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Abstract

Introduction

In order to improve the prediction accuracy of dengue fever incidence, we constructed a pre-

diction model with interactive effects between meteorological factors, based on weekly den-

gue fever cases in Guangdong, China from 2008 to 2016.

Methods

Dengue fever data were derived from statistical data from the China National Notifiable

Infectious Disease Reporting Information System. Daily meteorological data were obtained

from the China Integrated Meteorological Information Sharing System. The minimum tem-

perature for transmission was identified using data fitting and the Ross-Macdonald model.

Correlations and interactive effects were examined using Spearman’s rank correlation and

multivariate analysis of variance. A probit regression model to describe the incidence of den-

gue fever from 2008 to 2016 and forecast the 2017 incidence was constructed, based on

key meteorological factors, interactive effects, mosquito-vector factors, and other important

factors.

Results

We found the minimum temperature suitable for dengue transmission was�18˚C, and as

97.91% of cases occurred when the minimum temperature was above 18 ˚C, the data were

used for model training and construction. Epidemics of dengue are related to mean temper-

ature, maximum/minimum and mean atmospheric pressure, and mean relative humidity.

Moreover, interactions occur between mean temperature, minimum atmospheric pressure,
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and mean relative humidity. Our weekly probit regression prediction model is 0.72. Predic-

tion of dengue cases for the first 41 weeks of 2017 exhibited goodness of fit of 0.60.

Conclusion

Our model was accurate and timely, with consideration of interactive effects between mete-

orological factors.

Introduction

Dengue fever is an acute infectious disease caused by the dengue virus and transmitted by the

Aedes mosquito. It is a serious public health issue in tropical and subtropical zones. According

to the World Health Organisation, the incidence of dengue fever has risen sharply over the

past few decades. More than 40% of the global population is at risk of dengue fever, with 50–

100 million cases of dengue infections each year[1]. Guangdong is a coastal province on the

southern tip of China, experiences frequent population movement with Southeast Asian coun-

tries, and possesses a subtropical monsoon climate. These conditions are ideal for the breeding

of the dengue vector (Aedes mosquito) and the importation of foreign dengue cases[2]. The

first reported outbreak of dengue fever in China occurred in May 1978 in Foshan, Guangdong

[3]. Since then, Guangdong has become the main dengue epidemic area in China. From 2008

to 2014, the percentage of the total dengue fever cases in China that occurred in Guangdong

increased from 34.25% to 96.12%[4]. Dengue fever is a serious threat to people’s health. There-

fore, exploring factors influencing the dengue outbreaks in Guangdong and predicting future

epidemiological trends are of great significance to the prevention and control of dengue fever.

Previous studies regarding the epidemiological patterns of dengue fever have focused on

the impact of meteorological factors, imported cases, and control measures. However, most

studies used monthly or yearly data, and did not consider the interactive effects among meteo-

rological factors, leading to unreliable or even contradictory results. Li et al analysed the epide-

miological distribution of dengue fever and the relationship with meteorological factors based

on monthly data from Guangzhou in 2007 to 2012 and reported that relative humidity was

positively correlated with dengue epidemics[5]. In contrast, when Minh et al analysed the

monthly data of dengue epidemics in Hanoi from 2002 to 2010, they found that relative

humidity was negatively correlated with dengue epidemics[6].Moreover, due to a large time

granularity, this led to a low goodness of fit. For example, the goodness of fit of the binomial

regression model by Adde et al was 0.88[7], while the SARIMA model constructed by Gharbiet

et al was 0.72[8]. These contradictory resultscan also be observed in studies from Fan et al[9],

Tang et al[10], and Xiao et al[11].

Therefore, it is especially important to perform correlation analyses between dengue fever

and meteorological factors based on a small time granularity and to clarify which meteorologi-

cal factors play a decisive role in dengue epidemics. It is also important to examine the interac-

tive effects of different meteorological factors on dengue epidemics. Based on the above

multiple variables, such as key meteorological factors, interactive meteorological factors, mos-

quito-vector factors, and importation factors, we aimed to establish an accurate prediction

model and to provide support for dengue prediction and warnings.
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Methods

Ethics statement

This experimental protocol was approved and authorised by the Academy of Military Medical

Sciences Review Board. Dengue data comes from statistical data from the China National

Notifiable Infectious Disease Reporting Information System and did not involve identifiable

data. There was no request for ethical permission, according to Chinese law. Methods were

carried out in accordance with the relevant institutional guidelines.

