood stage interactions, as erythrocyte invasion is a complex
process involving multiple receptor-ligand interactions15.
The multi-gene erythrocyte binding-like (EBL) family plays a
central role in this process, and three EBL ligands are known to
recognise glycophorins, the major erythrocyte surface

sialoglycoproteins – PfEBA175 recognises Glycophorin A16,
PfEBA140 recognises Glycophorin C17,18, and PfEBL1 recognises
Glycophorin B19. The role of other EBLs is less well understood
and one, PfEBA165, does not appear to play any active role in
invasion because the gene encoding it, PfEBA165, is a transcribed
pseudogene in the reference P. falciparum 3D7 genome20.
Interestingly, the inactivating frameshift found in PfEBA165 in
the 3D7 genome, as well as the genomes of several other lab
isolates, is absent in the chimpanzee parasite P. reichenowi21 as
well as other Laverania species4,11,12 raising the possibility that
inactivation of PfEBA165 played a role in the successful coloni-
zation of humans by P. falciparum.

Here we use a combination of sequencing, protein expression,
and red blood cell engineering to show that selective sialic-acid
binding of EBA165 is a key determinant of host-specific ery-
throcyte binding. In addition, we find that CRISPR-Cas9 medi-
ated correction of the inactivating PfEBA165 mutations in P.
falciparum silences expression of both PfEBA165 and other
genomic regions, suggesting that expression of functional
PfEBA165 is not compatible with efficient growth of P. falci-
parum in human erythroyctes. Together, these data suggest that
inactivation of PfEBA165 may have been important in the
emergence of P. falciparum as a human pathogen, and has
broader implications for the role of invasion ligand changes in the
ability of Laverania parasites to transmit between, and adapt to,
new hosts.

Results
EBA165 frameshifts are restricted to human-infective para-
sites. All P. falciparum EBL proteins have a conserved structure,
with a signal sequence and large ectodomain encoding two ery-
throcyte binding domains, followed by a transmembrane domain
and short cytoplasmic domain (Fig. 1a). Two frameshifts within
PfEBA165 were identified in the reference P. falciparum
3D7 strain20, with the 5′ most frameshift occurring immediately
downstream of the signal sequence, and the 3′ frameshift
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Fig. 1 EBA165 frameshifts are specific to human-infective Laverania parasites. a Cartoon of EBL protein structure and domains. The erythrocyte binding
domain of each protein is split into two Duffy Binding Like (DBL) erythrocyte binding domains (F1, F2). Bold outlines indicate translated amino acid
sequence. In P. falciparum, the presence of a frameshift mutation eliminates translation of the majority of the protein, including both DBL domains, unlike
the homologous protein in Plasmodium reichenowi (PrEBA165) or the major P. falciparum glycophorin binding protein, PfEBA175. The dashed/faded region of
PfEBA165 depicts the protein structure that would be produced if frameshifts are corrected. b Alignment of Laverania EBA165 orthologues spanning the
single base pair deletion (starred) universally conserved in 2517 globally distributed clinical P. falciparum isolates. Sequences displayed are from one isolate
for each Laverania species (G1, P. praefalciparum; C1, P. reichenowi; B1, P. lomamiensis; G2, P. adleri; C2, P gaboni; G3, P. blacklocki; C3, P. billcollinsi). All seven
non-human-infective Laverania species lacked the single nucleotide deletion (left hand side), eliminating the premature stop codon present in PfEBA165 and
resulting in intact amino acid sequences (right hand side). Residue numbers are indicated above the alignments and are based on the PfEBA165 sequence.
Partial alignments of ape Laverania PfEBA165, along with a frameshift corrected P. falciparum sequence, are shown in Supplementary Fig. 1
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occurring within the F1 domain (Fig. 1a). Analysis of PfEBA165
in other lab strains showed the 5′ frameshift, which truncates the
transcript before the erythrocyte binding domains, was conserved,
while the 3′ frameshift appeared restricted to 3D720,21. To
establish the global frequency of these frameshifts we analysed
PfEBA165 sequences from 2517 P. falciparum clinical isolates
using data from the Pf3k project (https://www.malariagen.net/
projects/pf3k). The 3′ frameshift present in 3D7 was found to
occur in only one other isolate, whereas all 2517 isolates, collected
from across Africa, Asia, Oceania and South America, contained
the identical 5′ frameshift. All P. falciparum strains therefore
appear to lack an intact PfEBA165 gene.

By contrast the genome of the closest living relative of P.
falciparum, the gorilla-infective parasite P. praefalciparum,
encodes a complete PfEBA165 open reading frame, as do all of
the five other ape Laverania parasites that have been whole
genome sequenced to date4,11,12. To provide further evidence that
inactivation of EBA165 is P. falciparum-specific, we examined the
frameshift containing region in additional ape Laverania samples.
Using single template PCR to amplify a ~800 bp fragment from
ape faecal samples collected in the wild, we identified 78 distinct
EBA165 haplotypes representing all seven ape Laverania species,
including the recently discovered bonobo parasite P. lomamien-
sis3. None of these contained the P. falciparum-specific frame-
shift, or any other inactivating mutation within the amplified
region (Fig. 1b and Supplementary Fig. 1).

