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Abstract

Recombinant antibodies play increasingly important roles as immunotherapeutic treatments

for human cancers as well as inflammatory and infectious diseases and have revolutionized

their management. In addition, their therapeutic potential may be enhanced by the introduc-

tion of defined mutations in the crystallizable fragment (Fc) domains eg YTE (M252Y/

S254T/T256E) and LS (M428L/N434S), as a consequence of increased half-lives and pro-

longed duration of protection. However, the functional properties of any biologic may be

compromised by unanticipated immunogenicity in humans, rendering them ineffective. Sev-

eral potent broadly neutralizing HIV monoclonal antibodies (bnAbs) have been identified

that protect against SHIV challenge in macaque models and reduce HIV viremia in HIV-

infected individuals. In the present study, the pharmacokinetics and immunogenicity of one

or more 5mg/kg subcutaneous (SC) injections in naïve macaques of the HIV bnAb PGT121

and its PGT121-YTE mutant, both produced in plants, have been compared towards pro-

longing efficacy. Induction of anti-drug/anti-idiotypic antibodies (ADA, anti-id) has been

monitored using both binding ELISAs and more functional inhibition of virus neutralization

(ID50) assays. Timing of the anti-Id responses and their impact on pharmacokinetic profiles

(clearance) and efficacy (protection) have also been assessed. The results indicate that

ADA induction in naïve macaques may result both from injection of the previously non-

immunogenic PGT121 into pre-primed animals and also by the introduction of the YTE

mutation. Binding ADA antibody levels, induced in 7/10 macaques within two weeks of a first

or second PGT121-YTE injection, were closely associated with both reduced pharmacoki-

netic profiles and loss of protection. However no correlation was observed with inhibitory

ADA activity. These studies provide insights into both the structural features of bnAb and

the immune status of the host which may contribute to the development of ADA in macaques

and describe possible YTE-mediated changes in structure/orientation of HIV bnAbs that trig-

ger such responses.

PLOS ONE | https://doi.org/10.1371/journal.pone.0212649 February 20, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rosenberg YJ, Lewis GK, Montefiori DC,

LaBranche CC, Lewis MG, Urban LA, et al. (2019)

Introduction of the YTE mutation into the non-

immunogenic HIV bnAb PGT121 induces anti-drug

antibodies in macaques. PLoS ONE 14(2):

e0212649. https://doi.org/10.1371/journal.

pone.0212649

Editor: Aftab A. Ansari, Emory University School of

Medicine, UNITED STATES

Received: December 4, 2018

Accepted: February 6, 2019

Published: February 20, 2019

Copyright: © 2019 Rosenberg et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data can

be found within the manuscript.

Funding: YR received funding from National

Institutes of Health, National Institute of Allergy and

Infectious Diseases (NIAID) grant #R44AI081621,

which provided support in the form of salaries for

authors YR, XJ LU, LM and JL but had no

additional role in the study design, data collection

and analysis, decision to publish or preparation of

the manuscript. DM and CL were funded in part by

http://orcid.org/0000-0002-4999-8647
https://doi.org/10.1371/journal.pone.0212649
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212649&domain=pdf&date_stamp=2019-02-20
https://doi.org/10.1371/journal.pone.0212649
https://doi.org/10.1371/journal.pone.0212649
http://creativecommons.org/licenses/by/4.0/


Introduction

The success of recent single B cell cloning from HIV infected individuals has resulted in a new

generation of broad and highly potent HIV monoclonal antibodies [1,2] that can both prevent

infection in non-human primates against SHIV challenge [3–5] and suppress viremia in NHP

[6,7], humanized mice [8,9] and humans [10,11].

Different bnAbs are known to target non-overlapping epitopes on the HIV envelope [12]

including the membrane proximal region [13,14], the apical V1/V2 loops [2,15], the base of

the V3 loop and associated glycans [16,17], the CD4 binding site [18,19], and epitopes that

span gp120 and gp41 [20]. PGT121 is one of the most potent neutralizing bnAbs targeting

both the oligo-mannose glycan at N332 as well as the conserved 324GD/NIR327 peptide motif

at the base of the gp120 V3-loop [21,22] a consequence of having a long CDRH3s that can pen-

etrate the glycan shield. This antibody differs from its family member 10–1074 which interacts

more strongly with glycans at positions N137, N156, and N301, and is less likely to be depen-

dent on the N332 glycan [23]. In previous studies, plant-derived PGT12 was unusual in that it

was shown to be consistently non-immunogenic in the naïve macaques used [24]. Thus, sub-

cutaneous administration of PGT121by itself protected the same macaques following two con-

secutive injections and challenges given months apart [5]. This lack of immunogenicity of

PGT121 (as well as b12) in macaques is in contrast to many other HIV bnAbs tested and is

likely a result of the low amino acid mutation rates in PGT121 (23%) and b12 (20%) and not

reflective of the higher 34% and 28% mutation rate in the PGT121 VH and VL at the DNA

level [25].

To further extend the duration of protection and viral suppression, several defined muta-

tions have also been introduced into the crystallizable fragment (Fc) domains of immunother-

apeutic mAbs which result in increased half-lives and/or effector function eg ADCC [26,27].

