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Visual information and expert’s 
idea in Hurst index estimation 
of the fractional Brownian 
motion using a diffusion type 
approximation
Ali R. Taheriyoun & Meisam Moghimbeygi

An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used 
to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented 
in the likelihood approach. The first estimator is produced according to the observed values of the 
sample path; while the second one employs the likelihood function of the incremental process. We also 
employ visual roughness of realization to restrict the parameter space and to obtain prior information 
in Bayesian approach. The methods are then compared with three contemporary estimators and an 
experimental data set is studied.

General motivation
Fractional Brownian motion (fBm) appears in modeling wide classes of non-stationary stochastic processes. The 
statistical self-similarity and the ability of to fine-tune the order of Hölder continuity are the famous advantages 
of this process that make it typically one of the greatest interest in modeling natural phenomena. Typically, the 
creation of the fBm is attributed to ref. 1 since it investigated the basic properties of fBm and stressed its role in 
modeling of natural phenomena. However, it had been introduced during the generation of Gaussian spirals in 
Hilbert space2. Let ∈ +B t t{ ( ), }H  be an fBm that is a Gaussian zero-mean continuous process with stationary 
increments and the homogeneous stationary incremental variance function
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γ σ
= = + − −t s E B t B s t s t s( , ) : [ ( ) ( )]

2
( ), (1)H H H

H H H
2

2 2 2

where 0 <  H <  1, and σ >  0 are the parameters of the process. σ is a scale parameter and we then assume that 
σ =  1. Therefore, the interesting parameter is H, called fractal or Hurst (by Benoit B. Mandelbrot) index, in honor 
of Harold E. Hurst (for spending 62 years in Egypt carrying out a project on the hydrology of the Nile river) and 
also in honor of Ludwig O. Hölder.

The features of H are more far-reaching than a parameter of covariance function. For instance, we know that 
the differentiability of a process indicates the smoothness of the corresponding realizations. According to the last 
term of (1), fBm is not differentiable in 2, while it satisfies the Hölder continuity of order H and it has derivatives 
of order α for any 0 <  α ≤  H. Thus, an fBm with greater H induces the smoother realizations and this is our gen-
eral theoretic motivation for considering H as the crucial parameter of the process. Incremental stationary 
Gaussian processes with a Hölder continuity of order H construct an important class of H-index processes3. The 
most important feature of this family is the closed form of Hausdorff or fractal dimension for the graph of 
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Gaussian processes of this family. More clearly, the Hausdorff dimension of an H-index process is equal to 2 −  H. 
This means that the dimension and consequently the roughness of the fBm is decreasing in H (which is why H is 
called the fractal index) and stresses the importance of the estimation of H.

A very simple approach to obtaining the ML estimate is considering the likelihood function as the density 
function of a multivariate normal distribution. According to the last term of the covariance function (1), the joint 
density function behaves very roughly and is not hoped to employ even numerical methods to obtain the ML 
estimate of H. For a given index t, we simply use the series decomposition4 BH(t) =  ∑ nYn(t), such that for each n 
the summand process {Yn(t)}t has an Itô integral representation. The choice of Yn depends on the true value of H. 
When H <  1/2, the summand process is denoted by Y1n and for the case H >  1/2, the summand is in the form of 
Yn =  Y2n +  Y3n where Yjn, j =  1, 2 and 3, is defined in the section entitled Decomposition of fBm. We then follow 
two scenarios in the ML computation: The first one is the simple use of the more computationally compatible 
covariance functions of the independent processes {Yn(t)}, n =  1, 2, …  and then using the ML estimate of the 
covariances of Yn and the invariance property of ML estimates, we compute the ML estimate of H. The second 
scenario is based on the covariance function of the incremental process Yn(ti+1) −  Yn(ti) that is more smooth in 
comparison with fBm. Again, using the independence of Yn and Yn′ for each ′ ∈n n, , the likelihood function 
becomes more comfortable to apply numerical maximization algorithms. We hope also to accelerate the Bayesian 
computation by the use of this approximation of the likelihood function. The MCMC algorithm is used to capture 
the posterior information from the multiplication of the approximation of likelihood function by a prior distribu-
tion. Meanwhile, the visual information of the observed path of fBm is transferred to the estimation procedure by 
use of informative prior distributions. For instance, when the sample path shows an obvious short range depend-
ence property, we consider the interval (0, 1/2] as the support of a prior distribution.

Practical motivation
We discussed above the theoretical motivation for estimating H and now we briefly explain the enthusiasm of 
physicists and environmental scientists for H. Measuring the smoothness is an inseparable part of almost all 
surface analysis investigations. Due to the power and scaling laws, a variety of high resolution observations has 
been studied as a realization of fractal random fields. The Lévy fractional Brownian sheet (LfBs) of fractal index 
H is usually appointed to represent fractal behavior. The zero-mean Gaussian random field LH(t) is an LfBs of 
index H if
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for ∈ +t s, d . There are many methods to estimate the fractal index H based on the d-dimensional data of reali-
zation, but using almost all of them requires both computational and technical skills. A discussion on this subject 
could be found in ref. 5 and the references therein. Using the line transect data, we hope to decrease the compu-
tational cost of estimating H by reducing the dimension of data which tends to estimating H based on 
one-dimensional processes. For clarity, suppose that a picture has been taken of a surface (d =  2) and the obser-
vation is gathered in an r ×  c matrix. We are looking for an estimation of H that uses the data as c samples of length 
r. The question is: ‘is it possible to consider the data matrix as c sample paths from an fBm of index H ? ’ To answer 
this question, note that the Hausdorff dimension of the graph of LH(t) is equal to d +  1 −  H. Extract the simple one 
dimensional stochastic process ∈ +Z t t{ ( ); }i i  from LH(t), t =  (t1, … , td), by letting the d −  1 number of the ele-
ments of ∈ +t d  to be fixed. Let σZ

2 be the incremental variance of Z, then

σ
= ′
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where c′  >  0 does not depend on t, and hence Z is a one-dimensional index-H process3. Thereupon, it is helpful  
to look at the line-transect data of the realizations of LfBs when the aim of the study involves only the estimation 
of the fractal index and/or measuring surface roughness.

