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Malaria caused by the Plasmodium parasites is a major public health concern in malaria-endemic regions with P. falciparum
causing themost severe form of the disease.*e use of antimalarial drugs for themanagement of the disease proves to be one of the
best methods to manage the disease. Unfortunately, P. falciparum has developed resistance to almost all the current in-use
antimalarial drugs. Parasite development of resistance is primarily caused by both parasite and host genetic factors. *e parasite
genetic factors involve undergoing mutation in the drug target sites or increasing the drug target gene copy number to prevent the
intended action of the antimalarial drugs.*e host pharmacogenetic factors which determine how a particular antimalarial drug is
metabolized could result in variations of drug plasma concentration and consequently contribute to variable treatment outcomes
and the emergence or propagation of resistant parasites. Since both host and parasite genomes play a role in antimalarial drug
action, a key question often asked is, “which of the two strongly drives or controls antimalarial drug resistance?” A major finding
in our recent study published in the Malaria Journal indicates that the parasite’s genetic factors rather than the host are likely to
energize resistance to an antimalarial drug. However, others have reported contrary findings suggesting that the host genetic
factors are the force behind resistance to antimalarial drugs. To bring clarity to these observations, there is the need for deciphering
the major driving force behind antimalarial drug resistance through optimized strategies aimed at alleviating the phenomenon. In
this direction, literature was systematically reviewed to establish the role and importance of each of the two factors afore-
mentioned in the etiology of drug-resistant malaria. Using Internet search engines such as Pubmed and Google, we looked for
terms likely to give the desired information which we herein present. We then went ahead to leverage the obtained information to
discuss the globally avid aim of combating antimalarial drug resistance.

1. Introduction

Antimalaria drug resistance (ADR) continues to hinder
global efforts to effectively manage and eradicate malaria
disease [1, 2]. So far, of the Plasmodium species known to
infect humans, P. falciparum has developed resistance to
almost all antimalarials used for malaria treatment. ADR in
the P. falciparum is known to emerge from low-transmission

regions and spread to high-transmission areas [2, 3]. Parasite
strains resistant to chloroquine (CQ) and sulfadoxine-py-
rimethamine (SP) emerged from Southeast Asia (SEA) or
South America before spreading to sub-Saharan Africa (sSA)
[4, 5].

*e high prevalence of CQ-resistant and SP-resistant
parasites necessitated the introduction of artemisinin-
based combination therapy (ACT) for the treatment of
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uncomplicated malaria in malaria-endemic regions. *e
highly efficacious ACT regimens were quickly adopted by
most malaria-endemic countries as their first-line treat-
ment option for uncomplicated malaria [6]. Unfortu-
nately, partial resistance to the artemisinin (ART)
component of the ACT, which is defined as “slower
clearance of malaria parasitemia in the first 3 days of ART
monotherapy or ACT treatment,” was reported in the
western part of Cambodia in 2008 and 2009 [7, 8] and in
the Greater Mekong Subregion [9–11]. *is situation is a
setback to the efficacy of the ACT regimens and conse-
quential to the management of malaria. *ese concerns
have subsequently been aggravated by the selection of
parasites with partial resistance to the ART partner
drug(s). Reports of treatment failures with dihy-
droartemisinin-piperaquine (DHAP) in Cambodia
[12–14] and artesunate-mefloquine (ASMQ) on the *ai-
Myanmar border [15] support this assertion.

*e early detection of resistant parasite strains is crucial
in the fight against malaria, as it will allow prompt identi-
fication and containment of these resistant strains. For the
early detection of resistant parasite strains to a particular
antimalarial drug, there is the need to understand the
mechanisms at play in Plasmodium spp. antimalarial drug
resistance development [16].

Certain mutation in the parasite genome confers re-
sistance to certain antimalarial drugs. Malaria treatment
failure is not only dependent on drug-resistant
P. falciparum bearing these mutations but also on other
factors such as incorrect use or suboptimum drug dosage,
noncompliance to a drug regimen, use of counterfeit or
fake drugs, drug-drug interactions [17], and poor drug
metabolism [18]. Suboptimal drug concentration in blood
contributes to poor malaria treatment outcomes leading
to the emergence and/or spread of parasite-resistant
strains [18]. On the other hand, a high drug concentration
in blood is more likely to result in increased toxicity. *e
pharmacokinetic profile of a drug (absorption, distribu-
tion, metabolism, and excretion) can differ substantially
among individuals with different cytochrome (CYP)
genes. *ese make the drug metabolism enzymes (e.g.,
cytochrome P450 enzymes) and transport proteins (e.g.,
P-glycoproteins) very important in the breakdown, ab-
sorption, distribution, and excretion of antimalarial drugs
[19].