In this context, both the YTE (M252Y/S254T/T256E) and LS M428L/N434S) mutations

located at the CH2-CH3 interface in the Fc domain have been shown to increase the binding

affinity of the antibody Fc at pH 6.0 to the MHC Class I neonatal FcR (FcRn), located primarily

in the acidic endosomes of endothelial and haematopoietic cells, thereby permitting more effi-

cient recycling of administered IgG1 antibody and longer retention in the plasma [26–29]. The

increased FcRn binding at pH 6.0 by a YTE triple-mutant mAb is mediated by the creation of

one additional salt bridge between Glu 256 (E) of Fc-YTE and Gln 2(Q) of the b2-microglobu-

lin chain of FcRn compared to the original IgG1 Fc structure [28]. Thus, introduction of the

YTE mutation into the protective anti-respiratory syncytial virus (RSV) antibody motavizu-

mab (MEDI8897, a follow on candidate to Synagis) resulted in ten-fold higher FcRn binding,

with 4-fold increases in circulatory retention time and lung bioavailability in cynomologus

monkeys [29] and has been shown to be well tolerated and extended the half-life up to 100

days in adult humans and pre-term infants [30,31].

Similarly, YTE and LS substitutions of the humanized anti-VEGF IgG1 antibodies bevaci-

zumab and cetuximab lead to increased FCRn binding at pH 6.0 and enhancement of half-life

(3.2-fold and 3.1-fold respectively) as well as improved antitumor activity [32] in cynomolgus

macaques. More recently, the LS mutation has also been shown to increase half-lives and pro-

long duration of protection of anti-HIV bnAbs in macaques but in some cases with variable

pharmacokinetics [33, 34].

However, while high potency, wide breadth of coverage and increased half-lives are early

prerequisites for their therapeutic applications, challenges to the use of HIV bnAbs as treat-

ments include (i) emergence of escape variants within weeks following infusion which may be

more frequent in the V3/N332 bnAbs e.g 10–1074, compared to CD4 binding bnAbs [10] and

(ii) the development of anti-drug (ADA) antibody which could rapidly negate any other
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therapeutic advantages associated with potency [24,33,35]. Approval of biological products is

determined by the extent of their immunogenicity and is reflected in the prescribing informa-

tion at Drugs@FDA website under Section 6 Adverse Reactions and Section 12.3 Pharmacoki-

netics. Assessment of immunogenicity in clinical trials and terminology recommendations

have been described in reports by Wang et al [36] and Shankar et al. [37] and discussed later.

Since YTE mutants were the first used in clinical trials [30], the current macaque study

compared the pharmacokinetics and immunogenicity of unmodified PGT121 with its YTE

(M252Y/T254S/T256E) mutant form to examine the extent to which circulatory residence

time and thus protection can be extended by this mutation.

The results indicate that YTE-substituted HIV bnAbs unexpectedly exhibit increased

immunogenicity and accelerated circulatory clearance, rather than enhanced plasma stability,

suggesting a role for the CH2-CH3 interface in the Fc domain. To our knowledge, this work is

the first to demonstrate introduction of the YTE mutations, where increased flexibility and

decreased conformational stability of the adjacent CH2 segment may also result in reorienta-

tion of the antibody an exposure of potentially novel epitopes.

The timing and clinical relevance of PGT121-YTE binding versus inhibitory anti-drug anti-

bodies has been assessed by examining the association between immunogenicity, pharmacoki-

netics and efficacy following SHIV SF162P3 challenge and indicate the importance of

clearance profiles in predicting ADA responses.

Methods and materials

Antibody production in plants

Monoclonal antibody PGT121 was produced by Agrobacterium-mediated transient gene

expression in N. benthamiana as described previously [38,39]. Synthetic codon optimized vari-

able domains were flanked by type-IIs restriction sites and cloned into pTRAk plant expression

vectors carrying the kappa constant domain as well as the YTE substituted (M252Y/S254T/

T256E) IgG1 H constant domain. The originally published antibody amino acid sequences were

used unless indicated otherwise. Antibodies were produced by co-infiltrating 6-week old plants

with recombinant Agrobacteria suspensions individually carrying the pTRAk based heavy and

light chain expression plasmids and the pBIN based p19 silencing suppressor from tomato

bushy stunt virus. After 10–12 days, infiltrated leaves were harvested and soluble proteins were

extracted and purified by protein-A (Genscript, NJ) and MEP HyperCelTM mixed-mode chro-

matography (Pall Corporation, France) producing 600–1,500 mg/kg of leaf biomass depending

on the antibody. YTE mutants were also purified by Protein A indicating that mutatations did

not interfere with the Protein A binding site. The VRC01N92T, PGDM1400-YTE and 3BNC117-

YTE, N6-YTE expressed in plants using the same method as PGT121, were also used in Neutral-

ization and ELISA assays. Purified bnAbs can be stored at 4˚C or frozen until use.

Non-human primates

Rhesus macaques (Macaca mulatta) (3-6kg) were housed at BIOQUAL’s housing facilities in

Rockville, MD. Care and husbandry of all non-human primates were provided in compliance

with federal laws and guidelines as well as in accordance with recommendations provided in

the NIH guide and other accepted standards of laboratory animal care and use. BIOQUAL is

accredited by the Association for the Assessment and Accreditation of Laboratory Animal

Care, (AAALAC file #624) and holds an Assurance on file with the National Institute of

Health, Office for Protection of Research Risks as required by the US Public Health Service

Policy on Humane Care and Use of Laboratory Animals. The PHS Animal Welfare Assurance

File Number is #A-3086–01. Animals were sedated with ketamine or telazol for all technical
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procedures. Ketamine was given IM in amounts necessary for short-term procedures such as

blood drawing.

