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Abstract
To test whether texture analysis (TA) can discriminate between Systemic Sclerosis (SSc) and non-SSc patients in computed
tomography (CT) with different radiation doses and reconstruction algorithms.
In this IRB-approved retrospective study, 85 CT scans at different radiation doses [49 standard dose CT (SDCT) with a volume CT

dose index (CTDIvol) of 4.86±2.1 mGy and 36 low-dose (LDCT) with a CTDIvol of 2.5±1.5 mGy] were selected; 61 patients had Ssc
(“cases”), and 24 patients had no SSc (“controls”). CT scans were reconstructed with filtered-back projection (FBP) and with
sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 304 TA features were extracted from eachmanually drawn region-of-
interest at 6 pre-defined levels: at the midpoint between lung apices and tracheal carina, at the level of the tracheal carina, and 4
between the carina and pleural recesses. Each TA feature was averaged between these 6 pre-defined levels and was used as input in
the machine learning algorithm artificial neural network (ANN) with backpropagation (MultilayerPerceptron) for differentiating between
SSc and non-SSc patients.
Results were compared regarding correctly/incorrectly classified instances and ROC-AUCs.
ANN correctly classified individuals in 93.8% (AUC=0.981) of FBP-LDCT, in 78.5% (AUC=0.859) of FBP-SDCT, in 91.1% (AUC=

0.922) of SAFIRE3-LDCT and 75.7% (AUC=0.815) of SAFIRE3-SDCT, in 88.1% (AUC=0.929) of SAFIRE5-LDCT and 74% (AUC=
0.815) of SAFIRE5-SDCT.
Quantitative TA-based discrimination of CT of SSc patients is possible showing highest discriminatory power in FBP-LDCT

images.

Abbreviations: GLCM = grey-level co-occurrence matrix, RLM = run-length matrix.

Keywords: neural networks (computer), systemic scleroderma, tomography, X-ray computed
1. Introduction

Systemic sclerosis (SSc) is a connective-tissue disease characterized
by excessive collagen production, fibrosis, and immunological
abnormalities, frequently showing lung involvement.[1] Notably,
interstitial lung disease (ILD) is the leading cause of death in
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patients with SSc.[1] Early detection of lung involvement is granted
by high resolution computed tomography (CT), allowing
characterization and quantification of ground glass opacities
(GGO), reticulations, traction bronchiectasis, and microcystic
honeycombing.[2] SSc patients are frequently screened with CT to
assess presence and extent of ILD, in order to predict outcome and
evaluate the need for immunosuppressive therapy.[3] Hence,
optimizingand reducingcumulative radiationburden is relevant.[4]

Different approaches have been proposed for lowering the
radiation burden, such as low-dose CT (LDCT) protocols and
application of iterative reconstruction (IR) algorithms.[5,6]

Previous studies indicated that the combination of LDCT
protocols with IR results in similar detection rates for SSc-ILD
as compared to the conventional reconstruction technique
filtered-back projection (FBP) and standard dose CT (SDCT).[7]

CT has become the standard modality for evaluating lung
parenchyma, nonetheless, evaluation and quantification of SSc-
ILD with CT suffer from a relatively high inter-observer
variability.[8,9] To overcome subjective visual assessment of CT
images, densitometric analyses were shown to correlate with
therapeutic response outperforming qualitative analyses.[9] This
underlines the necessity to obtain an objective and quantitative
method that allows for a reproducible evaluation of CT images in
SSc-patients, ideally at a reduced radiation dose.
Recent interest was directed towards the quantitative evalua-

tion of radiological images with texture analysis (TA), which is an
objective approach for quantifying features being potentially
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imperceptible to the human eye and independent from the
radiologists’ subjective evaluation.[10–12] TA has been success-
fully applied in different medical applications, for example, to
differentiate between benign and malignant pulmonary neo-
plasms and to predict outcome.[13,14] The texture in images
represents the spatial variation of pixel intensity values, which
reflects tissural microstructure.[10] TA quantifies the distribution
of gray-level intensities within images as follows:
(a)
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based on histograms for pixel-values,