*e genetic variations in the genes encoding these en-
zymes in an individual may be responsible for differences in
individual responses to antimalarial drugs.*is suggests that
it is important to consider the pharmacogenetics of indi-
vidual patients before administering any particular anti-
malarial drug [18, 20].

*is evidence shows that the most important factors that
are principal in determining the efficacy of antimalarial
drugs are the parasite genetic factors and pharmacogenetics
[3, 18, 21]. Hence, this review aims to highlight the parasite
genetic factors and host pharmacogenetic factors that could
affect the efficacy of an antimalarial drug and attempts to
leverage this towards the management of antimalarial drug
resistance.

2. Malaria: A Brief Account of the
Current Situation

*e World Health Organization (WHO) reported 241
million cases of malaria worldwide in 2020 [22]. *is in-
dicates a decline in cases compared to the 251 million
malaria cases reported in 2010 and an increase in cases
compared to the 231 million cases reported in 2017. *e
WHO African Region recorded 228 million malaria cases
out of the total 241 million malaria cases in 2020, repre-
senting 95% of the total malaria cases. *is was followed by
the WHO Southeast Asia Region, which recorded 3% of all
malaria cases [22].*eWHOEasternMediterranean Region
recorded 2% of the malaria cases recorded in 2020 [22].

3. Molecular Markers of Antimalarial
Drug Resistance

*e use of molecular markers of resistance to monitor the
emergence and spread of parasites resistant to antimalarial
drugs proves to be a very effective method in monitoring
ADR [2]. *e identification and validation of these mo-
lecular markers have boosted our confidence in using these
tools to monitor ADR inmalaria-endemic areas [2]. Markers
such as mutations in the P. falciparum chloroquine resis-
tance transporter gene (pfcrt) [23], P. falciparum multidrug
resistance protein 1 gene (pfmdr1) [24], and P. falciparum
kelch 13 gene (pfk13) [25] have been linked to resistance to
CQ, lumefantrine (LMF), and ART, respectively. *e
underlining mechanisms of Plasmodium spp. resistance to
these antimalarial drugs include undergoing mutations in
the parasite genome resulting in changing the original
transporter protein conformation which leads to expelling
the drug from the digestive vacuole at a faster rate, loss of
binding affinity between the drug and its target, or increased
in gene copy number in the case of pfmdr1 [26–28].

4. Cross-Resistance of P. falciparum to
Antimalarial Drugs

P. falciparum has developed cross-resistance to some anti-
malarial drugs that are in the same class, chemically related,
and/or have a similar mechanism of action. *e develop-
ment of resistance to one antimalarial drug can set the right
precedent for the development of resistance to other anti-
malarial drugs [29]. Cross-resistance has been reported for
two 4-aminoquinolines drugs, that is, amodiaquine and
chloroquine. Cross-resistance to amodiaquine and chloro-
quine has been reported in both clinical and laboratory
isolates. For the quinoline drugs, cross-resistance has been
reported betweenMQ, QN, and HLF.*ere are high cases of
cross-resistance reported between HLF and MQ, especially
in MQ-resistant clinical isolates [30]. Cross-resistance has
also been recorded between LMF and MQ, which is caused
by amutation in pfmdr1 N86Y [31]. In a few cases, resistance
to one drug confers increased susceptibility to other drugs.
For example, pfmdr1 N86Y causes decreased susceptibility
to CQ but increased susceptibility to MQ, while the in-
creased pfmdr1 copy number is associated with increased
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CQ sensitivity and decreased MQ susceptibility [32]. In
antifolates, cross-resistance has been observed between
cycloguanil and pyrimethamine [33].