Animals were housed at BIOQUAL, Inc. MD, in accordance with the recommend-dations

of the Association for Assessment and Accreditation of Laboratory Animal Care International

Standards and with the recommendations in the NIH Guide for the Care and Use of Labora-

tory Animals of the United States. The Institutional Animal Use and Care Committee of

BIOQUAL approved these experiments (#18-058P Plantvax Renewal (for IACUC #15–059).

When immobilization was necessary, the animals were sedated intramuscularly with 10 mg/kg

of Ketamine HCl (Parke-Davis, Morris Plains N.J.) before any direct handling or procedures.

All efforts were made to minimize suffering. Details of animal welfare and steps taken to ame-

liorate suffering were in accordance with the recommendations of the Weatherall report, “The

use of non-human primates (NHP) in research”. Animals were housed in an air-conditioned

facility with an ambient temperature of 21–25˚C, a relative humidity of 40%–60% and a 12 h

light/dark cycle. Animals were socially housed when possible or individually housed if no com-

patible pairing could be found. The animals were housed in suspended stainless steel wire-bot-

tomed 6 sq ft cages and provided with a commercial primate diet and fresh fruit and

vegetables twice daily with water freely available at all times. Social housing, toys, foraging

equipment and mirrors were provided. Animals were monitored at least twice daily for behav-

ior, food intake, activity, and overall health by trained technicians. No macaques were eutha-

nized and all animals were returned to the colony.

Pharmacokinetic and immunogenicity studies

Pharmacokinetic and immunogenicity studies of the plant produced HIV mAbs PGT121 and

PGT121-YTE were performed at Bioqual using 3–6 kg naïve female Indian rhesus macaques

(Macaca mulatta). To assess plasma retention of each bnAb, macaques were injected once or

twice with 5 mg/kg of filtered, room-temperature PGT121 and PGT121-YTE in 1–1.5 ml of PBS

(pH 7.0) SC in a single injection in the middle of the back in addition to IM Benadryl 30 mins

prior to and immediately post injection. Animals were bled (0.5 ml) from the femoral artery at

time zero and for 2–3 weeks at the times indicated. In one study, a second injection was adminis-

tered 6 weeks later. Studies using each bnAb were repeated several times. Usually if ADA was pro-

duced after the first injection, no second injection was given. Plasma or serum samples were tested

for both levels of circulating mAb measured by ELISA or by neutralizing antibody activity (ID50)

(Duke University). The induction of anti-human bnAb antibody (ADA/ anti-Id) was assessed by

ELISA and inhibition of neutralization assays (ID50, Duke University) as described previously

(24). Four pharmacokinetic parameters, based on the time course of bnAb clearance in the blood

were examined: Mean Retention time (MRT), Maximum concentration (Cmax), half-life (T1/2)

and area under curve (AUC). An Excel-based PK Solutions 2.0 program (Summit Research Ser-

vices, CO) for non-compartmentalized analysis of pharmacokinetic data, was used to analyze data.

Neutralization assays

Neutralizing antibody assays were performed in TZM-bl cells as previously described [40]

with purified bnAbs and also with plasma samples collected from macaques at different times

following SC injection of the bnAbs. Purified recombinant antibodies were tested starting at

50μg/ml with serial 3-fold dilutions. Plasma (both heat-inactivated and non-heat-inactivated)

was tested starting at a 1:20 dilution. Diluted test samples were pre-incubated with pseudovirus

(~150,000 relative light unit equivalents) for 1 hr at 37˚C before addition of cells. Following 48

hr incubation, cells were lysed and luciferase (Luc) reporter gene activity determined using a

microtiter plate luminometer and BriteLite Plus Reagent (Perkin Elmer). Neutralization titers
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are the sample dilution (for plasma) or antibody concentration (for purified mAb) at which

relative luminescence units (RLU) were reduced by 50% compared to RLU in virus control

wells after subtraction of background RLU in cell control wells. It should be noted that intro-

duction of the YTE mutation did not change the IC50 of the PGT121 bnAb.

Inhibition of neutralization assays to detect inhibitory anti-id antibody were also performed

in TZM-bl cells [24]. Initially, a concentration of mAb that inhibited the target virus at 50–

80% was pre-incubated with or without serial dilutions of monkey plasma samples for 1 hr at

37˚C prior to adding virus. After an additional 1 hour incubation of mAb/serum/virus, cells

were added and the assay was continued according to the standard protocol. The ‘No Serum’

control indicates the level of mAb inhibition of virus. Deviations from this line indicates inter-

ference from the plasma sample with neutral-ization of the mAb.

ELISA

Two types of ELISAs at RT were used to determine the pharmacokinetics and immunogenicity of

the administered bnAbs. Firstly, to monitor the rates of clearance of the circulating bnAbs, 96-well

MaxiSorp plates (Nunc) were coated with purified plant-derived high mannose 89.6P gp140-KDEL

(1μg/ml) for 2–4 hr. In some case e.g. detection of PGT121 levels, plates were coated with CHO-

derived monomeric HIV BaL-gp120 (NIH HIV Reagent Program). Plates were washed 3 times

with PBST, blocked with 5% (w/v) milk in PBST for 2hr, washed 3 times, incubated for 2 hr with

monkey plasma or serum samples at 1/500 dilution, washed 3 times and incubated with a 1/5,000

dilution of peroxidase labeled goat anti-human IgG (Fc) (A0170, Sigma) for 2hr, washed 5 times

and developed with KPL SureBlue Reserve TMB Microwell Peroxidase Substrate System (5120–

0082, SeraCare MA). Reactions were stopped with 0.5 N H2SO4, and endpoints were determined at

450 nm using the SPECTRA max PLUS plate reader (Molecular Devices). Due to the variability in

the background of individual macaques, the initial prebleed OD450 values were subtracted.