(b)
 evaluating the spatial variation of pixel values within a

certain region-of-interest (ROI),

(c)
 based on the number of adjacent pixels showing the same

pixel value, and

(d)
 based on the distribution of pairs of pixels.[15]
Noteworthy, differences regarding image acquisition and image
reconstruction parameters have been considered as possible causes of
alterations not secondary to underlying tissural modifications.[16,17]

Thepurposeofour studywas2-folded.First,weaimed toevaluate
whether TA—performed on a small number of CT images—can
differentiate between subjects with and without SSc independently
from different image acquisition and image reconstruction
parameters. Second, we tested the impact of different reconstruction
algorithms and radiation doses on TA-results.

2. Materials and methods

2.1. Study population

In this retrospective study we included 85 patients (61 females,
age range 18–80 years, mean 52.3±14.3 years) referred to our
department for single-energy non-enhanced chest CT between
January 2012 and January 2013.
Sixty-one (71.8%) patients (hereinafter termed “cases”) had

confirmed diagnosis of SSc according to the very early diagnosis
of SSc (VEDOSS) and/or the American College of Rheumatology
(ACR) classification criteria.[18,19] Twenty-four (28.2%) patients
(hereinafter termed “controls”) were referred to the radiology
department for various other indications. Clinical indications for
CT in controls are listed in Table 1.
Institutional review board approval was obtained.

2.2. CT scanning parameters and data reconstruction

CT studies were performed on a single-source 64-slice (Somatom
Definition AS; Siemens Healthcare, Forchheim, Germany) and on
ble 1

ical indication for chest CT in the control group.

ical indications for chest CT Number of subjects

iratory Bronchiolitis (RB)/RB–ILD 5 (20.8%)
with UIP pattern 1 (4.2%)
D 3 (12.5%)
associated with systemic lupus erythematosus 1 (4.2%)
associated with connective tissue disease 1 (4.2%)
ic fibrosis 1 (4.2%)
monia 4 (16.6%)
w-up of oncologic disease 2 (8.3%)

∗

1 (4.2%)
w-up after lung transplant 4 (16.6%)
stosis 1 (4.2%)

patient suffered from b-cell lymphoma, 1 had history of breast cancer.
= chronic obstructive pulmonary disease, LAM= lymphangioleiomyomatosis, RB-ILD=

ratory bronchiolitis—interstitial lung disease, UIP=usual interstitial pneumonia.
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a second-generation dual-source 128-slice CT scanner (Somatom
Definition Flash; Siemens Healthcare) with automatic exposure
control (CareDose4D, Siemens Healthcare). Tube current was
modulated based on patients’ size. All scans were performed at
end-inspiration in craniocaudal direction, capturing the entire
lung volume from the apices to the pleural recesses.
CT datasets were reconstructed with FBP and with sinogram-

affirmed IR (SAFIRE) algorithms; the latter comes with 5 pre-sets
(strength levels) for predefined noise reduction (15). In our study,
we included SAFIRE strength levels 3 and 5. SAFIRE allows for
the evaluation of SSc with a similar accuracy as compared to FBP,
and with SAFIRE strength level 5 the highest degree of image
noise reduction can be obtained.[7,20] The latter was included to
test whether such high degree of noise reduction could be used in
the setting of a TA-based diagnosis. All datasets were
reconstructed using a sharp tissue convolution kernel (B60f for
FBP and I70f for SAFIRE) with lung window settings (window
width, 1200 HU; window level, �600 HU).
CT scanning and image reconstruction parameters, as well as

radiation doses, are listed in the supplementary Table 1, http://
links.lww.com/MD/D103, reporting the scanning protocols for
both single-source CT (SS-CT) and second-generation dual-
source CT scanner (DS-CT).
For each CT datasets, 6 slices at pre-defined levels, namely 1 at

the midpoint between apices and the tracheal carina, 1 at the
tracheal carina and 4 equally spaced between the tracheal carina
and the pleural recesses, were selected and included for the TA.
The evaluation of pulmonary parenchyma at different anatomi-
cal levels has been previously evaluated for various diseases.[21,22]