Source of data

Daily dengue fever cases and patient information from 2008 to 2016 in Guangdong Province

were obtained from the China National Notifiable Infectious Disease Reporting Information

System (NNDS) (http://www.chinacdc.cn/). General physicians are required to diagnose the

disease according to the National Diagnostic Criteria for Dengue Fever (WS216-2008) and

report new cases to the web-based NNDS within 24 hours. Using annual calendar weeks as the

unit, the sum of the daily cases in a week was used to determine the number of weekly cases.

Daily meteorological data were obtained from the China Integrated Meteorological Infor-

mation Sharing System (http://data.cma.cn/). Nine meteorological factors were collected,

including mean temperature, maximum temperature, minimum temperature, mean atmo-

spheric pressure, maximum atmospheric pressure, minimum atmospheric pressure, mean rel-

ative humidity, maximum wind speed, and extreme wind speed. Using annual calendar weeks

as the unit, daily meteorological data were summed, and weekly averages were calculated. Pop-

ulation data were obtained from the Statistics Bureau of Guangdong Province (http://www.

gdstats.gov.cn/).

Optimal minimum temperature selection

The minimum temperature has an important influence on the survival of mosquitoes and the

epidemic of dengue[11–13]. Therefore, using the data above minimum temperature suitable

for dengue fever reduces the data noise and improves the data quality of the model. Based on

the Ross-Macdonald[14]and Watts[15]models, we searched for the optimal minimum temper-

ature suitable for dengue transmission. In this model, infectious life Pn/(−1nP)�1day can be

used as the minimum temperature suitable for dengue transmission, where P is the daily sur-

vival probability. 1/−1nP is the expected life, and Pn is the probability of survival of infected

mosquitoes after n days; n is mainly determined by the temperature, with a relationship of

n = K/(T−C) [15], where K is the effective accumulated temperature(165.2 ˚C) needed for the

incubation of dengue virus in mosquitoes and C is the minimum temperature (11.8˚C)needed

for the incubation of dengue viruses in mosquitoes and T is the minimum temperature

required for a mosquito to survive for at least one day. Therefore, n = 165.2/(T−11.8). The

daily survival probability, such as P = 0.85[16]or 0.89[17], was obtained under laboratory con-

ditions with constant temperature, humidity, and light, whereas daily survival probability

obtained under natural environments were 0.913 in French Guiana[18] and 0.918in Macao

[19]. To calculate the minimum temperature suitable for the transmission of dengue fever, we

selected the daily survival probability for Macao of P = 0.918, as it is adjacent to Guangdong

province.

In order to explore the relationship between dengue fever and temperature, we divided the

average weekly minimum temperature into 2 ˚C intervals of 8–10 ˚C, 10–12 ˚C, 12–14 ˚C, 14–

16 ˚C, 16–18 ˚C, 18–20 ˚C, 20–22 ˚C, 22–24 ˚C, and 24–26 ˚C. The cumulative numbers of

cases corresponding to these intervals were then calculated, and the moving smooth curve was
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used to determine the optimal temperature of dengue fever epidemics. For the different tem-

perature intervals, the corresponding number of cases were 13, 54, 95, 156, 709, 955, 17,956,

17,894, and 13,298, respectively.

Correlation and interactive effects analysis of meteorological factors

Among the 282 weeks of data for 2008–2016, Spearman rank correlation was used to analyse

the correlation of the meteorological factors with dengue fever epidemics occurring above the

suitable temperature. Multivariate analysis of variance was used to determine interactive

effects among meteorological factors. Spearman rank correlation and multivariate analysis of

variance were carried out using SPSS 19.0 statistical package. P < 0.05 was considered statisti-

cally significant.

Further analysis was performed to explore if there were interactive effects among the

various meteorological factors related with dengue fever epidemics, when the minimum tem-

perature was�18˚C. Continuous meteorological factors were converted into categorical mete-

orological factors according to quartiles. Multivariate analysis of variance was performed to

comprehensively consider the differences in the number of cases under multiple meteorologi-

cal conditions.

Prediction model based on multiple factors

The inverse cumulative normal distribution model based on meteorological factors, mosquito-

vector factors, and importation factors is given as follows:

Norminv
c
N

� �
¼ b0 þ

Xnþ2

k¼1
bkxk ð1Þ

where c is the number of cases, N is the population size, n is the number of key meteorological

factors, β0 is the model construction constant, and βk and Xk are the variable and variable

coefficients.