Secondly, to monitor the presence of a macaque antibody response against the injected

human HIV bnAbs, plates were coated with the purified plant- or CHO cell-derived target

antibodies at 1.2 μg/ml for 2–4 hr [24]. Following incubation, wells were blocked, washed and

incubated for 2 hr with monkey plasma or serum samples at 1/500 dilutions followed by a

third 2 hr incubation with 1/4,000 of mouse anti-macaque IgG (1B3-HRP, Nonhuman Primate

Reagent Resource) and developed as above. In some anti-id ELISAs both unmodified and YTE

mutant forms of PGT121, 3BNC117 and PGDM1400 were used to coat plates.

Protection studies

In this study, macaques were injected SC with 5 mg/kg of PGT12-YTE, 9 and 13 days prior to

intravaginal challenge with a high dose (1700 TCID) of SHIV SF162P3 that has been shown to

infect most control animals after a single challenge. For intravaginal challenge, anesthetized

macaques were administered SHIV SF162P3 using a non-leuer-lock syringe inserted ~2 cm

into the vaginal vault. The potency of the plant-derived PGT121 against the rhesus (R157)

PBMC-derived SF162P3 stock used for challenge was 0.08 ug/ml; similar to the IC50 of CHO-

derived PGT121 (0.15 ug/ml). Protection was assessed using a viral RNA assay as described

[41]. Fisher’s exact test was performed using the R statistical package [42].

Results

Induction of anti-PGT-121 antibody in protected macaques

In an earlier study [5], six naïve macaques were administered 5 mg/kg PGT121 SC 24 hr prior

to challenge with SF162P3 resulting in protection in all animals. Two months later, these same
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macaques were challenged with SF162P3 and injected SC with PGT121 30–60 mins later. In

the latter case 5/6 macaques were protected. To confirm that a lack of immunogenicity of

PGT121 contributed to this protection these five macaques were assessed for the presence

of specific anti-PGT121 antibody. As shown in Fig 1, while three (#11N006, #04N013,

#07N008) of the five protected macaques did not produce anti-PGT121 antibodies, consistent

with previous findings, two macaques (#12N010 and #JFL) surprisingly made high levels of

PGT121-binding antibodies (colored bars) detected by ELISA at 7–10 days following both the

first and second injections, suggesting that these ADA responses represented a boosting of

pre-primed animals. Interestingly, anti-PGT121 antibodies capable of inhibiting PGT121 neu-

tralization of SHIVSF162P3 (black and white bars) demonstrated a different pattern from

binding ADA. Thus, inhibitory antibodies in macaque #12N010 were undectable at D0 and

reached only low levels of 1/450 (D18) and 1/340 (D21) after the first injection whilst macaque

#JFL had preexisting anti-PGT121 antibody (1/625) at the time of the first injection and

reached ID50 titers of 1/2,500 in macaques by D14. After the second injection, higher inhibi-

tory titers of 1/2,500, comparable to binding antibody levels were present after second injec-

tions in both macaques.

To assess specificity and reactivity of the anti-PGT121 response, sera from macaques

#12N010 and #JFL were tested against a panel of different HIV bnAbs using both an ELISA

binding assay and neutralization inhibition assays. The binding data in Fig 2 demonstrates the

anti-idiotypic (anti-id) nature of these antibodies that sera from both macaques bound well to

PGT121, but exhibited no cross-reactivity against other bnAbs eg VRC01 and 3BNC117. The

only cross-reactivity was sera from #JFL which also bound well to 10–1074 which shares the

same B cell precursor as PGT121 (90% identity) [11,16]. It should be noted that the binding of

anti-id to plant-derived PGT121 and CHO-derived PGT121 was similar, indicating that plant

contaminants were not responsible for the binding. Specificity was similarly demonstrated in

the anti-id inhibition assay in that the anti-PGT121 antibodies did not inhibit neutralization of

VRC01 at any time.

Pharmacokinetics and immunogenicity of PGT121-YTE in macaques

Interaction between a therapeutic antibody and the FcRn is one of the critical factors in deter-

mining half-life and therefore efficacy. In order to extend the circulatory retention of SC-

administered PGT121, the triple YTE mutant form (M252Y/S254T/T256E) was produced in

plants and analysed in macaques for pharmacokinetics and immunogenicity following SC

Fig 1. A comparison of binding and inhibitory anti-PGT121 antibodies in sera of protected macaques injected

twice with PGT121 (5mg/kg) and challenged twice with SF162P3 [5]. The coloured bars depict binding ADA at

OD450 (left axis) at different times after challenge. Black and white bars represent inhibitory ADA (ID50, right axis).

PB = prebleed before first and second challenges.

https://doi.org/10.1371/journal.pone.0212649.g001
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administration of 5mg/kg. In the first proof-of-concept study, two monkeys received two SC

injections of PGT121-YTE 6 weeks apart and their serum levels were monitored using a bind-

ing ELISA assay. Fig 3 indicates that at the early day 7 time point following the first injection,

both monkeys had a predictable 50% higher PGT121-YTE activity in the circulation compared

to the unmodified PGT121 (green line). However, in contrast to macaque #T770 in which

PGT121-YTE remained in the circulation until ~35 days representing a modest 2-fold exten-

sion compared to unmodified PGT121, the levels in monkey (#T769) dramatically fell to back-

ground by ~day 12. In both monkeys, the systemic levels were greatly reduced following a

second injection (D43 arrow). The PK parameters for macaques #T770 vs #T769 were Cmax:

86.1 vs 78.1 ug/ml, T1/2: 94 vs 46 hr, AUC¥: 21,637 vs 14,305 ug-hr/ml, MRT: 199 vs 112 hr.