The estimators of H have often been made for estimating the roughness of surfaces using the line transect data. 
Several methods have been proposed to estimate H, the oldest among them is R/S-statistic introduced by ref. 6. 
Further results for this estimator were provided by ref. 7. In ref. 8 a robust estimation of H has been introduced for 
stable distributions. It has been shown that this estimator is not efficient in comparison with the ML estimators 
in the Gaussian case. Perhaps the first serious attempt to make the ML estimate in image textures is provided by 
ref. 9. One may find a Bayesian solution for the same problem in ref. 10. Using the asymptotic behavior of the 
k-th absolute moment of discrete variations of a sampled path, a class of consistent estimators of the Hurst index 
has been constructed11. Based on the Bahadur representation for sample quantiles of nonlinear transformations 
of Gaussian processes, another consistent estimator of the Hurst index for the general class of locally self-similar 
Gaussian processes has been presented12. Generally, there is a class of estimators based on a method, called dis-
crete variations, in which the oscillation of a quantity is employed in the estimation procedure. In statistical liter-
ature, refs 13 and 14, simultaneously originated this method and it has been highlighted many times in the other 
works11,12,15. There also exists a consistent estimator of H, based on the Karhunen-Loève expansion of a Gaussian 
process16. We compare our estimators with the estimators of refs 11, 12 and 15.

Methods
Decomposition of fBm. A stochastic integral representation of BH has been introduced17 as follows:
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where {B(t), t ≥  0} is the standard Brownian motion and
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for 0 <  H ≤  1/2 where
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The mentioned representation in (3) induces the idea of achieving a diffusion process based on the stochastic 
integration. Since the solution of an Itô integral is a semi-martingale and since BH, as the solution of the stochastic 
integral in (3), is not a semi-martingale for H ≠  1/2, the idea of constructing an exact diffusion representation is 
canceled. On the other hand, there is a series of diffusion processes, ∑ = Y t( )n

N
n1 , such that it converges4 to BH(t). 

The process {Yn(t)} is the answer of an Itô integral and strongly depends on the value of H. We would like to com-
pute the likelihood function using the joint distribution of the diffusion processes {Yn(t)}t but for finite N. 
Precisely, the series decomposition for BH(t) is obtained from the following convergences:
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for 1/2 <  H <  1, as N →  ∞  where B(n) and B′ (n) are independent sequences of independent Brownian motions. 
Also,
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where = − … − −( )b
a b b b a a( 1) ( 1)/ !def  and βn =  |n −  H −  1|. Clearly, for given t ∈  (0, 1) and n ∈  {1, … , N}, 

Y2n(t) and Y3n(t) are defined as
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Based on the mentioned convergences in (4) and (5), we would like to construct the likelihood function by 
applying the Euler discretization on the diffusion processes. In the sequel denote the global parameter space (0, 1) 
by Θ  and denote the restricted parameter spaces (0, 1/2] and (1/2, 1) by Θ 1 and Θ 2, respectively. One may suggest 
simpler approximations18 where the fBm is approximated using a semi-martingale process but the approximation 
does not have a diffusion-type representation. The presented approach strongly depends on this representation 
and therefore substitution of the approximation mentioned by ref. 4 with other approximations may lack the 
procedure of likelihood computation.
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Estimation of H: simple use of convergences. Assume that a sample path of BH(t) is observed at discrete 
times ti ∈  [0, 1) for i =  1, … , m, where m is not a prime number. The restriction of time index into the interval t ∈  [0, 1) 
is somehow a loss of generality. But, using the self-similarity of the fBm, it is possible to rescale the sample path 
into this interval. In fact, this assumption is important in computing the variance of Yjn, for j =  1, 2 and 3. 
Moreover, only for this subsection let m =  kp, where ∈k p, . A very elementary approach is to consider the 
BH(ti) as a summation of independent Gaussian random variables.