5. Controversies Surrounding the Use of
Molecular Markers in the Surveillance of
Resistant Parasite Strain

*e use of molecular markers of resistance to monitor the
emergence and spread of parasite strains resistant to anti-
malarial drugs has proven to be very effective. Nonetheless,
this comes with its challenges, especially when there is a lack
of universality in a particular molecular marker of resistance
used for monitoring ADR. For example, the major muta-
tions that have been reported as molecular markers of re-
sistance to ARTand its derivatives in SEA are pf k13 C580Y,
R539T, and Y493H [34], but this is not the case in most
African countries.*is could probably be due to low levels of
resistance to ART in most African countries. In cases with
delayed ART treatment outcomes in most African countries,
pfk13 C580Y, R539T, and Y493H mutations were not ob-
served. *is finding highlights the fact that there is the
absence of universality in the use of pfk13 C580Y, R539T,
and Y493H for ART resistance surveillance in all WHO
malaria-endemic regions [34]. *is assertion is further
strengthened after pfk13 M476I was selected for in a Tan-
zanian clinical isolate in the presence of in vitro ART drug
pressure. *is suggests the possibility of pfk13 M476I being
used as an ARTresistance marker in Tanzania and not pfk13
C580Y, R539T, and Y493H [34].

In SEA, an increase in pfpm2 and pfpm3 gene copy
number is used as a molecular marker of resistance for PQ in
clinical isolates [28]. However, this is not the case in Africa,
as high proportions of clinical isolates have multiple copies
of the pfmp2 gene which has an association with PQ re-
sistance. For example, more than 30% of clinical isolates
from Burkina Faso and Uganda had multiple copies of the
pfmp2 gene [35]. *e observed high prevalence of multiple
gene copies of the pfmp2 gene in African isolates could be
that isolates had multiple copies of the gene before intro-
duction of PQ for the treatment of malaria. *erefore, the
use of increased gene copy number in pfmp2 and pfpm3
genes as molecular markers of resistance in monitoring
DHAP may not be accurate in Africa [35]. *e above as-
sertions point to the importance of the identification and
validation of peculiar molecular markers of resistance to
first-line antimalarial drugs used in a particular country for
malaria treatment. *is can ensure the accurate use of
Plasmodium spp. molecular markers of resistance for an-
timalarial drug efficacy studies in malaria-endemic regions.

6. Drug Metabolism in the Human Host

*e drug metabolism involves the enzymatic conversion of a
therapeutic important chemical into a new molecule inside
the human body for a specific activity [21].*e process of the
enzymatic conversion may result in pharmacologically ac-
tive, inactive, or toxic metabolites, depending on the genetic
makeup of the individual [21]. *e drug metabolic process

involves two phases: the conversion of the therapeutic
compound into a pharmacological active metabolite by the
cytochrome P450 isoenzymes (CYP) and the transport of the
pharmacologically active metabolite to their target site of
action [21].

7. Cytochrome P450 Isoenzymes (CYP) in the
Human Host

*e main enzymes involved in the antimalarial drug
metabolism are the cytochrome P450 (CYP) enzymes.
Approximately, 40% of these enzymes are polymorphic. *e
CYP genes with polymorphisms include CYP1A2, CYP2A6,
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and
CYP3A5 [36]. *e polymorphisms lead to three main
phenotypes, which are classified as poor metabolizers, in-
termediate metabolizers, and extensive metabolizers. Poor
metabolizers break down drugs slowly, which may lead to a
more pronounced side effect. Additionally, poor metabo-
lizers might experience treatment failure when administered
with prodrugs that need to be bioactivated. Poor metabo-
lizers will have problems in the bioactivation of proguanil to
cycloguanil by the CYP2C19 gene [36]. Extensive metabo-
lizers tend to metabolize the drugs more extensively which
results in faster relief from the disease symptoms [36]. In-
termediate metabolizers metabolize the drugs efficiently,
resulting in the optimal concentration of the pharmaco-
logically active metabolite in the plasma, with no toxicity or
adverse drug effect being recorded [36].

Polymorphisms in CYP3A4 (the most abundant human
CYP enzyme) have a major role in the expression and
function of the gene, and this may lead to drug toxicity [37].
In CYP3A5, genetic variation accounts for the majority of its
expression and function [36]. In CYP2C8, studies that in-
cubated AQ with human liver microsomes and recombinant
expressed CYP2C8 protein from cells observed a 50% re-
duced metabolic activity for CYP2C8∗2 and an 85% reduced
metabolic activity for CYP2C8∗3 when compared to the
wildtype [38]. For CYP2C19, CYP2C19∗2 and CYP2C19∗3
polymorphisms are null alleles which result in the complete
absence of protein functions [39]. *e CYP2C19∗17 has
been associated with the increased metabolism [40]. Among
several polymorphisms in CYP2A6, only CYP2A6∗2 and
CYP2A6∗7A have reduced 7-hydroxylation of coumarin
[41].