Fig 2. Reactivity of anti-PGT121 antibodies in sera from protected macaques against several HIV bnAbs

measured by ELISA. Macaques #12N010 (left) and #JFL (right) were injected twice SC with 5mg/kg PGT121 eight

weeks apart and challenged with SHIV SF162P3 24 hr after the first PGT121 injection and one hr before the second

PGT121 injection. Sera collected for 2–3 weeks following each challenge was tested for binding against PGT121

(produced in both plants and CHO), 10–1074 (CHO), VRC01 (CHO) and 3BNC117 (plant).

https://doi.org/10.1371/journal.pone.0212649.g002
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PK profiles measured by TMZ-bl neutralization (ID50) were identical to ELISA profiles after

the second injection.

This rapid decline of serum PGT121-YTE in #T769 after the first injection and the greatly

reduced Cmax after the second correlated with high levels of binding ADA by day 14 after the

first injection day 8 after the second (Fig 4, blue bars). By comparison, inhibitory ADA levels

in this macaque were very low with ID50 values of 1/144 at day 14 and 1/660 at day 21 (black

bars) following the first injection and dramatic increases to 1/17,579 at day 7 and 1/8,768 at

day 20 after the second injection. No ADA was induced in #T770 after a single administration

by either assay explaining its longer serum presence but it did develop high binding titers (red

bars) and moderate inhibitory anti-id (1/1183) by day 8 after the second injection (day 51 in

Fig 4), highlighting again the differences between levels of binding and inhibitory ADA in the

same samples.

The results of the early 2-macaque PGT121-YTE study indicated that the YTE mutation

may moderately (x2) extend plasma availability following a SC injection but surprisingly leads

to a potent immune response after one or two injections of a usually non-immunogenic anti-

body. Thus in a second study, another four naïve macaques were administered the same dose

of PGT121-YTE (5mg/kg) SC and monitored for anti-id using each assay. Fig 5 indicates that

a single injection with the PGT121-YTE resulted in binding ADA production in 3/4 naïve

monkeys by day 14. Once again, the PK profiles corresponded with the presence of binding

ADA antibody in that PGT121-YTE was present in the plasma beyond day 16 in the two mon-

keys with no/low anti-Id (#12D010, #09D181), but was eliminated between days 7–15 in the

two macaques (#12D046 and #11D042) that developed the highest ADA titers. The PK param-

eters are shown in Table 1. The presence of ADA in the latter monkeys was also detected in a

neutralization inhibition assay with low ID50s of 1/171 and 1/156 respectively at day16 after

injection

Cross reactivity of anti-PGT121-YTE antibody with other YTE mutants

The above results raised the possibility that the YTE mutation located on the CH2-CH3 mar-

gin of the Fc domain, may have affected CH2 mobility and in doing so created new epitopes

Fig 3. Circulatory clearance profiles of PGTY121-YTE in macaques at different times after two SC injections as

measured by ELISA. Two macaques #T769 (blue), T770 (red) received two 5mg/kg injections SC six weeks apart

(arrows). Animals were bled at the days indicated and assessed for serum PGT121 levels by ELISA. The green line is an

average of two macaques after a single injection of unmodified PGT121 (24).

https://doi.org/10.1371/journal.pone.0212649.g003
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by altering antibody orientation/conformation; thereby conferring unanticipated immunoge-

nicity on the molecules. Since all HIV bnAbs produced at PlantVax share the same human

IgG1, any speculated structural alterations due to the YTE mutation may be common to any

Fc domain with the same YTE substitution, in addition to possible Fab changes specific for dif-

ferent cognate antibodies. Thus, the ability of anti-id containing sera from macaques adminis-

tered PGT121-YTE to bind to different HIV bnAbs with the YTE mutation was examined. Fig

6 compares the binding of sera from macaques #T769 and #T770 injected with PGT121-YTE

to either wild type 3BNC117 and PGDM1400 or their YTE mutant forms (Fig 6). In both

cases, a much higher reactivity against the YTE forms versus the unmodified forms suggests

that the anti-PGT121-YTE antibodies detected by binding may include those with specificity

for “YTE-dependent” modifications in or around the CH2-CH3 interfaces of the Fc domains

and Fab regions.

Similarly, in this same study, macaques injected SC twice with either 5 mg/kg of

PGDM1400-YTE and 3BNC117-YTE were also shown to produce cross-reactive antibodies

that bound to all YTE-mutants tested including PGT121-YTE, PGDM1400-YTE and

3BNC117.

Fig 4. Induction of PGT121 anti-id antibodies in macaques #T769 and T770 injected twice with PGT121-YTE.