Proposition 1. Let λin(t, s) denotes cov(Yin(t), Yin(s)) for i =  1, 2, 3, and n =  1, … , N. For the fBm, BH, the covari-
ance between two arbitrary points 0 <  s <  t satisfies
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uniformly on t and s as N →  ∞  when H ∈  Θ 1. The convergence for H ∈  Θ 2 is
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The proof of this proposition is grouped with all the other proofs in the supplementary file.
For a large enough N, the left-hand sides of (6) and (7) return an approximation of the covariance function of 

the fBm in terms of the mentioned series decomposition. We now consider the sample path as a dependent sam-
ple of size k, from a p-variate zero-mean normal random vector with covariance matrix ∑  =  ∑ n[λln(ti, tj)]ij, for 
appropriate l =  1, 2, where the elements are computed with respect to Proposition 1. There are various methods to 
compute the ML estimation of H, called H , based on the approximation of likelihood. Only for this subsection 
assume that the sample path is observed regularly on ti =  i/m. The first method begins with the ML estimator of 
the autocovariance of the incremental stationary process with observations Δ BH(i/m) =  BH((i +  1)/m) −  BH(i/m) 
for i =  1, … , m −  1. Then, we compute the ML estimate of the covariance matrix of the p-dimensional random 
vector (Δ BH(i/m), … , Δ BH((i +  p −  1)/m)) where the estimated matrix does not depend on i. This covariance 
matrix consists of p estimated autocovariances at lags 0, 1/m, … , (p −  1)/m. Using the invariance property of ML 
estimators one may recover H from each component of this matrix. The resulted estimates depend on the selected 
lag to recover the H; thus, based on this observation we may have p different values for the ML estimate of H. 
Simply speaking, if γ γ… −

 
p m(0), , (( 1)/ ) is the estimated autocovariances at the mentioned lags, then the H ’s 

are the solutions of nonlinear equations
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for i =  0, … , p −  1 and the equations do not depend on j. The covariances are replaced from the left hand side of 
(6) or (7) when H ∈  Θ 1 or H ∈  Θ 2, respectively. This equation produces p different values for the ML estimate of H, 
denoted by = …  H HH ( , , )p1 , and one may use the average of all the resulting solutions of (8) for various values 
of i to obtain a new consistent estimator. To this end, we propose the estimator

∑=
=

 H w i H( ) ,
(9)i

p

ic
1

where w is an appropriate weight function. The idea of using the weighted average comes from the numerical 
properties of Hi. Numerically, those Hi’s that correspond to the larger values of i return better estimates for H. It 
is worth mentioning that, although the larger values of H eventuate smoother realizations for the fBm, the error 
of approximation becomes larger for H >  1/2. Hence, the conjecture of better results for smoother realizations 
may not be true which is due to the weakness of convergence when H >  1/2.

Estimation of H: Incremental approach. The approximation of the covariance function of fBm induces 
the idea of maximizing the likelihood function with respect to H, directly. The new problem is the complicated 
form of the inverse and determinant of the approximated covariance matrix. Since the process of increments of 
fBm is stationary, we expect more explicit form of the relationship between H and the covariances for the 
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incremental process. The increments of process ∑ = Y t{ ( )}n
N

n1 1  do not constitute a stationary process; however, for 
large enough N, they converge in 2 to the stationary incremental process of fBm. Using the second approach, we 
see that the appearance of H in the likelihood becomes more suitable via the smoothing effect of difference oper-
ator. This may accelerate the numerical methods of the maximization of likelihood.

Let BH denotes the vector of sample path (BH(t1), … , BH(tm))T. Also, let t  be the standard filter generated by 
the Brownian motion that is the smallest σ-field induced by {B(n)(s), s ≤  t}. We attempt to figure out the 
finite-dimensional distribution of increments Δ BH(ti) =  BH(ti+1) −  BH(ti), for i =  1, … , m −  1 and hence the likeli-
hood function. The random variables Y1n(ti) and Y1n(ti+1) are  Ω

+
P( , , )t

2
i 1

, for ∈n  and {BH(t)} is a quadratic 
variation process. Thus, we get the convergence
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n i n i H i H i
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as N →  ∞  for 0 <  H ≤  1/2. Convergence in 2 implies the convergence in distribution and we then look at the 
increments as the limit of the bi-indexed stochastic process ∑ −= +Y t Y t{ ( ( ) ( ))}n

N
n i n i N i1 1 1 1 ,

. The following 
Theorem helps us to approximate the distribution of the increments of a sample path of fBm with Hurst index 
H ≤  1/2.

Theorem 1. Suppose that BH is a sample path of an fBm with fractal index H ∈  Θ 1. The incremental process {Δ 
BH(ti), i =  1, … , m −  1} is the limit of a bi-indexed zero-mean Gaussian process R Nξ ∈ ∈+t N{ ; , }t N,  with the 
non-stationary covariance function
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 be the covariance matrix of the increments vector D =  (Δ BH(t1), … , Δ BH(tm−1))T and 

thus the likelihood function is
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for H ∈  Θ 1. So, the ML estimate of Hurst index, called H inc, can be obtained by

= ∈ Θ .H H L H B
arg max

( )
(12)Hinc

1
1

The same approach is employed to calculate the ML estimate of fractal index when the parameter space is Θ 2 
and we denote the induced likelihood function by L2(H|BH).

Theorem 2. Suppose that BH is a sample path of an fBm with fractal index H ∈  Θ 2. The incremental process {Δ 
BH(ti), i =  1, … , m −  1} is the 2 limit of a bi-indexed zero-mean Gaussian process R Nξ′ ∈ ∈+t N{ ; , }t N,  with the 
non-stationary covariance function as same as the process

∑ α α





+ + + = … −





=
Z t Z t Z t Z t i m( [ ( ) ( )] [ ( ) ( )]), 1, , 1 ,

n

N

n n i n i n n i n i
1
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as N →  ∞  where (Z1n(·), … , Z4n(·)), n =  1, … , N are independent zero-mean Gaussian random vectors and the 
covariance elements are given through the equations (22)–(27) in the supplementary file.