The maximum likelihood estimation (MLE)was used for parameter estimation in the

inverse cumulative normal distribution model:

The key meteorological factors correlated to dengue epidemics and the interactive meteoro-

logical factors were labelled as x1, x2, x3, . . .. . .xn, respectively. The Breteau Index is an index

for evaluating the density of Aedes mosquitoes in a region, that is, the average number of con-

tainers for the breeding of Aedes larvae per 100 households. If the Breteau Index is below 5, it

is safe; if it is above 20, it means that once external cases are imported, an epidemic of mos-

quito-borne infectious diseases may occur in this area. Dengue epidemic risk is related to the

Breteau Index, which is closely related to meteorological factors. In this study, due to the lack

of Breteau Index, a model of mosquito vectors [20–22]was constructed based on temperature,

which waslabelled as xn+1. This assumes that there is an optimum temperature, α2, that gives

the maximum probability of vector breeding and reproduction, and hence has the maximum

density. Each time the temperature deviates from α3, the vector density is reduced by 1/α1.

Hence, for a given mean temperature, x1, the corresponding mosquito-vector factor is as fol-

lows:

xnþ1 ¼
1

a1ðjx1 � a2j=a3Þ
ð2Þ

where α1, α2, and α3 refer to the rate of vector density decay, the rational temperature value for

vector breeding, and the step size of vector density decay, respectively. However, since the

independent mosquito-vector factor, xn+1, contained three unknown parameters, the
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simulated annealing algorithm was applied to obtain the optimal estimate of the mosquito-vec-

tor parameter set (α1, α2, α3).

The observed number of new dengue fever cases per week was obsi(i = 1,2,3,. . .,N), and the

estimation obtained from the logit model was esti(i = 1,2,3,. . .,N). Hence, the objective func-

tion of MLE, loss, which is also the R2 (goodness of fit), was calculated as follows:

loss ¼ R2 ¼ 1 �

PN
i¼1
ðobsi � estiÞ

2

PN
i¼1

obsi �
PN

i¼1

obsi
N

� �2
ð3Þ

By comparing the optimal solution with the actual observation value, the loss value corre-

sponding to (α1, α2, α3) can be obtained by using formula (3). If the loss value meets the crite-

ria (this loss value is better than the previous loss value, or no better loss can be found after 300

repetitions), then this (α1, α2, α3) is the approximate optimal solution. If it does not meet the

requirements, a new (α1, α2, α3) is generated by random perturbation (α1, α2, α3). The above

process is repeated to obtain a new loss value and to check whether it meets the requirements.

The steps for estimating the model parameters βk were as follows:

Step 1: Arbitrarily specify the control parameter set P = {α1, α2, α3}, then use MLE to obtain

the optimal estimate of the logit model and generate the predicted value of new dengue

fever cases per week that corresponds to the parameter P.

Step 2: Use the formula for calculating loss above to obtain the objective function value loss in

the forecasted data and observed data of new dengue fever cases per week.

Step 3: Apply random perturbation to the control parameter set P (select 1 of the parameters

randomly and add to it a random perturbation value that follows the normal distribution,

keeping other parameter values unchanged) and obtain a new control parameter set P0. Cal-

culate the value of the objective function loss0 corresponding to P0.

Step 4: Replace P with P0 according to the Metropolis rule:

pðp! p0Þ ¼ 1 loss0 � loss

pðp! p0Þ ¼ exp loss� loss0
c

� �
loss0 > loss

(

ð4Þ

where p(P!P0) indicates the probability of P0 replacing P. The temperature parameter c is a

variable; during loop iteration, each time the probability selection of loss0>loss is performed,

c decreases by a certain proportion (i.e., c = k × c, where k is a constant temperature drop

parameter less than 1).

Step 5: When the number of invalid continuous perturbations is greater than the set threshold,

the iteration ends. The control parameter set P prior to the last invalid perturbance becomes

the estimation result for the final approximate optimal control parameter.

Due to the large number of imported cases from the Southeast Asia dengue epidemic, there

was a major dengue outbreak in Guangdong in 2014. Therefore, the importation factor was

added to the model, which was labelled as xn+2 and was a binary variable, where 2014 was

assigned a value of 1 and all other years were assigned a value of 0.

xnþ2 ¼
1 year ¼ 2014

0 otherwise

(

ð5Þ

The goodness of fit index, R2, can be used to measure the overall effect of the model’s pre-

diction. The value range is (−1, 1) and the closer the value is to 1, the better the predictive
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effect of the model, and vice versa. Goodness of fit indicates a good fit between the predicted

and actual values, whereas the correlation coefficient indicates a consistent trend between the

predicted and actual value.