Macaques #T769 (blue bars) and # T770 (red bars) from Fig 3 were injected SC with 5mg/kg of PGT121-YTE at days 0

and 43 (arrows) and bled at the days indicated. Binding ADA (blue and red bars) were assessed by ELISA using plates

coated with unmodified PGT121 (top) and PGT121-YTE (bottom). Inhibitory ADA (ID50) (black and white bars)

were also assessed using PGT121 and PGT121-YTE.

https://doi.org/10.1371/journal.pone.0212649.g004
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Binding ADA against PGT121-YTE block protection against SF162P3

SHIV

The induction of ADA following administration with a potent mAb may greatly reduce its

potential as a therapeutic treatment due to its rapid elimination from the circulation by the

anti-Id. In the present studies, anti-PGT121-YTE ADA activity following a single injection of

PGT121-YTE was always higher when measured in a binding assay compared to an inhibition

assay, raising the question as to which property of the ADA or which assay better predicts

elimination of PGT121-YTE to below protective levels. Since, PGT121-YTE ADA were usually

Fig 5. Association in time between the clearance of circulating PGT121-YTE and the induction of binding anti-

PGT121-YTE after a single injection. Four macaques received a SC injection of 5mg/kg and were bled and assayed

for circulating PGT121-YTE levels on the days indicated (top) and for ADA at days 0,7,14 and 16 (bottom). Macaques

#12D010 and #09D181 made no/low anti-id (bars) and had longer PGT121-YTE plasma retention while #11D0924

and #12D046 made anti-id and were thus eliminated from the blood more rapidly.

https://doi.org/10.1371/journal.pone.0212649.g005

Table 1. Pharmacokinetic parameters in four macaques following a single SC injection with 5mg/kg PGT121-YTE.

PK parameter 12D010 09D181 12D046 11D042

T1/2 (hr) 139 177 55 35

Cmax (μg/ml) 131 108 112 133

AUC (μg-hr/ml) 27,443 18,570 13,493 18,499

MRT (hr) 169 211 92 90

https://doi.org/10.1371/journal.pone.0212649.t001
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detected by ELISA by day 14 after the first injection, a study was performed in which four

macaques received 5mg/kg of PGT121-YTE SC and two were challenged at day 9 and two at

day 13. The results in Fig 7 indicate that challenge at D9 before ADA was detected by either

assay led to protection of macaques #T766 and #13D036, whilst the emergence of ADA

(detected by ELISA but not inhibition of neutralization) between D9 and D13 was sufficient to

reduce circulating PGT121-YTE to below protective levels leading to infection in macaques #

T765 and #13D077 following the D13 challenge. In addition, a close correlation was evident

Fig 6. Sera from macaques injected with PGT121-YTE cross-react with PGDM1400-YTE and 3BCN117-YTE

mutants. Two monkeys were each injected twice with PGT121-YTE (arrows) and bled at the times indicated. Sera

containing anti-PGT121 anti-id antibody (Fig 4) were then tested for binding against unmodified 3BNC117 and

PGDM1400 and their YTE mutants.

https://doi.org/10.1371/journal.pone.0212649.g006

Fig 7. Correlation between the induction of binding anti-PGT121-YTE ADA and viral load. Four macaques

received 5mg/kg of PGT121-YTE SC. Two macaques #T766 (dark green) and #13D036 (light green) were challenged

with SF162P3 at day 9 and remained uninfected. Two macaques #T765 (red) and #13D077 (blue) were challenged at

day 13 and became infected several days apart depending on the onset of ADA induction.

https://doi.org/10.1371/journal.pone.0212649.g007
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between the timing of ADA response and the SHIV viral load in the two infected macaques.

Thus in #T765, the early onset of ADA (red bar) resulted in more rapid removal of PGT121-

YTE and early breakthrough of viral replication (red line), whilst in #13D036 the later appear-

ance of ADA (blue bar) permitted sufficient circulating PGT121-YTE to delay viral replication

(blue line) for several days.

Discussion

This study indicates that the induction of immune responses to immunotherapy in NHP may

occur in two unrelated ways. Firstly, it is the first to show that the introduction of a triple YTE

mutation in the Fc of the non-immunogenic PGT121 bnAb, designed to extend its PK profile

and prolong protection against SHIV challenge when administered SC to macaques, unexpect-

edly rendered it immunogenic. Thus, to date, while nine out of eleven naïve macaques pro-

duced no anti-PGT121 antibody after one to three injections of the unmodified PGT121, ADA

responses were observed in 7/10 naïve macaques that received PGT121-YTE at the same 5mg/

kg dose (Table 2); such responses occurring following a single injection and enhanced by a sec-

ond administration. The second means of induction of ADA, as evidenced by the two out of

Table 2. Summary of ADA induction and its outcome on pharmacokinetics and protection.

Experiment Monkey

#

Injection #1

ADABind^ nhib^^

Injection #2 ADA

Bind Inhib

SHIV

SF162P3

challenge

Comments, ADA types� (Ref)/Fig

PGT121 5834 - - - Non-immunogenic, no ant-id (25)

5844 - - - Non-immunogenic, no anti-id

PGT121 8291 Non-immunogenic, PK nor (5)

8338 - Non-immunogenic, PK nor

8288 - Non-immunogenic, PK nor

8390 - Non-immunogenic, PK nor

PGT121 5814� - - Non-immunogenic, PK nor

5821 - - Non-immunogenic, PK nor

PGT121 11N006 - - Protected Non-immunogenic, no anti-id Fig 1

04N013 - - Protected Non-immunogenic, no anti-id

07N008 - - Protected Non-immunogenic, no anti-id

12N010 ++ + ++ ++ Protected Treat-boosted anti-id

JFL ++ ++ +++ ++ Protected Pre-existing anti-id

PGT121-YTE T769 +++ + +++ +++ PK# #1, #2, Treat-boosted ADA Fig 3

T770 +/- +/- +++ + PK" #1, PK# #2, Treat-induced ADA

PGT121-YTE 12D010 +/- - PK " ADA -ve Fig 5

09D181 + - PK ", ADA -ve

11D042 ++ +/- PK #, Treat-induced ADA?