2.3. Image analysis

A preliminary qualitative CT evaluation regarding the presence
of GGO—the latter being a frequent CT finding in SSc—was
performed by an expert radiologist (TF) on SDCT reconstructed
with FBP.[23]

TA was performed using a freely available software (MaZda,
version 4.6, Institute of Electronics, Technical University of Lodz,
Lodz, Poland), which allows for the two-dimensional segmenta-
tion of ROIs.[24] Gray level normalization to correct for intra-
and inter-scanner variations was performed between the mean
and 3 standard deviations (“±3s”method).[25] A board-certified
radiologist (GM) performed the TA. On each of the pre-selected 6
slices, 1 bidimensional ROI per lung was manually drawn
contouring the actual margin of the chest wall, to include the
maximum amount of the sub-pleural space. The hilar vessels were
carefully excluded from the ROI (Fig. 1). The ROIs were drawn
on 1 reconstruction CT dataset and copy-pasted into the
remaining 2 datasets. Texture results from the ROIs of the 6
CT slices were averaged for each subject.
Overall, 304 TA features were computed. TA features

(supplementary Table 2, http://links.lww.com/MD/D103, detail-
ing texture categories with corresponding features) originated
from 6 main categories:
(a)
 Histogram,

(b)
 Grey-Level Co-Occurrence Matrix (GLCM) at 5 interpixel

distances,

(c)
 Run-Length Matrix (RLM) at 4 angles: 0°, 90°, 135°, and

180°,

(d)
 Absolute gradient,

(e)
 Autoregressive model, and

(f)
 Wavelet transform.
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Figure 1. Axial chest CT image in prone position. The 2 green areas
comprising the lung parenchyma represent the ROIs used for texture analysis
at the level of the tracheal carina. CT=computed tomography, ROI= region of
interest.
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2.4. TA feature reduction

Dimension reduction was performed using the supervised class
filter “CfsSubsetEval” of the open source software Weka
(University of Waikato, Waikato, New Zealand). It evaluates
the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Feature selection is performed on the
training data set by assessing subset of features that are highly
correlated with the class while having low intercorrelation
(Supplementary Figure 1, http://links.lww.com/MD/D103).
2.5. Statistical analysis

Normality of data distribution was assessed with the Shapiro-
Wilk test. Normally distributed variables were reported as mean
and standard deviation (SD), non-normally distributed variables
were reported as median and inter-quartile range (IQR). The
variables were compared applying Student t-test for parametric
variables and Mann–Whitney U test for non-parametric
variables. Categorical variables were compared using Chi-
squared test.
After feature reduction, all the remaining TA features acted as

input in an artificial neural network (ANN, “Multilayer
Perceptron”, MLP) with backpropagation for classification of
cases and controls. MLP is a traditional neural network
characterized by different layers inputs and output and is
currently the most well-known among traditional neural
networks.[26]

Results of the ANN-based classifications were compared
regarding correctly/incorrectly classified instances, mean abso-
lute error, true positive (TP), and false positive (FP) rates,
precision and the receiver-operating characteristics—area under
the curve (ROC-AUC). The whole dataset was initially used for
training and testing. Then, it was split in the recommended ratio
of 2/3 training and 1/3 testing set. Subsequently, to account for
overfitting, classification analyses were performed, and the results
3

were compared after the 10-fold cross-validation process, which
allows for all observations to serve for both training and
validation, and each observation, is used for validation exactly
once. We used stratified 10-fold cross-validation, in which the
folds are selected so that each fold contains roughly the same
proportions of class labels.[27] The results are averages of 10 runs.
This analysis resulted in Model 1. Afterward, the analyses were
repeated for the whole study population divided according to the
reconstruction algorithm (Model 2) and between CT datasets
with different radiation doses (i.e., LDCT and SDCT) and
reconstruction algorithms (Model 3).
Data mining and ANN analyses were performed using open-

source software (WEKA, University of Waikato), all remaining
statistical analyses were conducted using commercially available
software (SPSS 23.0; IBM, Chicago, Ill). A 2-tailed P value below
.05 was considered to indicate statistical significance.
3. Results