Therefore, it suffices to update the elements of σ∑ = [ ]t tinc i j
 in (11) according to Theorem 2 and 

consequently

= ∈ Θ .H H L H B
arg max

( )Hinc
2

1

A criticism is the complicating form of the resulting likelihood as a function of H. One may claim to compute 
the exact likelihood using (1). Note that the direct use of (1) yields an in-differentiable function of H; while for 
H >  1/2, βn does not appear in the approximation of the likelihood function. Thus, the target function for maxi-
mization belongs to the class of C(0,1)

1  functions and is smooth enough for using numerical methods in computa-
tional procedures.

Bayesian discussion. The approximation of the likelihood function depends on whether H ≤  1/2 or not. 
According to (1), the fBm is short-range dependent when H ∈  Θ 1 and it becomes a long-range dependent process 
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as well as H crosses the threshold 1/2. Thus, the realization of fBm for H ≤  1/2 has a rough graph; while it has a 
low oscillation with a polynomial trend when H ∈  Θ 2. This visually difference in the short-range and long-range 
dependent fBm’s may help us in constraining the parameter space to accelerate the calculation of ML estimate or 
to employ priori information for Bayesian inference. Based on the type of dependence, we constrain the param-
eter space, Θ , into one of the sub-intervals Θ 1 or Θ 2. Consequently, the class of prior distributions is categorized 
into the set of distributions with support on Θ 1 or Θ 2.

The procedure of using a priori information is quite simple. We need a likelihood function as the joint distri-
bution of observations given the unknown parameter H and a prior distribution. The likelihood function could 
be explained in terms of the sample path BH or its increments, D. Simply speaking, one can obtain the likeli-
hood function in terms of BH by employing Proposition 1 or calculate the likelihood in terms of increments by 
Theorems 1 and 2. Both methods express the likelihood function for H ≤  1/2 and H >  1/2, separately.

Let L1(·|BH) and L2(·|BH) denote the likelihood functions in terms of BH for H ∈  Θ 1 and H ∈  Θ 2, respectively 
(just like the notation which used in (11)) and define L1(·|D) and L2(·|D) in the same way. Let fD(·|H) denotes the 
sample distribution of increments that is rewritten as

⋅ =






⋅ + ⋅ < <Θ Θf H
L H I H L H I H H

( )
( ) ( ) ( ) ( ) 0 1,

0 otherwise, (13)D
1 21 2

where IA(·) is the indicator function. Although there is no conjugate prior distribution, reducing the parameter 
space may change the mixture likelihood into the simple multivariate normal. Experts opinions and conjectures 
on the sample path produce the prior information and may reduce the parameter space. For instance, consider 
a realization of an fBm with fractal index H =  1/4 which the short-range dependence property is very obvious 
(Fig. 1).

In this case, the expert opinion hopefully suggests to consider H in the interval (0, 1/2] and so the second 
term in (13) is omitted. According to the bounded parameter space, we deduce the use of 1 −  1/2 Beta (a, b) and 
1/2 Beta (a, b) as a priori distributions for long and short-range dependent sample paths, respectively. When 
the determination of the range is not possible by visual evidences, using a prior distribution on (0, 1) inevitably 
yields to working with the mixture form of (13). In this situation, we use the Beta (a, b) distribution as the prior. 
Moreover, the suggested priors could be replaced by the uniform distribution as a non-informative prior. The rest 
is using good candidates for the proposal distributions and performing the MCMC algorithm to report the pos-
teriori issues. The implementation and numerical results of the Bayesian approach are discussed in the following 
section.

Results
We separate this section into three main parts. First, the numerical behavior of the likelihood based estimator 
is studied and then we explain the procedure of Bayesian approach. The third part contains the computation of 
estimators for a real data.

Likelihood computation. The consistency of the estimators strongly depends on the mean squared error 
(MSE) of the approximation of fBm. The structure of the two dimensional Brownian motions in the case H >  1/2 
could be taken into account to effectively express the terms of series representation. Although the sample path 
is smoother in the case H >  1/2, the MSE of the approximation of the fBm is greater in comparison with the case 
H ≤  1/2. There is another approximation for fBm that is more effective4 than (5) when H ∈  Θ 2. However, it is 
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time

fB
m
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Figure 1. Two realizations of fBm with Hurst indexes H = 1/4 (red line) and H = 3/4 (blue line). One of 
the figures are translated through the vertical axis to demonstrate both the realizations in the same Cartesian 
system.
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difficult to obtain a diffusion type process using that approximation. Therefore, we continue the simulation study 
with the performed likelihoods in previous sections.

Using the circulant embedding method19, we first generate the sample path b =  (b1, … , bm)T of size m =  256 
from an fBm with known index H. We only implement the simulation study for regular observations. The likeli-
hood function given the observed sample path is

∝ Σ


− Σ





− −L H b b b( ) exp 1
2

,
(14)l l

1/2 T 1

where λΣ = ∑ = =i j[ ( , )]l n ln ij1
256

1
256 , when the generation is implemented according to H ∈  Θ l, l =  1, 2. The use of 

well-known optimization algorithms becomes very difficult due to the complicating form of the likelihood as a 
function of H. The solutions of equation system (8) for a sample path with H =  0.1 and p =  4 are located at the 
vector of estimators = . . . .H (0 0789, 0 1092, 0 0920, 0 1080) with respect to γ γ γ γ

   
( (0), (1/256), (2/256), (3/256)). 