Laverania EBA165 selectively binds chimpanzee erythrocytes.
Given an intact EBA165 open reading frame is only found in ape-
infective Laverania species, we hypothesized that the encoded
protein performs an ape-specific function during erythrocyte
invasion. To test this we expressed the full-length ectodomain of
P. reichenowi EBA165 (PrEBA165) as a recombinant protein, as
well as a corrected version of PfEBA165, representing the P.
falciparum sequence as it would be translated if no frameshift was
present. Monomeric PrEBA165 and PfEBA165 expressed
as soluble recombinant proteins of the expected size in HEK293E
cells, as detected by immunoblot (Fig. 2a). PfEBA175, which we
have previously shown to be functionally active when expressed
in this system22, was used as a positive control. Biotinylated
monomeric recombinant proteins were immobilised on
streptavidin-coated Nile Red fluorescent beads and incubated
with either human or chimpanzee erythrocytes. After washing,
the binding of protein loaded beads to erythrocytes was detected
by flow cytometry (Fig. 2b). As expected, PfEBA175 bound both
human and chimpanzee erythrocytes (Fig. 2c), and binding was
eliminated by treatment with neuraminidase (dashed line,
Fig. 2c), which enzymatically removes sialic acids from the ery-
throcyte surface, and is known to eliminate interaction between
PfEBA175 and GYPA16. Both PrEBA165 and PfEBA165 bound to
chimpanzee erythrocytes and their binding was also eliminated by
neuramindase treatment, suggesting that like PfEBA175, binding
of EBA165 proteins is sialic-acid dependent. By contrast, neither
PrEBA165 nor the corrected PfEBA165 proteins were able to bind
to human erythrocytes, suggesting that they can only recognise
chimpanzee erythrocytes.

Erythrocyte surface sialic acids dictate host specificity. Given
that binding of PrEBA165 and PfEBA165 was sialic-acid depen-
dent, we investigated their binding preferences for sialic-acid
variants, which are known to differ between humans and other
apes. The CMAH gene that encodes the enzyme that converts N-
acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid
(Neu5Gc) was disrupted during the evolution of modern
humans23. Human sialoglycoproteins therefore contain only

Neu5Ac, while ape sialoglycoproteins contain both Neu5Gc and
Neu5Ac, with Neu5Gc representing approximately 75% of the
sialic-acid presented on the surface of chimpanzee erythrocytes24.
PrEBA165, PfEBA165 and PfEBA175 were expressed as penta-
mers, to increase binding avidity, and tagged with β-lactamase to
enable detection. Consistent with previous findings22,25

PfEBA175 was able to bind to a range of sialic-acid containing
glycans, including both Neu5Gc and Neu5Ac sialic-acid variants
(Fig. 3a; full glycan panel shown in Supplementary Fig. 2). By
contrast, both PrEBA165 and the corrected PfEBA165 bound
only to glycans containing Neu5Gc sialic acids (Fig. 3a; full glycan
panel shown in Supplementary Fig. 2), mirroring their specificity
for ape erythrocytes.

To test whether sialic-acid variants are the sole determinant of
host-specific erythrocyte binding, we expressed CMAH in human
haematopoeitic stem cells (HSCs), then differentiated them to
produce cultured human red blood cells (cRBCs) that have
Neu5Gc containing sialoglycoproteins on their surface26. cRBCs
differentiated from human HSCs transduced with a lentiviral
vector containing chimpanzee CMAH, or an empty vector control
(pLVX), had no detectable differences in their surface levels of a
range of erythrocyte receptors used by P. falciparum for
erythrocyte invasion (Glycophorin A, Glycophorin C and Basigin;
Supplementary Fig. 3). Expression of CMAH also had no effect on
PfEBA175 binding (Fig. 3b), which as shown above is able to bind
both human and ape erythrocytes, and to Neu5Ac and Neu5Gc
containing sialic acids. By contrast, expression of CMAH had a
radical effect on PrEBA165 and PfEBA165 binding. Both were
unable to bind to control cRBCs (pLVX, Fig. 3b), just as they had
been unable to bind to mature human erythrocytes taken from
circulation. However, both PrEBA165 and PfEBA165 could bind
cRBCs differentiated from CMAH expressing HSCs, which
differed only in the sialic-acid variant that was expressed on the
red blood cell surface. PrEBA165 and the corrected PfEBA165 are
therefore unable to bind human erythrocytes solely because of the
absence of ape-specific Neu5Gc sialic acids.