In this retrospective study we included 85 patients (61 females,
age range 18–80 years, mean 52.3±14.3 years) that underwent
CT scans at different radiation doses [49 SDCTwith a volumeCT
dose index (CTDIvol) of 4.86±2.1 mGy and 36 LDCT with a
CTDIvol of 2.5±1.5 mGy]. There were no significant differences
inmean age betweenmen andwomen (P= .29) and between cases
and controls (P= .12).
Among cases, 33 (54.1%) had limited SSc and 28 (45.9%)

patients had diffuse SSc based on the LeRoy criteria [28];
furthermore, 28 individuals reported symptoms from esophageal
insufficiency and 48 (78.7%) reported dyspnea.
3.1. Image analysis

Qualitative evaluation showed that 41 of the 61 cases with
confirmed SSc had no GGO (SDCT: 16/41 and LDCT: 25/41).
Twenty cases (SDCT: 9/20 and LDCT: 11/20) and 12 controls
(SDCT: 12/12) showed GGO.
TA could be successfully performed in all CT datasets.
3.2. Differences in discriminatory power of TA (Model 1)

For the whole dataset, 13 out of the initial 304 (4.3%) TA
features were included in our analysis after feature reduction. By
applying 10-fold cross-validation classification the AUC was
0.878, with a correct classification in 85% of cases.

3.3. Differences in discriminatory power of TA using
different CT reconstruction filters (Model 2)

For FBP, 17 out of the initial 304 (5.6%) TA features were
included in the analysis after feature selection; for IR, 13 TA
features (4.3%) were included in the analysis for both SAFIRE 3
and SAFIRE 5 (supplementary Table 3, http://links.lww.com/
MD/D103, reporting the results of dimension reduction by
reconstruction type).
The results of Model 2 are listed in Table 2. The highest

discriminatory power for TA-based diagnosis of SSc was possible
with FPB.With 10-fold cross-validation classification, the highest
AUC among CT datasets was found for the FBP-reconstructed
images (0.904) with a correct classification in the 84.9% of cases
(Fig. 2). For SAFIRE 3 datasets, the AUC was 0.851 and 83.3%
of cases were correctly classified. For SAFIRE 5 datasets, the AUC
was 0.799 and 78.4% of cases were correctly classified.
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Table 2

Results of the TA analysis for CT datasets reconstructed with FBP, SAFIRE 3, and SAFIRE 5 for the whole study population.

Reconstruction
algorithm Subjects

Entire dataset Percentage split ratio 2
3 and

1
3

� �
10-fold cross-validation

Correctly
classified

(%)
TP
rate

FP
rate Precision

AUC
(95%CI)

Correctly
classified

(%)
TP
rate

FP
rate Precision AUC (95%CI)

Correctly
classified

(%)
TP
rate

FP
rate Precision

AUC
(95%CI)

FBP Case (n=61) 95.3 0.967 0.083 0.967 0.967 (0.85–1) 85.5 0.925 0.297 0.887 0.870 (0.76–0.98) 84.9 0.910 0.306 0.883 0.904 (0.79–1)
Control (n=24) 0.917 0.033 0.917 0.967 (0.85–1) 0.727 0.114 0.600 0.916 (0.8–1) 0.694 0.090 0.752 0.904 (0.79–1)

SAFIRE 3 Case (n=61) 95.1 0.984 0.132 0.950 0.954 (0.84–1) 81.5 0.864 0.394 0.903 0.828 (0.71–0.93) 83.3 0.899 0.333 0.873 0.851 (0.74–0.96)
Control (n=24) 0.868 0.016 0.917 0.954 (0.84–1) 0.606 0.136 0.513 0.828 (0.71–0.93) 0.667 0.101 0.722 0.851 (0.74–0.96)