It can be seen that the estimators based on γ


i m( / ) become more precise for larger values of i. In one hand, the 
replication of this simulation study shows less bias but greater variance for greater values of i. On the other hand, 
we found less variance but greater bias for estimators based on γ


i m( / ) when i is small. This is the basis of using the 

weighted estimator (9). Although one may use the cross validation method to construct a better weight function, 
for this simulation study we partition off the vector H into two vectors with p/2 elements and the following weight 
function is considered for this simulation study

=





≤
> .

w i j
p i p
p i p

( , )
1/(3 ) if /2,
2/(3 ) if /2

The second column of Table 1 shows the MSE of Hc when the unknown parameter H is attributed to one of the 
intervals (0, 1/2] or (1/2, 1). Each reported MSE in this paper is computed by replication of estimation procedure 
for 100 times. Figure 2 shows the position of the ML estimator and Hc based on the autocovariance estimation at 
lags 0, … , p −  1 for p =  4, 8, and 16. Obviously, Hc becomes closer to the ML estimate by decreasing p. Although 
the presented estimators Hc defined by (9) are not ML estimates, they are near to the ML estimates computed 
from the approximated likelihood function of the increments. Moreover, Hc numerically dominates all the simple 
ML estimates Hi in (9) for p =  4.

To implement the incremental approach, construct the sample increments d =  (d1, … , d256)T where 
dj =  bj −  bj−1, for j =  1, … , 257. The likelihood function of the observed increments is then

∝ Σ


− Σ





− −L H d d d( ) exp 1
2

,T
inc

1/2
inc

1

where σΣ = =[ ]ij i jinc , 1
256  is computed according to (10) when the generated b is a sample path of fBm of index 

0 <  H ≤  1/2. Fortunately, the smoothing role of differentiation operator makes it possible to maximize the likeli-
hood by employing the simple Particle swarm optimization (PSO) via R package psoptim. The implementation 
of this procedure for 1/2 <  H <  1 is not as simple as before. For convenience, let us denote the right hand sides of 
(A.5)–(A.8) in the supplementary file by A5(t, s) −  A8(t, s), and the right hands of (A.9) and (A.10) by A9(t) and 
A10(t), respectively. According to the Theorem 2, the sub-diagonal elements σij, j <  i for 1/2 <  H <  1 is obtained by

∑σ α α= + + +
=

A i j A i j A i j A i j( ( , ) ( , )) ( ( , ) ( , )),ij
n

N

n n
1

2
2

5 6 3
2

7 8

Hc
H inc DV SQ TM

Bayesian

Uniform prior Beta type prior

H =  0.05 13.693 9.633 15.2544 37.7292 18.162 4.566 4.817

0.1 13.631 10.838 17.0344 42.5174 24.017 4.855 4.706

0.2 16.124 11.996 24.8491 47.2209 33.702 4.519 5.440

0.3 18.649 10.488 23.8394 57.5849 28.419 6.259 4.844

0.4 16.653 10.608 34.6774 61.1165 36.690 6.585 4.711

0.45 15.638 9.560 30.3553 55.3652 40.734 4.556 5.387

0.55 14.217 12.635 40.8556 62.8026 42.061 5.356 5.067

0.6 14.612 11.469 38.5361 65.9654 47.568 8.152 5.079

0.7 15.130 11.312 36.7738 55.5099 53.171 8.625 4.785

0.8 14.824 10.607 34.7035 59.9203 42.661 11.408 5.242

0.9 13.980 9.981 30.2872 71.0405 44.464 13.690 4.733

0.95 13.963 10.120 42.3179 59.2273 58.332 12.859 5.004

Table 1.  The MSE of the Bayesian estimators, Hc and H inc under the restricted parameter space along the 
the MSE of the estimators based on discrete variation (DV11), sample quantiles (SQ12) and trimmed mean 
(TM15) under the general parameter space are given. The results are multiplied by 104.
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for i =  2, … , 256, j =  1, … , i −  1 and the top-diagonal components are computed using the symmetric behavior of 
Σ inc. Furthermore, the diagonal elements, σii, are computed as follows:

∑σ α α= + + +
=

A i i A i A i i A i( ( , ) ( )) ( ( , ) ( )),ii
n

N

n n
1

2
2

5 9 3
2

7 10

for i =  1, … , 256. The covariance matrix Σ inc is now acquired and the nlminb could find the maximum of likeli-
hood function, numerically. The results of this procedure is shown in the 3rd column of Table 1.

In the procedure mentioned above we have known that H belongs to Θ 1 or Θ 2. When there is no such infor-
mation about the parameter, the likelihood function compensates this uncertainty. Let us explain this part for Hc. 
The likelihood function for this problem is

= Σ


− Σ





+ Σ


− Σ





= +

− −

− −

L H I H

I H

L L

b b b

b b

( ) exp 1
2

( ) ( )

exp 1
2

( ) ( )

, (15)

T

T

1
1/2

1
1

(0,1/2]

2
1/2

2
1

(1/2,1)

1 2

where λΣ = ∑ = =i j[ ( , )]l n ln ij1
256

1
256 , for l =  1, 2. Thus, =L L Lmax max{max , max }H H H1 2  that is equivalent to the 

maximization of L1 and L2 separately and then we pick out the one with the greater value. In this way, we allocate 
the unknown parameter to one of the intervals along the estimation procedure. We can simply modify this 
method for the incremental approach by replacing Σ l by Σ l

inc
( ) , that is the covariance matrix of increments when 

H ∈  Θ l for l =  1, 2. The results are gathered in the second and third columns of Table 2 and in comparison with 
Table 1, the MSE of estimators are greater and this shows the effect of more precise parameter spaces used in the 
previous simulation study.