12D046 ++ +/- PK #, Treat-induced ADA?

PGT121-YTE T765 ++ - Infected Binding ADA ", VL " Fig 7

13D077 ++ - Infected Binding ADA ", VL"

T766 - - Protected Binding ADA–ve, VL -ve

13D036 - - Protected Binding ADA–ve, VL -ve

� 5814 and #5821 were injected 3 times IV with PGT121 with normal PK profiles and no ADA.

^Binding ADA OD450: + = 0–0.5; ++ = 0.5–2.0; +++ = >2.

^^Inhibitory ADA ID50: + = 0–1/ 500; ++ = 1/500–1/2,000; +++ = >1/2,000.

VL = viral load, nor = normal, treat = treatment.

https://doi.org/10.1371/journal.pone.0212649.t002

Immunogenicity of PGT121 and PGT121-YTE in macaques

PLOS ONE | https://doi.org/10.1371/journal.pone.0212649 February 20, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0212649.t002
https://doi.org/10.1371/journal.pone.0212649


eleven macaques (# 11N006 and #JFL) that produced high levels of anti-id following each

injection of unmodified PGT121 (Fig 1), appears to a direct consequence of pre-injection

priming for specific anti-id production resulting in early (before day 7) and short lived anti-id

responses. To date, these responses have been observed in 10–20% of macaques in the case of

HIV bnAbs [24](Fig 1) in our laboratory.

ADA responses were monitored using both a binding ELISA assay and an inhibition of

neutralization assay to characterize the properties with the most clinical impact, initially the

assumption being that the binding population would contain lower affinity and less functional

subpopulations. In the pre-primed macaques in Fig 1, the binding ADA responses were

induced in both macaques by day 7–8 after each injection with PGT121 and were anti-

idiotypic in nature exhibiting reactivity only with PGT121 or its family member eg 10–1074

and not with VRC01 or 3BNC117. In contrast, unless preexisting levels were present in the

macaques at the time of injection (#JFL), inhibitory anti-Id activity remained low (1/450) dur-

ing primary responses, but could reach high titers after a second injection e.g. the ID50 of>1/

17,000 in macaque #T769 (Fig 1).

The differences between titers of binding vs inhibitory anti-id was more apparent In the

macaques injected with PGT121-YTE where only the binding ADA response to PGT121-YTE

was functionally associated with more rapid clearance of the administered PGT121-YTE from

the blood and subsequent lack of protection in challenged macaques. Although this discor-

dance between titers of binding vs inhibitory ADA was not expected, it is known that the inter-

actions between unmodified id and anti-id molecules predominantly occurs at the distal ends

of the F(ab) arms (i.e. in the V domains) [38] and one speculation is that the inhibitory anti-id

require binding to both arms of the bnAbs while binding anti-id requires the binding to a sin-

gle Fab arm. In this case, the YTE-mediated alteration may have further negatively affected the

geometry necessary for stable dimerization employing both arms [43]. Another possibility is

that anti-idiotypic antibodies that block neutralization are directed against the antigen contact

residues (CDRs), whilst anti-idiotypes that don’t block neutralization recognize the mutant

framework residues in PGT121 heavy and light chains [44].

There are several possibilities which may account for the induction of ADA by the

PGT121-YTE mutant. The M252, S254 and T256 substitutions at the CH2/CH3 interface are

Fig 8. The structure of the YTE mutation in the context of FcRn binding is illustrated using PDB:4N08 originally

published in by Oganesyan et al. [28]. The YTE mutation is at the CH2-CH3 interface and constitutes contact

residues for FcRn binding. In its apo form, the YTE mutation is highly solvent exposed where it can constitute a

discontinuous B cell epitope as suggested by the immunogenicty data shown in the manuscript.

https://doi.org/10.1371/journal.pone.0212649.g008

Immunogenicity of PGT121 and PGT121-YTE in macaques

PLOS ONE | https://doi.org/10.1371/journal.pone.0212649 February 20, 2019 13 / 18

https://doi.org/10.1371/journal.pone.0212649.g008
https://doi.org/10.1371/journal.pone.0212649


in a hydrophobic “consensus” site that is highly exposed at the CH2/CH3 interface (Fig 8) and

is recognized independently by Protein-A, Protein-G, the neonatal Fc-receptor and rheuma-

toid factor (RF) [45]. This consensus site is also recognized by peptides selected for Fc binding

from phage-display libraries [45]. The non-polar nature of the consensus site enables the adap-

tive binding to each of these ligands, although the nature of this binding is distinct for each. In

this regard, reactivity of the wild-type consensus sequence with RF shows that it can be immu-

nogenic even in the autologous host [46].

In addition, hydrogen/deuterium exchange (HDX) analysis has indicated that the most

notable difference between the binding of YTE and WT Fc to FcRn is the increased flexibility

of the adjacent 244–254 segment of the CH2 domain, shown previously to correlate with

decreased conformational stability. However surprisingly, distant segments in the VH, CH1

and VL domains also exhibited significantly increased flexibility in the YTE mutant; specifi-

cally linking IgG sites in both Fc and Fab regions to FcRn binding [47,48]. Thus, we postulate

that the YTE mutations at the CH2/CH3 interface of a mAb leads to alterations in the Fc that

render the molecule immunogenic due to the formation of neo T- or B-cell epitopes which

“break” tolerance for the mAb, resulting in ADA responses specific for idiotopes in the Fab

region, epitopes at the CH2/CH3 interface consensus site, or both.