SAFIRE 5 Case (n=61) 90.4 0.970 0.264 0.903 0.891 (0.78–1) 83.8 0.886 0.364 0.912 0.848 (0.73–0.95) 78.4 0.861 0.410 0.842 0.799 (0.68–0.91)
Control (n=24) 0.736 0.030 0.906 0.891 (0.78–1) 0.636 0.114 0.568 0.848 (0.73–0.95) 0.590 0.139 0.625 0.799 (0.68–0.91)

AUC= area under the curve from receiver operating characteristics analysis, FBP=filtered-back projection, FP= false positive, SAFIRE=Sinogram Affirmed Iterative Reconstruction, TP= true positive.
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3.4. Differences in discriminatory power of TA between
SDCT and LDCT (Model 3)

For FBP, 14 TA features with SDCT and 22 TA features with
LDCT were included into the analysis after feature selection. For
SAFIRE 3, 8 features for SDCT and 10 for LDCT were included.
For SAFIRE 5, 11 features for both SDCT and LDCT were
included.
The results of Model 3 are listed in Table 3. The highest

discriminatory power for TA-based diagnosis of cases was found
Figure 2. ROC analysis curves of artificial neural network with 10-fold cross-valid
Back Projection (Blue), SAFIRE strength level 3 (Green), and SAFIRE strength level
the curve, CT=computed tomography, ROC= receiver operating characteristics,

4

for FPB in comparison with SAFIRE 3 and SAFIRE 5, on both
SDCT and LDCT datasets.
4. Discussion

Our study shows that the TA-based diagnosis of SSc is feasible
and can be performed on a small number of CT slices which is
beneficial for CT scanning at low radiation dose. Then, the
discriminatory power for differentiating patients with SSc and
those without was higher for LDCT, showing a progressive
reduction in accuracy from FPB to SAFIRE 3 and SAFIRE 5.
ation averaged for standard and low dose CT by reconstruction type: Filtered
5 (Red). Note the highest AUC at FBP reconstructed images. AUC=area under
SAFIRE=Sinogram Affirmed Iterative Reconstruction.



Table 3

Results of the TA analysis for CT datasets reconstructedwith FBP, SAFIRE 3 and SAFIRE 5 stratified according to the radiation dose of the
CT.

Reconstruction
algorithm Subjects

Entire dataset Percentage split ratio 2
3 and

1
3

� �
10-fold cross-validation

Correctly
classified

(%)
TP
rate

FP
rate Precision

AUC
(95%CI)

Correctly
classified

(%)
TP
rate

FP
rate Precision AUC (95%CI)

Correctly
classified

(%)
TP
rate

FP
rate Precision AUC (95%CI)

FBP SDCT Case (n=61) 94.1 0.917 0.035 0.964 0.959 (0.84–1) 74.5 0.783 0.288 2.706 0.801 (0.69–0.91) 78.5 0.764 0.194 0.797 0.859 (0.73–0.96)
Control (n=24) 0.965 0.083 0.921 0.959 (0.84–1) 0.712 0.217 0.787 0.801 (0.69–0.91) 0.806 0.236 0.773 0.859 (0.73–0.96)

FBP LDCT Case (n=61) 99.4 1 0.014 0.991 0.992 (0.89–1) 92.5 0.915 0.061 0.959 0.980 (0.87–1) 93.8 0.953 0.083 0.943 0.981 (0.87–1)
Control (n=24) 0.986 0 1 0.992 (0.89–1) 0.939 0.085 0.885 0.980 (0.87–1) 0.917 0.048 0.930 0.981 (0.87–1)