8. Drug Transport in the Human Host

Transporters are membrane-bound proteins that help in the
movement of compounds in and out of cells. Transporters
play a very important role in the delivery of metabolized
drugs to their target sites [42, 43]. Genetic variations in drug
transporter genes in humans are very important in deter-
mining the concentration of metabolized drugs in the tar-
geted cells which contribute to the variability of drug
response among individuals [42, 44, 45]. *e ABCB1 gene
which encodes the human MDR1 (P-glycoprotein) protein
functions as an efflux transporter and its polymorphic forms
ABCB1 c.1236C>T, ABCB1 c.2677G>T/A, and ABCB1
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c.3435C>T have been associated with variations in drug
availability after the metabolism [42]. *e solute carrier
organic anion transporter family member 1B1 (SLCO1B1)
gene encodes the organic anion transporting polypeptide
1B1 (OATP1B1). *e SLCO1B c.521C>T has been associ-
ated with an increase in organic anions concentration in
plasma by reducing hepatic uptake of organic anions
[42, 44]. Also, genetic variations in SLC22A1 and SLC22A2
genes which encode the organic cation transporter proteins
OCT1 and OCT2, respectively, influence metformin phar-
macokinetics in humans [46–48] (Table 1).

9. Typing of Polymorphisms in CYP gene as a
Means to Personalize Medication in Malarial
Infection: The Setbacks

One of the most effective ways of knowing how an individual
will metabolize an antimalarial drug is by genotyping the
CYP gene which encodes the enzyme mainly involved in the
antimalarial drug metabolism. *is makes it an easy ap-
proach to personalize medicine. Unfortunately, this is not
true for some antimalarial drugs as more than one CYP

enzyme can metabolize a single antimalarial drug. For ex-
ample, piperaquine is metabolized primarily by CYP3A4
and to a lesser extent by CYP2C8 when compared to
CYP3A4 [73]. Lumefantrine is metabolized by both CYP3A4
and CYP3A5 [64]. *is suggests that mutation(s) in one of
the CYP genes leading to a defective metabolism may be
compensated for by the second CYP enzyme that can also
metabolize the antimalarial drug. Hence, the chances of
the poor antimalarial drug metabolism occurring in an
individual is less. For some antimalarials such as AQ, both
the parent drug and its N-desethlamodiaquine (DEAQ)
metabolite are therapeutically active against the malaria
parasite. *is suggests that AQ can work effectively in the
absence of the efficient metabolism by the patients
[87, 88]. Due to the functional redundancy in some CYP
enzymes and the therapeutical activeness of some parent
drugs and their metabolites, it will be important for re-
searchers to focus on the transporters that may play a role
in transporting metabolized drugs to their target site of
action. How these enzymes contribute to malaria treat-
ment outcomes with the view of improving upon per-
sonalized medicine is discussed.

Table 1: Summary of current antimalarial drugs, their parasite molecular markers of resistance and human host pharmacogenetics.

Antimalarial
drug Molecular markers of resistance Cytochrome P450 involved

in the metabolism
Transporters involved in the transport of

the antimalarial drugs

Quinine
pfmdr1 N86Y, Y184F, S1034C, N1042D,

D1246Y [49]
pfmrp Y191, A437S [50]

CYP3A4, CYP3A5 [51, 52]
CYP2C9 [53]

MDR1 [19]
OCT1, OCT2 [47]

Halofantrine Increased pfmdr1 copy number [54] CYP3A4 and CYP3A5 [55] Not available

Mefloquine

pfcrt K76T, A220S, Q271E, N326S, I356T,
R371I

Increased pfmdr1 copy number, pfmdr1 N86Y
[56, 57]

CYP3A4 [58] MDR1, ABCG2 [59, 60]
ABCB1 [61]

Lumefantrine
pfmdr1 N86Y, Y184F, S1034C, N1042D,

D1246Y [62]
Increased pfmdr1 copy number [63]

CYP3A4 and CYP3A5 [64] ABCB1 [65].