Correcting PfEBA165 frameshifts eliminates gene expression.
The ape-specific binding of corrected PfEBA165 suggests that its
activity would not have been needed after the transition of
ancestral P. falciparum parasites to humans. This would in turn
have removed any selection pressure against acquiring inacti-
vating frameshift mutations in PfEBA165, such as the one seen in
all currently circulating P. falciparum parasites. To reverse this
process we used CRISPR-Cas9 genome editing to correct the
frameshift mutations. To allow modification of frameshifts singly
or together, we used two separate sgRNAs and two linear PCR
products that were engineered to correct either the 5′ or 3′ fra-
meshift (Fig. 4a); transfection together yielded strains with both
frameshifts corrected (C10 and D3), while transfection of only
one yielded a strain with the 3′ frameshift corrected, but the 5′
frameshift intact (YB4). The presence of the engineered muta-
tions was confirmed by PCR and Sanger sequencing (Fig. 4b).
Whole-genome sequencing identified only three other non-
synonymous SNPs in the edited lines relative to the parental
line, which may have arisen during mitotic replication. None of
the single and double-edited strains had any apparent growth
defect under standard in vitro conditions, or in competitive
growth assays (Supplementary Fig. 4A). Invasion phenotypes
were explored using enzymes to remove subsets of erythrocyte
receptors, which can reveal subtle changes in invasion pathway
usage27–29. A trend of reduced invasion was observed for
the double-edited lines when human (Supplementary Fig 4B)
and chimpanzee (Supplementary Fig 4C) erythrocytes were pre-
treated with neuramidase. Neuraminidase selectively removes
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extracellular sialic acids, suggesting that these lines have an
increased reliance on sialic-acid dependent-invasion pathways.
The other enzyme treatments tested did not affect invasion rates
(Supplementary Fig. 4D).

Given the lack of a strong phenotype in any of the invasion
assays, we used qRT-PCR to investigate whether frameshift
correction had affected PfEBA165 transcript levels (Fig. 4c). Clone
YB4, where only the 3′ frameshift had been repaired, expressed
similar levels of PfEBA165 to the wild-type 3D7 control. By
contrast, the two double-edited clones had negligible levels of
PfEBA165 transcript, suggesting that PfEBA165 was specifically
down-regulated when both frameshift mutations were reversed. To
establish whether this downregulation was specific to PfEBA165, we
performed strand-specific RNAseq. Differential expression analysis
identified a total of 444 differentially expressed genes between 3D7
and C10, and 2202 between 3D7 and D3, however the number of
genes with large log2 fold-changes was considerably smaller (36 and
359, respectively). Once known clonally-variant genes were
removed, only a handful of significantly differentially expressed

genes remained (Fig. 5a). Interestingly, these genes were located in
two large regions (~43 kb and 23 kb, respectively) on chromosomes
4 and 11 (Supplementary Table 1). The large downregulated region
on chromosome 4 spans several genes, including PfEBA165 and
another invasion gene PfRH4, along with six additional genes
downstream of PfEBA165 (Fig. 5b). PfEBA165 had log2FCs of
~−2.2 in both clones compared to 3D7, consistent with the qRT-
PCR data. The three most tightly down-regulated genes in both
clones, sporozoite and liver stage asparagine-rich protein (SLARP,
Pf3D7_1147000), a putative dynein light chain, (Pf3D7_1147100),
and a putative tubulin tyrosine ligase (Pf3D7_1147200), are all
located within a 23 kb region on chromosome 11 (Fig. 5c).
PfEBA165 frameshift editing therefore appeared to be accompanied
by relatively large epigenetic silencing events, including down-
regulation of PfEBA165 transcription.

Discussion
In this work we show that PfEBA165 is a pseudogene in all cir-
culating P. falciparum parasites, but the homologous gene is
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intact in all ape Laverania species. Recombinant Laverania
EBA165 ectodomains bind specifically to chimpanzee but not
human erythrocytes, and this binding specificity is due to dif-
ferences between the sialic-acid repertoire of human and ape
erythrocytes. The human genome contains an insertion in the
CMAH gene, resulting in the production of only Neu5Ac sialic
acids, whereas apes contain predominantly Neu5Gc23. Sialic acids
are a common component of cell surface glycans, particularly on
erythrocytes where they decorate sialoglycoproteins such as
Glycophorin A, which is present in ~1 × 10^6 copies on every
erythrocyte30. This change in sialic-acid composition between
humans and apes has been implicated in a wide range of
pathogen binding specificities, including recognition of macaque
erythrocytes by P. knowlesi26. In the case of both PfEBA165 and
PrEBA165 the binding specificity for Neu5Gc is absolute, as we
show that adding a functional CMAH is all that is required to
allow binding of these proteins to human erythrocytes.

Given that the ape Laverania EBA165 proteins tested bind
exclusively to an ape-specific sialic-acid (Neu5Gc), there appears
to be no requirement for P. falciparum to produce a functional
PfEBA165 protein. However, it is striking that >2500 clinical
isolates sequenced to date all contain exactly the same

inactivating mutation within PfEBA165, suggesting that this
mutation was either present in the gorilla precursor to P. falci-
parum, or was acquired very early during the emergence of P.
falciparum and selected to fixation. Using CRISPR-Cas9 genome
editing to engineer a correction of the frameshift mutations in P.
falciparum parasites led to an extreme downregulation of
PfEBA165 gene transcription, as well as a broader effect on genes
in the vicinity such as PfRH4. Silencing of EBA165 is consistent
with previous studies indicating epigenetic control of invasion
ligands, as P. falciparum differentially employs a suite of inter-
changeable ligands31,32. PfEBA165 and PfRH4 are known to share
a bidirectional promoter, with co-regulation of PfEBA165 and
PfRH4 observed in both lab33 and clinical isolates34,35. PfRH4
binds Complement Receptor 1 and represents an important
sialic-acid independent invasion pathway for P. falciparum36,37.
The observed downregulation of PfRH4 in the double-edited
strains is likely to be responsible for the observed change in
erythrocyte invasion pathway towards sialic acids dependent-
invasion, perhaps through increased reliance on EBA175. The
significant role of RH4 in invasion suggests that downregulation
of this locus may have a cost in natural infection, and that even
in vitro P. falciparum goes to considerable lengths to avoid
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expressing intact PfEBA165. Together, these observations indicate
that expression of functional PfEBA165 protein is incompatible
with successful growth of P. falciparum in human erythrocytes.