Results

Optimal minimum temperature

The minimum temperature was determined when given the infectious life of infected mosqui-

toes and daily survival probability, P, of Aedes mosquitoes (Table 1). When the daily survival

probability of Aedes mosquitoes was 0.850, 0.890, 0.913, and 0.918, given that the infectious

life of infected mosquitoes was�1 day, the minimum temperatures were 27˚C, 21˚C, 19˚C,

and 18˚C, respectively. As Guangdong is geographically close to Macao, these locations share

similar meteorological factors and mosquito habits. Therefore, we selected 0.918 for the Aedes
mosquitoes in Macaoas as the daily survival probability of Guangdong. When the infectious

life of a mosquito is at least one day (i.e. 1.196), the corresponding minimum temperature is

18˚C, as shown in Table 1.

Based on the moving average equation of the minimum temperature interval and the

cumulative number of cases, there was a temperature inflection point between the minimum

temperature and number of cases at 18–20˚C (Fig 1). When the minimum temperature was

Table 1. Mean duration of the infectious period (days) at different minimum temperature and daily survival probability.

Daily survival probability Mean duration of the infectious period (days)

T (˚C): 17 18 19 20 21 22 23 24 25 26 27

0.850 0.035 0.081 0.148 0.233 0.332 0.443 0.559 0.681 0.804 0.929 1.051

0.890 0.212 0.385 0.592 0.820 1.059 1.299 1.538 1.771 1.996 2.212 2.418

0.913 0.609 0.972 1.361 1.756 2.143 2.515 2.869 3.203 3.518 3.811 4.085

0.918 0.771 1.196 1.641 2.085 2.515 2.924 3.309 3.670 4.006 4.320 4.612

https://doi.org/10.1371/journal.pone.0225811.t001

Fig 1. Minimum temperature range and cumulative number of cases. The blue solid line indicates the trends in dengue at 2˚C intervals of minimum

temperature from 8–26˚C. The dotted blue line represents the moving average curve.

https://doi.org/10.1371/journal.pone.0225811.g001
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between 8–18˚C, the number of cases only accounted for 2.01% of the total; when the mini-

mum temperature was�18˚C, the number of cases accounted for 97.97% of the total. We

selected dengue fever cases with a minimum temperature�18˚C for model construction.

Correlation and interactive effects analysis of meteorological factors

Of the 477 weeks during the period between of 2008 to 2016, 282 weeks had minimum

temperatures�18˚C, with the number of cases accounting for 97.91% of the total. Spearman

rank correlation analysis showed that meteorological factors influencing dengue fever cases in

these 282 weeks included mean temperature (r = 0.153, P = 0.010), maximum atmospheric

pressure (r = 0.127, P = 0.033), minimum atmospheric pressure (r = 0.125, P = 0.036),

mean atmospheric pressure (r = 0.124, P = 0.037), and mean relative humidity (r = −0.221,

P<0.001)(Table 2). There was no correlation between rainfall and dengue based on the data

from 2008 to 2014 in Guangdong, China. Regarding the lag between meteorological factors

and dengue fever incidence, we constructed an ARIMA model to analyse the lag, but no lag

was found (p = 0,q = 0).

The results in Table 3 indicate that there were interactive effects between mean temperature

and minimum atmospheric pressure and mean relative humidity (P = 0.05), minimum atmo-

spheric pressure, and mean temperature (P = 0.039). The influence of meteorological factors

on dengue fever is not a simple linear model. Taking temperature as an example, temperature

will affect every stage of dengue transmission. Raising temperature at suitable temperature is

beneficial to increase mosquito infection rate, transmission rate, and bite rate. But when the

temperature is too high or too low, the infection rate, transmission rate and bite rate will

decrease. This is because temperature, humidity, air pressure, rainfall, and other meteorologi-

cal factors are interdependent and closely related, that is, there is an interaction between mete-

orological factors. The meteorological factors with interactive effects were further combined at

different levels, and the analysis showed that when mean temperature was in the 25–28˚C

interval, minimum atmospheric pressure wasin the 997–1002 hPa interval, and mean relative

humidity wasin the 73–81% interval, the intensity of the dengue epidemic was the greatest and

had the highest number of cases (17,571 cases).

Table 2. Spearman correlation coefficients between the number of dengue fever cases and meteorological factors, and among the meteorological factors when the

minimum temperature was�18˚C.

Variable Weekly mean

temperature

Weekly maximum

atmospheric pressure

Weekly minimum

atmospheric pressure

Weekly mean

atmospheric pressure

Weekly mean

relative humidity

Weekly

number of

cases

Weekly mean

temperature

1.000

Weekly maximum

atmospheric pressure

−0.663�� 1.000

Weekly minimum

atmospheric pressure

−0.640�� 0.987�� 1.000

Weekly mean

atmospheric pressure

−0.657�� 0.995�� 0.993�� 1.000

Weekly mean relative

humidity

−0.115 −0.256�� −0.246�� −0.251�� 1.000

Weekly number of cases 0.153� 0.127� 0.125� 0.124� −0.221�� 1.000

�Correlation was significant when significance level (two-tailed) was 0.05.