SAFIRE 3 SDCT Case (n=61) 85.1 0.840 0.139 0.858 0.910 (0.81–1) 68.4 0.609 0.250 0.683 0.745 (0.63–0.85) 75.7 0.743 0.229 0.764 0.815 (0.7–0.92)
Control (n=24) 0.861 0.160 0.844 0.910 (0.81–1) 0.750 0.391 0.684 0.745 (0.63–0.85) 0.771 0.257 0.750 0.815 (0.7–0.92)

SAFIRE 3 LDCT Case (n=61) 96.7 0.986 0.063 0.959 0.993 (0.88–1) 87.7 0.961 0.267 0.860 0.915 (0.8–1) 91.1 0.958 0.160 0.900 0.922 (0.8–1)
Control (n=24) 0.938 0.014 0.978 0.993 (0.88–1) 0.733 0.039 0.917 0.915 (0.8–1) 0.840 0.042 0.931 0.922 (0.8–1)

SAFIRE 5 SDCT Case (n=61) 87.5 0.813 0.063 0.929 0.953 (0.84–1) 67.3 0.761 0.404 0.625 0.741 (0.63–0.85) 74.0 0.708 0.229 0.756 0.815 (0.7–0.9)
Control (n=24) 0.938 0.188 0.833 0.953 (0.84–1) 0.596 0.239 0.738 0.741 (0.63–0.85) 0.771 0.292 0.725 0.81 (0.7–0.92)

SAFIRE 5 LDCT Case (n=61) 96.9 1 0.076 0.952 0.969 (0.85–1) 90.2 0.935 0.156 0.965 0.959 (0.84–1) 88.1 0.921 0.181 0.884 0.929 (0.81–1)
Control (n=24) 0.924 0 1 0.969 (0.85–1) 0.965 0.083 0.921 0.959 (0.84–1) 0.819 0.079 0.874 0.929 (0.91–1)

AUC= area under the curve from receiver operating characteristics analysis, FBP= filtered-back projection, FP= false positive, LDCT= low-dose, SAFIRE=Sinogram Affirmed Iterative Reconstruction, SDCT=
standard-dose CT, TP= true positive.
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One major field of interest of ANN analysis in imaging is to
evaluate whether it can discriminate between the presence and
absence of a certain disease based on input from images,
especially regarding textural patterns.[26,29] In our study,
“handcrafted” TA (i.e., ROIs were manually drawn) could
discriminate between cases and controls based on texture-
features extracted from 6 CT images at different anatomical
levels. This spatial sampling of texture is relevant for the
assessment of diffuse lung diseases.[30]

In daily clinical setting, the diagnosis of SSc is based on clinical,
serological, functional and imaging results.[3] Furthermore,
parenchymal abnormalities may not be detectable through
alterations of pulmonary function test in patients with early
SSc. Imaging can depict parenchymal changes suggestive for the
development of ILD during follow-up studies; nevertheless, the
radiation burden is of particular concern.[3] In keeping with the
literature, we report the possible clinical application of
quantitative evaluation and texture- and density-based analysis.
Moon et al reported that histograms of ILD patients were less
skewed and less kurtotic than those of non-ILD patients and they
postulated that these differences related with an increased
heterogeneous attenuation.[31] Furthermore, Ariani et al demon-
strated that quantitative CT indexes could stratify SSc patients
according to their prognosis.[32] A neural network proposed by
Anthimopoulos et al was shown to possess the potential in
classifying ILD patterns, including GGO and reticulations.[33,34]

Best et al showed that changes in density-based quantitative CT
indices such as mean lung attenuation, skewness, and kurtosis
were associated with the progression of idiopathic pulmonary
fibrosis.[35] Recently, classification of ILD based on a deep
learning approach—obtaining a human level performance—was
reported by Walsh et al.[34]