While this is an intriguing hypothesis, it was not possible to
confirm. Multiple attempts to conditionally express an intact
PfEBA165 gene episomally were not successful, perhaps due to

leakiness in conditional systems. No other Laverania parasites
have been adapted to in vitro culture, so the complementary
experiment of introducing an EBA165 inactivating mutation into
an ape Laverania genome is not possible. Finally, using cRBCs
expressing CMAH to select for EBA165-expressing P. falciparum
transfectants is also not possible, in this case due to technical
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gene, along with linear PCR donor templates containing corrected versions of these frameshifts. Cas9 mediated homologous recombination would result in
correction of either one or both frameshifts, depending on whether one or both sgRNA containing plasmids were transfected. The plasmids contained the
human dihydrofolate reductase (hDHFR) gene for selection, Cas9 and sgRNA expression were driven by endogenous calmodulin (cam) and U6 promoters,
respectively, b Sanger sequencing of cloned double transfectant parasite line (C10) confirms correction of both frameshifts, with correction for 5′
frameshift shown in top row and 3′ frameshift shown below. Blue boxes outline sgRNA target sequences and green boxes outline PAM sites within the
target sequence. The donor template incorporated changes that eliminate the PAM site, preventing re-cleavage of corrected genes, but do not affect the
translated amino acid sequence. c Quantitative RT-PCR of PfEBA165 expression in 3D7 (parental line). YB4 (cloned transfectant with the 3′ frameshift
corrected) and C10 and D3 (cloned transfectant lines with both the 5′ and 3′ frameshifts corrected). To control for differences in relative abundance of
mature schizonts in the parasite culture before RNA extraction, PfEBA165 transcript levels were normalized to Pfcyp87 (stable expression throughout cell
cycle) and expressed relative to PfAMA1 (late-stage specific expression). Data points represent mean values of three biological replicates. Error bars
represent standard deviation and statistical significance was determined using a one-way ANOVA with Dunnet’s multiple comparison test for each
erythrocyte category. **p < 0.01. Source Data are provided as a Source Data File
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Fig. 5 PfEBA165 frameshift correction reveals clusters of down-regulated genes. a Volcano plots showing significantly upregulated and down-regulated
genes in the EBA165 double-edited parasite clones C10 and D3 relative to 3D7, plotted as -log10(pvalue) against log2 fold change (log2FC). Blue dots
represent highly up-regulated and downregulated genes (−2 > log2FC > 2, adjusted p-value≤ 0.05, DESeq2 Wald-test). Hashed lines indicate cutoffs of
−2 > log2FC > 2. Dots with no gene IDs listed beside them are genes belonging to gene families that are known to be clonally variant in expression. b The
genomic region on chromosome 4 that is downregulated in the PfEBA165 restored lines. Log2 fold change in expression relative to the wild-type 3D7 line is
shown numerically above each gene; PfEBA165 is highlighted in the boxed region. c The genomic region on chromosome 11 that is down-regulated in the
PfEBA165 corrected lines. Log2 fold change in expression relative to the wild-type 3D7 line is shown numerically above each gene
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limitations. While CMAH cRBCs can be produced at a small scale
for single cycle invasion or growth assays such as those performed
here, it is not currently possible to produce these cRBCs at a
sufficient scale to support long-term cell culture experiments such
as P. falciparum transfection or selection.

Given the clear ape-specificity of Laverania EBA165 binding,
and our inability to express functional PfEBA165 in P. falciparum
parasites, it is interesting to speculate whether inactivation of
PfEBA165 might have been required for the ancestor of P. falci-
parum to successfully colonise humans. How might gene inacti-
vation promote species transition? PfEBA165 belongs to a group
of invasion ligands, the EBLs, which along with another multi-
gene family of invasion ligands, the RBLs, are thought to play
partially overlapping functions during invasion38. Deletion of one
gene within these families often shifts the invasion process so that
it relies on pathways encoded by other ligands29 and such
pathways are thought to be organised hierarchically39. If
PfEBA165 was the dominant ligand in the invasion hierarchy of
the gorilla-infective common ancestor of P. falciparum and P.
praefalciparum, then the loss of that dominant ligand could have
revealed the activity of a secondary invasion pathway that was not
ape-specific (Fig. 6). Given what we know about currently cir-
culating P. falciparum strains, it could have been PfEBA175 that
became more important following the loss of PfEBA165, thus pre-
disposing the ape-infective ancestor to be able to infect human
erythrocytes. Under this theory, our attempts to recreate a
functional PfEBA165 reinstated that ape-specific dominant
pathway, outcompeting the ability of PfEBA175 to function, and
thus could only be tolerated if expression of the corrected
PfEBA165 gene was significantly down-regulated. Loss of
PfEBA165 may not have been absolutely required for species
transition, but may instead have conferred a significant growth
advantage in human erythrocytes once the initial jump had
occurred, meaning that strains with the single inactivating
mutation were selected for and rapidly outcompeted strains with
a functional EBA165 locus. Loss of invasion ligands have been
linked with changes in host preference during the in vitro
adaptation of P. knowlesi to growth in human erythrocytes. In
this case, deletion of an RBL invasion ligand (PkNBPXa) and an
EBL ligand (PkDBPgamma) were associated with increased
invasion efficiency for macaque erythrocytes, and decreased
invasion efficiency for human erythrocytes26,40.