Bayesian computation. The Bayesian computation begins with the multiplication of the likelihood 
function by the prior distribution. Using the mentioned method in 1, the likelihood function computation 
is straightforward. Remaining is the selection of prior distribution and then the posterior generation using 
MCMC algorithm. Again let b as a sample path of fBm and the parameter space is Θ 1 or Θ 2. The suggested 
prior distributions for H ∈  Θ 1 and H ∈  Θ 2 are respectively 1/2 Beta (a, a) and 1 −  1/2 Beta (a, a) which both return 
non-informative uniform prior when a =  1. Therefore, the posterior distribution for the parameter space Θ l, l =  1, 
2, satisfies

( )

Figure 2. The logarithm of the worst approximated likelihood function based on the incremental approach for 
sample paths generated with H = 0.1 (top left, a), H =  0.2 (top right, b), H =  0.3 (bottom left, c) and H =  0.4, 
(bottom right, d). The plots also demonstrate the resulting H inc (green circle,) for the generated sample path 
along the resulting Hc's for p =  4 (red circle,), 8 (blue circle,), and 16 (orange circle,).
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π = Σ


− Σ



 − −− − + −H C H Hb b b( ) exp 1

2
( (1 2 )( 1) ) ,l l

T
l

l a
b

1/2 1 1 1

where Σ l is the one used in (14) and Cb >  0 is a constant depends on b. The posterior distribution has no closed 
form and inevitably we need to capture the posterior properties using the sample generated by the 
Metropolis-Hastings algorithm. We use the truncated normal distribution with small enough variance as the 
proposal density function. More precisely, when the algorithm is in the jth iteration, the sample Hj is generated 
from a normal distribution with mean Hj−1 and variance 1/64 which is truncated at points zero and 1/2 when the 
parameter space is Θ 1 or truncated at 1/2 and one when the true parameter belongs to Θ 2. The variance (1/8)2 is 
chosen to cover an interval of length 1/2 by the 95 percent of the values that lie in a band of length 4 ×  1/8, accord-
ing to the famous thumb rule of 68 −  95 −  99.7. Let us denote the density of this distribution by ql(Hj|Hj−1) where 
the subscript l =  1, 2 represents the parameter space. We accept the generated Hj as a sample of the posterior dis-
tribution πl(·|b) with probability ηmin (1, )l  where

η
π

π
=

|

|−
−

H
H

r H H
b
b

( )
( )

( , ),l
l j

l j
l j j

1
1

and

=
Φ − − Φ −

Φ − − Φ −

=
Φ − − Φ −

Φ − − Φ −

−
− −

−
− −

r H H
H H

H H

r H H
H H

H H

( , )
(4 8 ) ( 8 )

(4 8 ) ( 8 )
,

( , )
(8 8 ) (4 8 )

(8 8 ) (4 8 )
,

j j
j j

j j

j j
j j

j j

1 1
1 1

2 1
1 1

where Φ  is the cumulative distribution function of a standard normal random variable. To obtain the true random 
sample we eliminate the first 2500 generations and for each parameter setting we generate a sample of size 10000 
from the corresponding posterior distribution. The results for a =  1 and 3 are gathered in the last two columns 
of Table 1.

Bayesian computation for the general parameter space Θ  =  (0, 1) is very similar. In this case, we use Beta(a1, a2)  
as the prior distribution. When the observed sample path, b, shows an obvious short range dependence behavior, 
then let a1 <  a2 and for long range dependence employ a2 <  a1. Using the notation of (15), the posterior is

π = ′ + −− −H C L L H Hb( ) ( ) (1 ) ,a a
b 1 2

1 11 2

where ′ >C 0b  is the normalizing constant. The proposal density q(·|Hj−1) is a normal distribution with mean Hj−1 
and variance 1/16 which is truncated at zero and one. Thus, to obtain the jth observation from the posterior, gen-
erate an observation from density q(·|Hj−1) and accept it with probability ηmin (1, ) where

η
π

π
=

Φ − − Φ −

− − Φ −
.

− −

−

H H H

H H H

b

b

( )( (4(1 )) ( 4 ))

( )(4(1 )) ( 4 ))
j j j

j j j

1 1

1

Random samples of size 10000 by considering the burning point at 2500 are used to estimate the Hurst index 
H as the posterior mean and the results are shown in Table 2. The results for H =  0.45 and H =  0.55 were obtained 
by use of Beta distribution with parameters a1 =  a2 =  3 as the prior distribution.