Chloroquine pfcrt K76T, K76N, K76I [66]
pfmdr1 N86Y [23]

CYP2C8, CYP3A4, and
CYP3A5 [67]

*e MDR1, MRP1, and MRP4 are
involved in the transport of chloroquine

[68]

Amodiaquine pfmdr1 N86Y, Y184F, S1034C, N1042D,
D1246Y, pfcrt K72T [69, 70]

CYP2C8, CYP1A1 and
CYP1B1 [71] Not available

Piperaquine Increased pfpm2 and pfpm3 copy numbers
[28, 72] CYP3A4 and CYP2C8 [73] Not available

Pyronaridine pfmdr1 N86Y, Y184F, S1034C, N1042D,
D1246Y, pfcrt K72T [74, 75]

CYP1A2, CYP2D6, and
CYP3A4 [76] Not available

Primaquine Not available CYP1A2, CYP3A4, and
monoamine oxidase [77] MRD1 and MRP1 [78]

Proguanil pfdhfr S108N, N51I, and C59R [79] CYP2C19 and CYP3A4 [21] MATE1 and MAT2-K [80]

Pyrimethamine pfdhfr S108N, N51I, C59R, 164 I164L, and
A16V [4, 5] Not available Not available

Sulfadoxine pfdhps S436F/A, A437G, K540E, A581G, and
A613S/T [4, 5] Not available Not available

Artemisinin
pfk13 C580Y, R539T, I543T, F446L, N458Y,
P547L, R56IH, Y493H [81], pfatp6 A623E,

S769N [82]

CYP2B6, CYP3A4, and
CYP2A6 [83] P-glycoproteins [84]

Atovaquone pfcytb Y268S/C/N, M133I, L144S, G280D
[85, 86] Not available Not available
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10. Sickle Cell Anemia and Malaria

Sickle cell anemia (SCA) is a major health problem in mostly
sub-Saharan Africa (sSA) with over 250000 babies born
annually with the disease [89]. In Africa, approximately
200000 babies are born with SCA annually and approxi-
mately 50% die before the age of five [90]. Individuals with
SCA are four times more susceptible to malaria compared
with individuals with sickle cell trait. *is makes malaria a
major contributor to morbidity and mortality in these in-
dividuals [90]. Malaria infection in SCA individuals results
in severe anemia and painful crises, which can result in the
death of these persons. Inmost malaria-endemic areas, crises
due to malaria infection in individuals with SCA occur
mostly in highmalaria transmission seasons [91]. Due to this
knowledge, presumptive malaria treatment is the ideal way
of preventing malaria in individuals with SCA. *e anti-
malarial drugs used mostly for presumptive malaria treat-
ment are CQ and SP [92]. Due to the high level of CQ-
resistant parasites recorded in most countries in sSA, the use
of SP has a higher success rate in preventing malaria in SCA
individuals [92]. *e antimalarial drug SP is also preferred
for presumptive malarial treatment in pregnant women with
SCA [93]. *e treatment of SCA is mostly by the use of
hydroxyurea [94]. *e recent use of hydroxyurea for SCA
treatment means there is limited data on hydroxyurea and
antimalarial drug-drug interactions; hence, the need for
investigation in this aspect. Since CQ and SP are mostly used
as presumptive treatments for malaria in SCA individuals, it
will be ideal for future research to focus on hydroxyurea and
CQ or SP drug-drug interactions [92, 94].

11. The Use of Genetic Factors of Parasite and
Host to Curb Antimalarial Drug Resistance

Detection of Plasmodium spp. molecular markers of resis-
tance to antimalarial drugs has proven to be an effective way
of identifying potential ADR parasite phenotypes. *e use of
high throughput sequencing techniques has helped in the
identification of molecular markers associated with resis-
tance to antimalarial drugs in efficacy studies in most
malaria-endemic countries [2].

*e categorization of people by their genotype has
proven to be effective in establishing the link between in-
dividual pharmacogenetics and antimalarial drug pharma-
cokinetics [95–97]. *is has led to improved drug response
in most individuals to antimalarial drugs. *is suggests that
there is the need to establish a comprehensive worldwide
CYP gene polymorphism database, which will incorporate
the antimalarial drug pharmacokinetic parameters associ-
ated with its CYP gene polymorphism(s) [98]. *is will help
improve personalized medicine and significantly reduce
incidents of adverse drug effects that may be associated with
taking antimalarial drugs [21]. For example, pharmacoge-
netic tests have been used to optimize warfarin doses, avoid
tamoxifen treatment failure, and hypersensitivity drug ef-
fects associated with abacavir treatment [20]. A similar test
can be performed on individuals before the prescription of
antimalarial drug for malarial treatment. *is will help to

ascertain the best antimalarial drug to administer during
malarial treatment.