Of course, interactions between Plasmodium parasites and
humans are complex and occur at multiple stages, so an intact
EBA165 gene is unlikely to be the only factor preventing ape
Laverania species from infecting humans. In particular, there is
compelling evidence suggesting that the changes to the PfRh5
invasion complex may also have played a crucial role. Completion
of the P. gaboni genome revealed a horizontal gene transfer event
which transferred Rh5 and CyRPA from the distantly related
gorilla parasite P. adleri into the gorilla precursor of P. falci-
parum12, which may have predisposed P. praefalciparum to
colonize humans. Moreover, Laverania RH5 proteins have been
under adaptive evolution, with one change occuring at the origin
of P. falciparum13, which may explain why PfRh5 appears to bind
to its receptor Basigin in a host-specific manner14. Given that it is
now clear that PfRh5 functions as part of a multi-protein com-
plex41–43, the species specificity of interactions between complex
members warrants further investigation. However, the data pre-
sented here suggests that the introduction of a frameshift muta-
tion in EBA165 may have also played a key role in the emergence
of P. falciparum as a human-infective species, being either
required for the host transition from gorillas to take place,
or necessary for increasing blood stage multiplication rates
once the transition had occurred. The last decade has seen a
rapid expansion in our understanding of the prehistory of

P. falciparum. This and other molecular studies are starting to
reveal the exact steps that were required for P. falciparum to
emerge as one of the most significant pathogens in human
history.

Methods
Recombinant protein production. PfEBA175, PfEBA165 and PrEBA165 sequences
were obtained from published reference genomes11. PfEBA175 and PfEBA165
recombinant proteins were produced by transient transfection of HEK293E cells44.
Briefly, protein ectodomains were identified using signal peptide and transmem-
brane helices prediction software45,46. Potential N-linked glycosylation sites (NXS/
T sequence motifs, X is any amino acid except proline) were removed by replacing
serine or threonine residues with alanine, because Plasmodium species don’t
naturally glycosylate secreted proteins, but cryptic sites can be inappropriately
glycosylated by other eukaryotic expression systems. Coding sequences, flanked by
unique NotI and AscI restriction sites, were codon optimised for expression in
human cells and were produced by gene synthesis (GeneArt). To produce bioti-
nylated monomeric protein, modified ectodomains were cloned into a derivative of
the pTT3 expression vector, between an N-terminal signal peptide (mouse variable
κ light chain 7–33) and C-terminal rat Cd4 domains 3 and 4, followed by a
biotinylatable peptide. The Cd4 tag was used to monitor protein folding as it is
recognised by a conformation epitope-specific monoclonal antibody. For penta-
meric proteins a similar pTT3 derivative was used, but a pentamerisation domain
of the rat cartilage oligomeric matrix protein (COMP) conjugated to β-lactamase
replaced the biotinylatable peptide47.

Constructs were transiently transfected into HEK293E cells and soluble proteins
were collected from culture supernatant on day 6. Monobiotinylated proteins
required cotransfection with a modified BirA biotin ligase expression plasmid,
and excess free biotin was removed by dialysis. Selective labelling of target proteins
in supernatants precluded purification; however, target protein activities were
quantified and normalised47. Relative mono-biotinylated protein concentrations
were determined by ELISA, using streptavidin-coated 96-well plates and mouse
anti-rat Cd4 (1:1000, OX68, MCA1022, Serotec) before goat anti-mouse alkaline
phosphatase (1:5000, A0168, Sigma–Aldrich) and detection with phosphatase
substrate. Pentameric proteins were analysed by colorimetric β-lactamase activity
assays, where nitrocefin hydrolysis by supernatant serial dilutions was monitored
by measuring absorbance at 485 nm.

Western blot. Denatured supernatants of monomeric biotinylated proteins were
resolved using NuPAGE™ Novex™ 4–12% Bis-Tris protein gels, before blotting onto
nitrocellulose membrane (GE Healthcare). After blocking, membranes were incu-
bated with streptavidin-horseradish peroxidase (1:2000, Cell Signaling Technology)
for 1 h and developed with Amersham ECL Prime chemiluminescence substrate
(GE Healthcare).

Erythrocyte sources. Human O+ erythrocytes were supplied by NHS Blood and
Transplant, Cambridge, UK and Research Blood Components, Boston MA, USA,
and all samples were anonymised. The work complied with all relevant ethical
regulations for work with human participants. The use of erythrocytes from human
donors for P. falciparum culture and binding studies was approved by the NHS
Cambridgeshire 4 Research Ethics Committee (REC reference 15/EE/0253) and the
Wellcome Sanger Institute Human Materials and Data Management Committee.
Chimpanzee (Pan troglodytes) erythrocytes were obtained from the unused fraction
of blood samples taken for health testing purposes by the Animal Health Team at
Chester Zoo, UK. Macaque erythrocytes were obtained from the Yerkes National
Primate Research Center, Atlanta GA, USA. Cultured red blood cells were dif-
ferentiated from bone marrow-derived Cd34+ haematopoietic stem cells (Lonza).