Both the Tables 1 and 2 show that the Bayesian estimator with informative prior returns better results particu-
larly for short range dependent sample paths. In Table 1 and in comparison with Table 2, the MSE of estimators 
are smaller and this shows the effect of more precise parameter spaces. The error of decomposition and hence the 
risks of Hc and H inc are decreasing in H. The fourth column of Table 2 represents the importance of visual infor-
mation because it returns smaller MSEs in comparison with the last column. Concerning Table 1, to make the 
range-preserving property for ML estimates, whenever the values of the estimators were out of the parameter 
spaces, the results were reset to the nearest endpoint. Surprisingly, except for the cases H =  0.45 and 0.55, there 
was no need to reset the values. We also note that the Hc and H inc have under and over estimation properties, 

Hc
H inc

Bayesian

skewed beta prior Uniform prior

H =  0.1 42.458 42.983 12.882 36.810

0.3 39.595 36.941 12.512 25.951

0.45 35.937 34.629 5.589 23.242

0.55 37.790 33.498 10.423 18.313

0.7 33.129 32.943 9.435 16.225

0.9 33.876 31.025 5.634 12.320

Table 2.  The MSE of ML and Bayesian estimators for H ∈ (0, 1), multiplied by 104.
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respectively. For each setting, the trimmed mean base estimato15 r, is computed for further comparison. The sim-
ple comparison returns the validity of Hc, H inc and the Bayesian estimators. Although the computation of Bayes 
estimators with Beta and Beta type priors are time-consuming, they might compete with other estimators when 
the lower MSE is the matter.

Practical aspects. According to our real data, we are confronted with the same situation in the practical 
problem introduced in the section entitled Practical motivation. Firstly, note that a topographic map of region S 
is a collection of heights {Z(s, t)} at geographic coordinates (s, t) ∈  S. Typically, the coordinates are considered as 
nodes of a regular lattice. Thus, a route begins from a beginning point and is made by connecting some neighbor-
ing nodes to achieve the destination node. Precise topographic maps are often considered as fractal surfaces5 and 
estimating the Hurst index is the most interesting problem for such data. We want to construct a road to move 
across the region S (from the North to the South or vice versa) and the smoothness of the road is the characteristic 
of interest. Figure 3 shows the aerial image of S that is a mountainous area from the Northwest of Iran restricted 
to a rectangle with two opposite vertices located at the geographic xy coordinates (621995.073, 4195182.082) and 
(650345.073, 4217502.082). The image is gridded into a 249 ×  316 lattice. We would like to find the smoothest 
North-South route between two regions indicated by the orange and blue rectangles. According to the cost of 
computation: (1) The image is rescaled into a 83 ×  158 lattice; (2) we restrict our study in the new lattice to those 
routes made by 260 nodes at most. The χ2 goodness of fit test of fBm is implemented on the resulting route to 
insure the assumption of fractional behavior. We refer to ref. 20 for a list of goodness of fit tests including the χ2 
method.

There is a narrow valley at the points with the geographic longitude equal to 6.305 ×  105 and we expect to 
detect the smoothest path near these coordinates. Each route is a sequence in the form of {Z(ti, si)}i such that  
{(ti, si)}i is a set of connected nodes. We first sort all the possible routes with respect to their total oscillation that 
is simply the sum of the absolute value |Z(ti, si) −  Z(tj, sj)| for any two successive nodes (ti, si) and (tj, sj). Then, 
we candidate half of the roads with smaller oscillations to find the smoothest path. If the expert idea allows us to 
attribute the Hurst index of these routes to Θ 1 or Θ 2 then we can use the beta-type prior to the estimate H; or else, 
the simple uniform prior on (0, 1) will be employed. In this case, it is suggested to employ a beta-type prior on Θ 1.  
A decomposition of N =  100 is used to approximate the fBm and hence the likelihood function of each route. The 
smoothest route is the path with the larger estimated H. The smoothest detected path is shown with a solid red 
line in Fig. 3. This route is constructed by 136 nodes and the line transect of the route is provided in Fig. 4. It is 
worth mentioning that the estimated H parameter of this route is 0.42065 based on the Bayesian computation. 
The estimators based on the discrete variation, sample quantiles and trimmed mean respectively return the values 
0.68479, 0.47103 and 0.42557 for this route.

Model diagnosis. The main characteristic of the fBm is the subdiffusion that is

≈X t C t( ) , (16)H
H2

where 0 <  H <  1, is the Hurst index or subdiffusive exponent and CH >  0 is diffusion constant. The class of sub-
diffusion processes contains three well-known stochastic processes; the fBm, continuous-time random walk 
(CTRW)21; and diffusion on the fractal lattice (DFL)22,23. Although these processes belong to a certain class, their 
mechanism are rather different24. Applying the presented methods to any other process than the fBm will give 
some H which is misleading in the sense that the underlying process is not at all an fBm. In this section we want 
to test whether the underlying process is an fBm or not. To solve this, we first examine some general properties 
of the fBm and after obtaining positive results, we use the p-variation method25 to discriminate the fBm from the 
CTRW and DFL. The outline of the algorithm is as follows25:

Figure 3. The image of the mountainous area from the Northwest of Iran. The smoothest path between two 
regions demonstrated by two rectangular in North and South of the region is shown with a red solid line. This 
path is determined using the Bayesian approach with beta-type prior.
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•	 Verifying the stationarity of increments.
•	 Verifying the normality of the observed path.
•	 Testing the ergodicity of the increments.
•	 Testing the p-variation properties for some specific p’s.
•	 Testing the filling ratio properties.

We have to apply this procedure to all the possible routes, but for the sake of convenience, we do this on some 
selected routes, and for the sake of conciseness, we demonstrate the results only for the smoothest detected route.

Let’s start with the first step of the algorithm. The height of each pixel strongly depends on the height of its 
neighbors. This induces the unit root effect that causes the non-stationarity. A very familiar testing procedure 
to test the stationarity versus the unit root is KPSS26. Using the R package tseries, the KPSS statistic for the 
increments of the smoothest route is 0.33641 that produces the p-value equal to 0.1 and thus the incremental 
stationarity assumption is verified. Testing the stationarity is not restricted to this method and we refer to ref. 25 
for another method that requires more sample paths; whereas we only have one realization and the method can 
not be implemented here.