Of note, the classification performed by the ANN of the whole
study population—distinguishing between cases and controls—
was correct in 85% of cases, independently from radiation doses
and reconstruction algorithms. Such results underline the
robustness and reproducibility of TA. Nonetheless, our study
shows slight differences in the AUC when stratifying between CT
datasets with different radiation doses. Solomon et al stated that
reconstruction parameters should not be changed between
studies as different radiation doses and reconstruction algorithms
affect TA.[36] The authors underlined the importance for
radiologists to be aware that potential variations in extracted
5

features during follow-up may not be related to actual changes in
the course of the disease if different reconstruction settings were
used. Kim et al showed significant differences among features
extracted from the same patient on non-contrast and contrast-
enhanced CT.[37] Furthermore, Larue et al reported that features
are influenced by CT-scanner, slice thickness, and bin width.[38]

Similarly, Mackin et al highlighted the relevance of image
acquisition and reconstruction for the repeatability of fea-
tures.[16] A recent inter-CT and intra-CT study evaluating
radiomic features showed that many features were not
reproducible, and the authors underlined the importance of a
standardized methodology, notably for CT reconstruction
kernels and section thickness.[39] Similarly, Ahn et al underlined
the potential effect of reconstruction algorithms and CT
parameters on texture analysis.[40] Of note, in our study we
included CT scans obtained from 2 different CT-scanners,
nevertheless, the ability of the ANN analysis to classify cases and
controls was correct in more than 90% of patients, and when
analyzing the study population independently from the different
image acquisition parameters, it was 85%. We underline the
potential relevance of robust TA, as it could be particularly
beneficial in multicentric settings, in which similar scanning
parameters may not be easily obtained. To expand quantitative
approaches allowing reproducible multicentric studies, a recent
phantom study showed that a dedicated compensation algorithm
realigning quantitative features can be used to remove the effects
of scanning protocols.[41] Ideally, the same protocol should be
used at baseline and during quantitative follow-up. Quantitative
features have been reported to vary according to image pre-
processing and reconstruction techniques potentially introducing
changes not caused by underlying biologic effects,[17,42] and a
study testing the effect of IR algorithms toward quantitative
image features, showed that features derived from colorectal
cancers were altered according to IR levels.[43] Similarly, Mannil
et al reported the impact of reconstruction algorithm toward TA
on myocardial infarction in cardiac CT.[44]

In our study, a number of histogram-derived features were
included in the ANN classifier, potentially representing a
measurement of the parenchymal density (evaluated as Houns-
field Unit) and therefore being suggestive of GGO, which is a
frequent finding in SSc-ILD patients.[23] Notably, only 20 out of
61 SSc patients displayed GGO, as qualitatively assessed. On the
other hand, the classifier included mostly “not histogram-
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derived” features, depicting structural and textural changes that
are—most probably—not perceptible to human eyes. Further-
more, reduction of noise by application of IR may be associated
with a concomitant loss of information within images, potentially
resulting in a higher performance of FBP. Hence, we postulate
that TA could be influenced by the effect of iterative reconstruc-
tion—in terms of noise reduction—for quantitative analyses. In
our study—performed in a clinical setting—the number of
protocols was limited, and a preliminary gray-level normalization
was performed.[27] Larue et al recommend performing a
preliminary “gray-level discretization” before the analysis.[38]

Peikert et al reported that features derived from a heterogeneous
sample of the CT dataset obtained during the NLST were robust
and stable across different scanners, image acquisition param-
eters, and reconstructions algorithms.[45] Of note, different
scanners, and acquisition parameters of magnetic resonance
images of patients with glioblastoma leading to heterogeneous
condition were considered as a possible strength, related to a
realistic clinical condition—as in our study—given that in large
multicentric databases the same imaging protocol can be difficult
to be achieved.[46,47,48]