Erythrocyte binding assays. Monomeric biotinylated PfEBA165, PrEBA165 and
PfEBA175 protein supernatants were immobilised on 0.4–0.6 μm streptavidin-
coated Nile Red fluorescent microbeads (Spherotech), by incubation with gentle
agitation at 4 °C for 1 h. Loaded microbeads were washed with Buffer A (HBS, 1%
BSA) and incubated in an ice-cold sonicating water bath for 20 min to disrupt
aggregates. Binding reactions were carried out in flat-bottomed 96-well plates, with
each well containing ~4 × 105 cells and loaded fluorescent microbeads, mixed at
estimated cell to fluorescent bead ratio of 1:145. After 1 h at 4°C with gentle
agitation, cells were washed twice in Buffer A and analysed by flow cytometry,
using an LSRII cytometer (BD Biosciences) for erythrocytes and MACSQuant
(Miltenyi Biotech) for cultured red blood cells (cRBCs). The gating strategy is
provided in Supplementary Fig. 5. To validate binding specificity cells were treated
with Vibrio cholerae neuraminidase (Sigma–Aldrich). Erythrocytes and cRBCs
were incubated with 20 mU/ml or 66.7 mU/ml neuraminidase, respectively, with
gentle mixing for 1 h at 37 °C. The enzyme was removed by three washes in
incomplete RPMI (cRBC final wash used PBS pH 7.4).

Glycan binding assays. Recombinant pentameric β-lactamase-tagged PfEBA175,
PfEBA165 and PrEBA165 proteins were screened for interactions against synthetic
carbohydrate probes (GlycoTech)22. Biotinylated carbohydrate probes (designated
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baits) were immobilised on streptavidin-coated 96-well plates by incubating at
saturating concentrations for 1 h. Plates were washed three times in HBST and
normalised pentameric β-lactamase-tagged proteins (designated preys) were added
(100 μl/well) and incubated for 1 h. Plates were washed with HBST then HBS,
before analysing the hydrolysis of nitrocefin substrate (60 μl at 125 μg ml−1) by
measuring absorbance at 485 nm.

Cultured red blood cells (cRBCs). Neu5Gc was expressed on the surface of
modified human erythrocytes by expressing chimpanzee CMAH in ex-vivo-
cultured red blood cells (cRBCs)26. Briefly, differentiation and proliferation of bone
marrow-derived CD34+ hematopoietic stem cells (Lonza) were achieved in Iscove’s
Modified Dulbecco-based medium (Biochrom) supplemented with 5% solvent/
detergent virus-inactivated human plasma (Octaplas, Octapharma), stem cell factor
(R&D Systems), hydrocortisone (Invitrogen), IL-3 (R&D Systems), and ery-
thropoietin (Amgen) according to a published protocol48 with the following
modifications. Cells were transduced on day 7 with lentivirus harbouring either the
chimpanzee (Pan troglodytes) CMAH cDNA sequence in pLVX-Puro (Clontech)
or the empty vector, pLVX-Puro. The CMAH insert was codon-optimized for
human expression and synthesized with a C-terminal tobacco etch virus (TEV)
cleavage site and FLAG-c-myc tags (GeneArt). Transductants were selected on
2 mgml−1 puromycin (Sigma–Aldrich). Drug selection was maintained until day
13 when cells were co-cultured on a murine MS-5 stromal cell layer. Cells were

replated on MS-5 stroma on day 18 and harvested on day 20 or 21. Cells were
stored at 4 °C in incomplete RPMI (RPMI-1640 [Sigma–Aldrich] supplemented
with 25 mM HEPES and 50 mg l−1 hypoxanthine) until binding and flow cyto-
metry assays.