Such YTE-dependent modifications would be expected to be present in the PGT121,

PGDM1400 and 3BNC117 mutant bnAbs produced at PlantVax, since they all share the same

IgG1 Fc genes which could explain the cross-reactivity observed between sera from anti-

PGT121-YTE-injected macaques and PGDM1400-YTE and 3BNC117-YTE proteins in ELISA

assays (Fig 6). These findings raise the possibility that if all of the HIV immunotherapeutic

antibodies in a cocktail share the YTE mutation, cross-reactivity between the different bnAbs

might result in immunogenicity and elimination, instead of overcoming the challenge of

escape mutants.

In addition to the intrinsic differences between the mutant and WT PGT121, immunoge-

nicity of PGT121-YTE appears to be also influenced by the previous environmental stimula-

tion (both endogenous and exogenous) of the macaques. In this context, several definitions of

ADA have been used to describe the immune responses following administration of therapeu-

tic products [29] and translate well to the present study. Thus, the outcome of administering

5mg/kg of PGT121 and PGT121-YTE differed (i) in primed macaques with pre-existing ADA
(#JFL), (ii) in primed animals with no pre-existing but with treatment-boosted ADA (#12N010,

#T769) and (iii) in naïve animals which generate treatment-induced ADA (#T770) after a first

or second injection. In addition, levels of binding ADA, whether boosted in primed animals or

produced de novo in naïve macaques, were usually higher than neutralization inhibition ADA
following a single injection except in one case, when the pre-existing ADA was detectable at the

time of injection (Fig 1, #JFL). Table 2 summarizes the observed immune responses to

PGT121 and PGT121-YTE injection/s in the 16 macaques described above in the context of

these ADA types.

An FDA review has depicted temporal changes in ADA subpopulations in terms of Risk of

Clinical Sequelae [49]. Thus, changes in binding ADA! PK altering ADA! neutralizing

ADA! hypersensitivity ADA! cross-reactive neutralizing ADA were associated with

increasing clinical severity and decreasing frequency. According to this scenario antibodies

that impact function in vitro are more likely to be predictive of the clinical efficacy of such a

treatment. However, using the current SHIV/macaque model, only ADA detected in binding

assays showed a functional association with more rapid circulatory clearance (#T769, #T770,

#12D010, #09D181) and lack of protection (#13D077, #T765), with pharmacokinetic profiles

generally being the most sensitive means for evaluating the impact of immunogenicity. This

finding is in agreement with Wang et al. [36] who reviewed the prescribing information of 121
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biological products (43 mAbs, 26 enzymes, 11 cytokines, 12 growth factors and hormones and

29 peptides, proteins and toxins) which indicated that of the 108 products (89%) in which

ADA (binding of anti-drug antibodies) was observed, 60% reported an immunogenicity

impact on safety, 49% had an impact on efficacy and 26% an impact on PK with the latter

being the most important metric in assessing immunogenicity.

In the case of humanized anti-RSV-YTE mAb (motavizumab, MEDI8897) safety studies

showed the presence of low titres of ADA did not affect pharmacokinetics in adults [30]. In

preterm infants with immature immune systems [31], post-baseline ADA was detected in 18

of 68 subjects (26.5%) between days 151 and 361 following IM injection and was considered

likely to impact PK between these days. ADA titers detected reached 1:25,600 at the highest

doses. This product is currently in an ongoing Phase IIB trial.

While it is well established that the induction of ADA may limit the efficacy of immuno-

therapeutic mAbs [36], the presence of anti-id in two of the 5 protected animals receiving SC

PGT121 was therefore unexpected and highlighted both the importance of the immune status

of the macaques and the timing of SHIV challenges. Macaques #12N010 and #JFL were both

challenged fortuitously with SHIV SF162P3 at 24 hr after the first PGT121 administration

before anti-id was induced and again after the second PGT121 injection at 8 weeks when anti-

Id had returned to background levels (Fig 1) suggesting that (i) a non-immunogenic bnAb

such as PGT121 can induce an anti-id response in macaques that are pre-primed and (ii) an

injection of a single monoclonal bnAb into primed macaques may give rise to a truncated (3–4

weeks) anti-id immune response presumably as a result of complex formation and elimination

of the idiotype.

While YTE-mutant mAbs are predicted to improve PK profiles following IV administra-

tion, there has been doubt as to their effect on bioavailability and efficacy when injected SC

[50]. In this context, the YTE mutation did appear to increase circulatory retention by ~2-fold

in macaques that did not produce high levels of ADA for two weeks after a single SC injection

of PGT121-YTE (macaques #T770, #12D010, #09D181). It is anticipated however, that like

#T770, a second injection would induce ADA and reduce plasma retention. It is not known

whether the outcome of the YTE mutation on the non-immunogenic PGT121 is more conse-

quential than other mAbs but it is possible, that since most unmodified human HIV bnAbs are

highly mutated and induce ADA in naive macaques following a second injection or AAV-

delivery [24,33,35], they may be particularly prone to YTE-mediated immune responses. Simi-

lar macaque protection studies with the PGT121-LS mutant are now ongoing to compare the

YTE and LS mutations.

While the immunogenicity observed in macaques may not translate to humans, the recent

HIV viral suppression study in humans using a combination 3BNC117 and 10–1074 immuno-

therapy, indicated that the duration of suppression ranged from 5 to>30 weeks in eleven trial

recipients exhibiting complete viral suppression [51]. This variability is consistent with pre-

priming or the production of ADA in some individuals and highlights the importance of

employing optimal and sensitive ADA assays in human studies.
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