Note that there are some reasonable effects that can deflect the trajectory of a subdiffusive process from the 
Gaussian assumption27. That is why we are going to test the normality assumption in the second step. There 
is plenty of normality testing methods including, Kolmogorov-Smirnov, Anderson-Darling, Shapiro-Wilk, 
Cramer-von Mises, Shapiro-Francia and Jarque-Bera. There is no certain order for these tests in terms of power, 
but some of them require the strong assumption of independence of the sample path; which is disaffirmed here 
under the subdiffusion model. Fortunately, the method of Jarque-Bera is not sensitive to the independence 
assumption and we employ it to test the normality of increments. We use the R package fBasics and we find 
out  that the χ2-statistic of Jarque-Bera test is equal to 3.5049 and the corresponding p-value is 0.1733 which con-
firms the normality of the increments of the smoothest path.

Ergodicity states that the long time averages of physical characteristics provide the same information as the 
corresponding ensemble average. The ergodicity assumption can be violated for sub28 and super29,30 diffusive 
trajectories even under the power law. It is one of the most important parts of studies, particularly those on single 
particle tracking. Using the dynamical functional

ι= ∆ − ∆D n X n X t( ) exp{ ( ( ) ( ))} ,0

where = −i 1, an ergodicity test31 is employed here. Set ι= − ∆E n D n X t( ) ( ) exp( ( ))0
2. For mixing incre-

ments we have32 =→∞E nlim ( ) 0n  while the increment process is ergodic if and only if the sample mean of 
=E k{ ( )}k

n
1 tends to zero, i.e.,

Figure 4. The line transect of the smoothest route detected by the Bayesian approach. 

Figure 5. Panel (a) shows the imaginary part of the cumulative mean of E(k) (17) versus n while the right panel 
(b) demonstrates the real part. In comparison with the simulated processes analyzed by31, the range of both the 
real and imaginary parts are closer to the zero and figures verifies the ergodicity of the underlying process.
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∑ = .
→∞ =

−

n
E klim 1 ( ) 0

(17)n k

n

1

1

Figure 5 shows the rate of convergence of the cumulative mean to zero. The range of oscillation around zero is 
very small for the large enough values of n that verifies the ergodicity of the smoothest path.

At this point, the smoothest route passed three steps of the algorithm and in the current step we need to attrib-
ute one of the fBm, CTRW or DFL to our data. To this end we use the p-variation method33 to study the varia-
tional behavior of the process. Let V t( )k

p( )  denotes the 1/pth root of the incremental p-norm, i.e.,

∑= | ∧ − ∧ |
=

−

+V t X t t X t t( ) ( ) ( ) ,k
p

j

n

j j
p( )

0

1

1

where ∧ =a b a bmin { , }. If X(t) is an fBm then V (2)k
(2)  is increasing in k and if X(t) is a CTRW then 

=→∞

∼
V tlim ( ) 0k k

H(1/ )  where ∼H is the estimated Hurst index produced by any proper method. Figure 6 exhibits the 
resulting values of Vk

p( ) for p =  2 and p =  1/0.42065. The results verify that the smoothest rout does not follow the 
CTRW model and thus we remove the CTRW from our list.

We have to make a decision between the fBm model and the DFL in the final step. There is a testing procedure 
based on the mean maximal excursion (MME) method34 which needs repeated trajectories from a single process. 
In some practical problems, the mechanism of data allows gathering independent trajectories of a subdiffusive 
model with a constant Hurst index24. However, in our study, each route is considered as a realization of a subdif-
fusive process with a corresponding Hurst index. Thus, restricting it to the smoothest route, we only have one 
trajectory that could be whether an fBm or a DFL. Fortunately, the MME method was modified to be imple-
mented on a single trajectory to decide between the fBm and DFL35. Let St denotes the total number of distinct 
visited sites of the process X(t) up to time t. The ratio S t X t( )/ ( )2  is known as the filling ratio and we have to 

Figure 6. The left panel (a) shows the computed .Vk
(1/0 42065) of the smoothest path for k =  7 (black line); k =  8 

(blue line); k =  9 (red line) and k =  10 (green line). This panel does not demonstrate any trend between k and 
.Vk

(1/0 42065). This is the same behavior of any simulated sample path from an fBm of the same index and size. The 
panel (b) shows Vk

(2) with the same color setting of k. It is clear that the 2-variation is increasing in k and hence 
the CTRW model is rejected in favor of fBm.

Figure 7. The number of distinct visited sites divided by X t( )2  where both the x and y axes are in 

logarithmic scale. According to the results, S t X tlog( ( )/ ( ) )2  oscillates smoothly a round a constant value by 
changing tlog .
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compute its slope in a log −  log scale. The hypothesis of fBm is rejected versus DFL if the slope is far from zero. 
Figure 7 shows the values of the filling ratios in a double logarithmic scale and the estimated slope is − 4.79 ×  10−4 
which implies that the logarithm of the filling ratio and time index are uncorrelated. This means that the dimen-
sion of the realization was constructed only by a fBm model and cannot be decomposed into an fBm and a fractal 
noise. So the DFL model is not verified and the final step in the fBm trajectory diagnosis algorithm is passed.
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