Flow cytometry detection of Neu5Gc and erythrocyte receptors. Neu5Gc and
erythrocyte receptor surface expression was assessed by flow cytometry. Cells were
washed three times in PBS containing 0.5% Neu5Gc-free blocking agent (Siamab)
and pelleted at 500 g for 4 min in 96-well plates at 5 × 105 cells/well. Cells were
incubated with antibodies at the following dilutions: anti-Neu5Gc (1:5000, Sia-
mab), phycoerythrin(PE)-conjugated anti-DARC (1:10, 130-105-683, Miltenyi
Biotec), anti-CD71-PE (1:10, 130-104-151, Miltenyi Biotec), anti-BSG (1:1000,
Clone MEM-M6/6, Axxora [Exbio]), fluorescein isothiocyanate-conjugated anti-
glycophorin A (GPA) (1:50, Clone 2B7, 60152FI, STEMCELL Technologies) and
anti-glycophorin C (GPC)-FITC (1:500, BRIC 10, sc-59183 FITC,Santa Cruz).
After 1 h incubation at room temperature and three washes in blocking buffer,
unstained cells and cells stained with DARC, CD71, GPA and GPC antibodies were
resuspended in 100 µl PBS for flow cytometry analysis (MACSQuant; Miltenyi
Biotec). Neu5Gc-stained cells were incubated in anti-chicken IgY-Alexa Fluor
488 secondary antibody (Life Technologies) at 1:1000 for 30 min at room tem-
perature. Unstained control samples were incubated in anti-mouse IgG2a-PE (1:10,
Miltenyi Biotec), anti-chicken IgY-Alexa Fluor 488 antibody or anti-mouse
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Fig. 6 PfEBA165 inactivation may have predisposed P. falciparum ancestor to invade human erythrocytes. Invasion ligands function in a partially redundant
manner during erythrocyte recognition, and gene deletion studies suggest a defined hierarchy of interactions. If EBA165, which only recognises ape-specific
sialic acids (Neu5Gc), was the dominant invasion ligand in the ancestor of P. falciparum, inactivation may have allowed PfEBA175, which is not Neu5Gc
specific, to play a more dominant role in invasion (left hand arrow). This would have either predisposed parasites to more effectively invade human
erythrocytes, which only expresss Neu5Ac, or increased growth after host-species transition had occurred, selecting for strains where PfEBA165 was
inactivated. By contrast ancestral parasites with a dominant and intact PfEBA165 would still primarily rely on Neu5Gc sialic acids for invasion, and hence
would invade human erythrocytes less efficiently, reducing the likelihood of species transition, or reducing growth rates once the transition had occurred
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IgG-Alexa Fluor 488 (1:1000, Life Technologies). Cells were washed twice before
flow cytometry. Data were analysed in FlowJo 4 version 10.0.7 (Tree Star).

P. falciparum culture and CRISPR modification. Wild-type 3D7 Plasmodium
falciparum strain was obtained from Malaria Research and Reference Reagent
Resource Centre (www.mr4.org). P. falciparum strain 3D7 was cultured in RPMI-
based media supplemented with 0.5% AlbuMAX II (Life Technologies), 2 mM L-
glutamine and O+ human erythrocytes, using standard techniques49. For trans-
fection, sorbitol-synchronised ring stage parasites (~ 10% parasitemia, 2.5% hae-
matocrit) were electroporated with 50 μg plasmid DNA and 25 μg Donor Template
(PCR product) using a Lonza 4D-Nucleofector. Briefly, 100 μl of infected ery-
throcytes were washed and resuspended in 100 μl of Primary Cell Nucleofector
Solution P3 (Lonza) supplemented with 12.5 mM ATP and DNA for transfection.
The cell mixture was split into two Nucleocuvettes and electroporated using pro-
gramme CM150. Cells were placed on ice for 2 mins then transferred to pre-
warmed complete media for 3 h, before replacing media and returning to standard
culture conditions. At 24 h post-transfection drug selection was applied with
1.5 nM WR92210 (Jacobus Pharmaceuticals) for 6–12 days. To edit PfEBA165 a
CRISPR/Cas9 approach was used, modifying the pDC2-cam-Cas9-U6-sgRNA-
hDHFR construct50 to independently target the two frameshifts found in PfEBA165
in P. falciparum strain 3D7. sgRNA-1 (sequence GATAAGTTGGCAAATGGG
AGTT) and sgRNA-2 (sequence GAACATAAAGAGAAATTTCCAA) were
designed to target the 5′ and 3′ PfEBA165 frameshifts, respectively. The sgRNAs
were inserted into BbsI cut vector following annealing of the oligonucleotide pairs
OL176-OL177 (sgRNA-1), and OL231-OL232 (sgRNA-2). To make PfEBA165
edits, donor templates were supplied as purified PCR product. Fragments of
PfEBA165 were cloned into TOPO and modified by KAPA HiFi site directed
mutagenesis to incorporate modifications for frameshift correction and silent
mutations in the Cas9 cut site (Fig. 5). For transfection, primers with 2 phos-
phorothioate bonds at the 5′ prime end were used to PCR amplify the Donor
Template. Before transfection, plasmids and PCR products were precipitated and
resuspended in Primary Cell Nucleofector Solution P3 (Lonza). Transfectants were
analysed by Sanger sequencing, using OL271 and OL293 to amplify ~2.1 kb frag-
ment of PfEBA165 outside of both donor template regions. Resulting PCR products
were purified and sequenced directly. Oligonucleotide sequences are listed in
Supplementary Table 2.

Whole-genome sequencing of edited lines. Paired-end reads were aligned to the
P. falciparum version 3 genome sequence using bwa-mem51 [https://arxiv.org/abs/
1303.3997]. SNPs and indels were called using Freebayes52 [https://arxiv.org/abs/
1207.3907] with default parameters, other than to specify a haploid genome.
Variants were filtered for an overall quality score >20 and a sequencing depth >8 in
all samples. Any variants with > 5 alternate observations in the sequenced parental
3D7 strain were discarded as being the result either of poor mapping or a pre-
existing mutation. The effect of the detected variants upon translated protein
sequences was predicted using SnpEff53.

RNA preparation. To synchronize parasites a 70% percoll gradient was used to
collect late schizonts. Following 2 h incubation newly reinvaded parasites were
separated with 70% percoll, and ring stages were further synchronized with 5%
sorbitol. Parasites were allowed to develop until late-stage schizonts could be
harvested. Total RNA was extracted using the Trizol (Gibco) method according to
manufacturer’s instructions. RNA quality was verified using an Agilent
Bioanalyzer 2100.