Pharmacogenetic research has become very important
due to the possibility of drug-drug interaction, as several
drugs such as antiviral, antibacterial, and antimalarial drugs
are given in combination to individuals in most malaria-
endemic areas. *ese drugs are substrates, inducers, or
inhibitors of CYP enzymes and MDR1 transporters. *is
makes the chances of drug-drug and/or drug-gene inter-
actions resulting in adverse drug effects highly likely. Due to
the abovementioned reasons, there is a need to develop
comprehensive clinical data from a large number of patients
to assess antimalarial drug pharmacokinetics in relation to
dosage and clinical outcomes. *e evaluation of individual
pharmacogenetics in combination with the Plasmodium spp.
genetic factors is crucial to ascertain the mechanism of ADR
[21]. *is assertion is supported by a study conducted by
Hodoameda et al. (2020) where it was reported that
P. falciparum genetic factors rather than host factors are
likely to drive resistance to ACT in Ghana, while a study by
Kiaco et al. (2017) report that the drug transporter ABCB1
c.3435C>T SNP influences AL treatment outcome in
Angola. Results from both findings highlight the need to
factor both the parasite’s genetic and host pharmacogenetics
in the determination of malaria treatment outcomes.
Knowledge of the prevalence of the Plasmodium spp. mo-
lecular markers of resistance to a particular antimalarial
drug can inform policymakers as to which the antimalarial
drug should be introduced for use in a particular country.
*is is also true for the knowledge of the prevalence of
pharmacogenetics of individuals in a particular population,
as this can help to inform which antimalarial drug will be
metabolized effectively by individuals in a population.

12. What Is the Major Driver of Antimalarial
Drug Resistance between the Factors,
Parasite Genetic Factors and Host
Pharmacogenetics: The Authors Take

One major puzzle the scientific community wants to bring a
final closure to is to ascertain themajor driver of antimalarial
drug resistance, especially when both the parasite genetic
factors and host pharmacogenetics [21] play vital roles in
malaria treatment outcomes. Of the two factors, the parasite
genetic factor is the major contributor to antimalarial drug
resistance [3, 99]. During drug development, one major
factor that is considered is the ability of an individual to
metabolize the drug efficiently. *is ensures that only an-
timalarial drugs that can be metabolized by the majority of
individuals living in malarial endemic regions are developed
[21]. Although polymorphism may exist in the CYP genes
that can lead to the altered metabolism of a particular an-
timalarial drug, they are only present at a very low preva-
lence level in any given population [20, 21, 65]. Additionally,
the ability of two or more CYP enzymes to metabolize a
particular antimalarial drug results in most antimalarial
drugs being metabolized effectively in most individuals
[64, 73]. Also, for some antimalarial drugs, both the parent
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drug and the active metabolite are therapeutically active
against the malarial parasite. Due to this, the possibility of
the host pharmacogenetics contributing to drug resistance is
highly unlikely [3, 64, 73]. For this reason, the major factor
which contributes to antimalarial drug resistance is the
parasite genetic factor [3, 99]. Mutations in the parasite
genome that confers resistance to antimalarial drugs do
occur in nature. Although the natural proportion of such
mutants is low, they become selected under drug pressure
and subsequently become the dominant population over
time [3, 100]. Additionally, changes in the parasite genome
leading to the selection of resistant parasite strains can occur
rapidly due to long exposure to antimalarial drugs. Subse-
quent redrawer of the antimalarial drug over some time can
restore parasite susceptibility to the antimalarial drug [101].
*ese genetic changes occur in the form of point mutation(s)
or increased gene copy number in the antimalarial drug
target sites in response to antimalarial drug pressure. Ad-
ditionally, the rapid spread of resistant parasite strains from
one geographical location to the other contributes to global
antimalarial drug failure inmalaria-endemic regions [3].*e
rapid genetic changes in the parasite genome due to drug
pressure coupled with the global spread of ADR parasite
strains result in antimalarial drug failure in malaria trans-
mission regions within few decades. Hence, the parasite
should be the primary focus in our quest to fight antimalarial
drug resistance [2]. For this reason, there is the need to
constantly search for mutations in the parasite genome to
identify possible mutations in antimalarial drug target sites
and validate these mutations as molecular markers of re-
sistance or not.*is will allow the early detection of resistant
parasite strains leading to the rapid implementation of
containment strategies to avoid the global spread of resistant
parasite strains.
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