In our study, the AUC of LDCTwas greater than that of SDCT.
Pontana et al reported a higher frequency of excellent visual
scores for the assessment of interstitial anomalies in SSc patients
evaluated on IR-reduced dose images, as compared to FBP-
SDCT.[7] Christe et al reported a reduced subjective detection rate
for interstitial abnormalities on LDCT, in particular for
reticulation (reduced sensitivity of 20%).[49] Scanning patients
with LDCT is not only beneficial for the purpose of reducing the
radiation burden for individuals requiring long-term annual
radiological follow-up, but it seems to increase the discriminatory
power of TA. IR reduces image noise and the radiation burden
[5,50]; however, our results show the highest ROC-AUC for FBP-
LDCT on a reduced (i.e. 6) number of slices, with pulmonary
parenchyma sampled at pre-defined intervals. Of note, appear-
ance of pulmonary parenchyma was reported to be affected by
IR particularly in the setting of the quantitative evaluation
of pulmonary emphysema as assessed by low-attenuation
areas.[51,52]

A reduced slice-approach was tested by Winklehner et al,
reporting the viability of the detection of ILD on CT image series
with low sampling rate.[21] Our results expand those of Nguyen-
Kim et al, who recently reported that both visual and histogram-
based assessment is possible on slice-reduced sequential CT.
Histogram parameters such as kurtosis and skewness were
capable of discriminating fibrosis (20% cut-off) with high
sensitivity and specificity.[53] We included in our analysis the
highest strength level for IR, namely SAFIRE 5, reported to
provide a so-called “blotchy-appearance”, which could hamper
not only visual but also quantitative evaluation of pulmonary
abnormalities.We postulate that by applying newer generation of
IR (such as model-based IR), effect of TA could be im-
proved.[21,53]

Importantly, CT scans of controls were requested for different
clinical indications and displayed parenchymal anomalies, such
as GGO and reticulations being abnormalities that can be seen
also in patients with SSc-ILD.[2] Hence, controls did not properly
consist of a “healthy” population, but TA could discriminate
them from cases. In our study, controls underwent CT scanning
because of various indications, such as RB-ILD which may
manifest as diffuse GGO [47] and obliterative bronchiolitis (OB)
—a possible complication after lung transplant—detectable as a
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mosaic attenuation pattern.[48] Nevertheless, TA could discrimi-
nate between cases and controls, even in this daily clinical setting
with parenchymal anomalies detectable in both groups.
Our study has various limitations. First, in the analysis

performed to discriminate the TA-based diagnosis of SSc
according to the CT dose levels, machine-learning based
discrimination between cases and controls may mirror inherent
differences between SDCT and LDCT, irrespective of the
presence of SSc. Second, controls were scanned with tube
current-time product higher than 40 mAs; however, the
kilovoltage was set—for controls evaluated with both scanners
—at 100 kVp, thus allowing a decrease in the radiation dose of
30% to 40% compared with scanning protocols with 120
kVp.[54] Third, as the ROIs were drawn by a single reader, we
could not evaluate whether TA features would significantly differ
when the ROIs are drawn by multiple readers. Fourth, CT
datasets were reconstructed with a certain version of the IR
algorithm, and other IR algorithms were not tested herein.
Nevertheless, a recent study on abdominal CT did not detect
significant differences regarding image noise, signal-to-noise
ratio, and contrast-to-noise ratio.[20] Fifth, we included in our
analysis SAFIRE 5, which is not currently used in daily clinical
practice mainly because of the “plastic” appearance associated
with the higher levels of iterative reconstructions.[20] Neverthe-
less, for the evaluation of the TA-based analysis, we included the
highest level of IR that was available to evaluate whether it could
be used in the specific setting of cases evaluated with a reduced
number of CT images. Lastly, we did not test whether TA-based
diagnosis could differentiate between SSc patients with ILD and
cases without ILD. Our purpose was to evaluate whether TA
could differentiate between cases irrespectively of the presence
of parenchymal changes and to evaluate the best scanning
protocols that allowed for the differentiation between cases and
controls displaying various degrees of parenchymal abnormali-
ties. We foster future studies for the evaluation of TA based
diagnosis of parenchymal abnormalities in patients with SSc and
other ILDs.
In conclusion, our study indicates that objective and

quantitative CT-based TA allows for the accurate diagnosis of
patients with SSc, with best results for LDCT and using the FBP
reconstruction algorithm.
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