Erythrocyte invasion assays. A two-colour flow cytometric assay was used to
quantitate erythrocyte invasion by P. falciparum54. Briefly, to label target ery-
throcytes, cells were incubated with 10 µM CellTrace™ (Thermo Fisher Scientific)
Far Red (DDAO) for 2 h at 37 °C. The suspension was washed and incubated in
complete medium for 30 min, followed two further washes. Where required,
enzymatic treatment of erythrocytes was performed by incubation for 1 h at 37 °C
under rotation with enzymes at the following final concentrations: neruaminidase
from Vibrio cholerae (Sigma–Aldrich) 20 mU ml−1; trypsin (Sigma–Aldrich) or
chymotrypsin (Sigma–Aldrich, Dorset, UK) 50 µg ml−1 (low trypsin) or 1 mgml−1

(high trypsin and chymotrypsin). Enzymes were removed by washing with
incomplete media. Invasion assays were conducted in round-bottom 96-well plates,
by mixing equal volumes of 2% haematocrit suspensions of labelled erthrocytes and
parasitised erythrocytes (donor culture). The final culture volume was 100 µl per
well and plates were incubated for 48 h at 37 °C inside a gassed culture chamber. To
quantify invasion into target erythrocytes, cultures were washed in PBS and stained
with SYBR Green I (Invitrogen) DNA dye, at 1:5000 final concentration. Cells were
washed with PBS before acquisition on a BD LSRII flow cytometer (BD Bios-
ciences) with a 355 nm UV laser (20 mW), a 488 nm 20 mW blue laser, and a 633
nm red laser (17 mW). SYBR Green I was excited by a blue laser and detected by a
530/30 filter. DDAO was excited using the red laser and detected with a 660/20
filter. Data were analyzed with FlowJo (Tree Star).

qRT-PCR. For quantitative RT-PCR, RNA was extracted from late-stage syn-
chronous parasites and treated with DNase I (Ambion AM1907) to remove gDNA

contamination. cDNA was prepared using the High Capacity Reverse Transcrip-
tion Kit (Thermofisher 4368814) from 1 μg of total RNA using a mix of oligo dT
(Ambion AM5730G) and random hexamers (Invitrogen). A LightCycler 480
(Roche) was used to assess transcript levels in reactions containing SYBR green real
time reagent (Roche 04707516001), template cDNA and 0.2 μM of each primer.
Relative quantification of transcripts was performed using the ΔΔCt method, with
transcript levels normalized to Pfcyp87 (stable expression throughout cell cycle)
and expressed relative to PfAMA1 (late-stage specific expression) to control for
variation in RNA level (Pfcyp87 normalisation) as well as minor differences in life-
cycle stage synchronisation (normalisation to PfAMA1). Sequences of primer pairs
targeting Pfcyp87 (PF3D7_0510200), PfAMA1 (PF3D7_1133400) and PfEBA165
(Pf3D7_0424300) are shown in Supplementary Table 2.

RNAseq. A modified RNA-seq protocol (DAFT-seq) was used to account for the
extreme AT-content of the P. falciparum transcriptome55. PolyA+ RNA (mRNA)
was selected using magnetic oligo-d(T) beads. Reverse transcription using Super-
script III (Life) was primed using oligo d(T) primers, then second strand cDNA
synthesis included dUTP. The resulting cDNA was fragmented using a Covaris
AFA sonicator. A with-bead protocol was used for dA-tailing, end repair and
adapter ligation (NEB) using PCR-free barcoded sequencing adaptors56 (Bioo
Scientific). After two rounds of SPRI cleanup the libraries were eluted in EB buffer
and USER enzyme mix (NEB) was used to digest the second strand cDNA, gen-
erating directional libraries. The libraries were quantified by qPCR and sequenced
on an Illumina HiSeq2000 to generate about 20 million reads per sample. Quality
of the fastq files were assessed with the FastQC tool (Babraham Bioinformatics)
and reads with Phred quality scores over 30 were used for subsequent analysis. The
processed paired-end reads were mapped to the Plasmodium falciparum 3D7
genome (PlasmoDB, v29) using Tophat2 v2.1.1. DESeq2 was used in the R sta-
tistical environment to normalize and determine significantly differentially
expressed genes with adjusted p-values ≤ 0.05 between 3D7 control and double-
edited clones using default parameters (DESeq2, Wald-test57). Results of differ-
ential expression analysis were curated to remove genes previously shown to have
significant clonally-variant expression58 and were also characterized further using
gene ontology enrichment using PlasmoDB’s GO enrichment strategy tool. Data
have been deposited in the European Nucleotide Archive (ENA) with accession
number ERP114933 and is accessible through the SRA.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-sequencing data have been deposited in the European Nucleotide Archive (ENA)
with the accession number ERP114933 [https://www.ebi.ac.uk/ena/data/view/
PRJEB32274], and corresponding DNA-sequencing data with accession number
ERP023755 [https://www.ebi.ac.uk/ena/data/view/PRJEB21498]. The source data for
Figs. 2a, 3a, 4c and Supplementary Figs 4a-d are available in the Source Data file. All
other data are available from the authors upon reasonable request.
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