��Correlation was significant when significance level (two-tailed) was 0.01.

https://doi.org/10.1371/journal.pone.0225811.t002
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Prediction model of dengue

Based on the above analysis, the key meteorological factors (mean temperature, mean relative

humidity, mean atmospheric pressure, maximum atmospheric pressure, and minimum atmo-

spheric pressure), interactive effect factors (mean temperature × minimum atmospheric pres-

sure, mean temperature × minimum atmospheric pressure × mean relative humidity),

mosquito-vector factor, and importation factor were used to constructan inverse cumulative

normal distribution model, which was fitted to the number of cases in 2008–2016. The MLE

was used to obtain the optimal parameter estimations: β0−β9 were 109.2567, 1.7889, −0.0588,

−0.0369, 0.2211, −0.0778, −0.0018, 0.0000, 1.6671, and 0.8962, respectively. Moreover, α1, α2,

and α3 were the model construction constants for the mosquito-vector factor, which were

1.6624, 27.2765, and 2.0651, respectively. β0 was the model construction constant, β1−β9 were

the coefficients for the key meteorological factors, interactive effect factors, mosquito-vector

factor, and importation factor. The simulation results showed good fit with the actual number

of cases and a goodness of fit R2 = 0.72 excluding the year 2014 year (including 2014, R2 =

0.9248). Using this model, we predicted the number of dengue fever cases for the first 41weeks

of 2017. The predicted values showed good fit with the observed values (goodness of fit R2 =

0.60, correlation coefficient = 0.8104)(Fig 2b). The onset of dengue fever is concentrated in the

38th to 42nd weeks of each year and is sporadic at other times, so the actual onset of dengue

Table 3. Main effects and interactive effects of meteorological factors on dengue fever from the MANOVA.

Source Type III sum of squares Degrees of freedom Mean square F P

Model 2640140798.805a 129 20466207.74 22.16 0

Maximum atmospheric pressure 1421935.067 4 355483.767 0.385 0.819

Minimum atmospheric pressure 2827359.382 4 706839.846 0.765 0.55

Mean atmospheric pressure 525878.693 4 131469.673 0.142 0.966

Mean temperature 399269.427 4 99817.357 0.108 0.98

Mean relative humidity 11322675.54 4 2830668.885 3.065 0.019

Maximum atmospheric pressure × Mean atmospheric pressure 2924365.503 8 365545.688 0.396 0.921

Maximum atmospheric pressure × Mean temperature 4997703.443 3 1665901.148 1.804 0.15

Maximum atmospheric pressure × Mean relative humidity 1345421.504 7 192203.072 0.208 0.983

Minimum atmospheric pressure × mean atmospheric pressure 763548.814 6 127258.136 0.138 0.991

Minimum atmospheric pressure × Mean temperature� 6132782.386 2 3066391.193 3.32 0.039

Minimum atmospheric pressure × Mean relative humidity 4608461.451 7 658351.636 0.713 0.661

Mean atmospheric pressure × Mean temperature 2276019.955 6 379336.659 0.411 0.871

Mean atmospheric pressure × Mean relative humidity 4936410.786 8 617051.348 0.668 0.719

Mean temperature × Mean relative humidity 714971.973 7 102138.853 0.111 0.998

Maximum atmospheric pressure × Mean atmospheric pressure × Mean temperature 93237.213 2 46618.606 0.05 0.951

Maximum atmospheric pressure × Mean atmospheric pressure × Mean relative

humidity

5284841.301 8 660605.163 0.715 0.678

Maximum atmospheric pressure × Mean temperature × Mean relative humidity 4431357.149 2 2215678.575 2.399 0.095

Minimum atmospheric pressure × Mean atmospheric pressure × Mean temperature 1854.171 1 1854.171 0.002 0.964

Minimum atmospheric pressure × Mean atmospheric pressure × Mean relative

humidity

509857.331 3 169952.444 0.184 0.907

Minimum atmospheric pressure × Mean temperature × Mean relative humidity� 3619832.058 1 3619832.058 3.919 0.05

Error 120062099.2 130 923554.609

Total 2760202898 259

a(R2 = 0.957 [adjusted R2 = 0.913]).

� Interactive effects were significant when significance level was�0.05

https://doi.org/10.1371/journal.pone.0225811.t003
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fever shows periodic outbreaks. Prediction models based on the onset of dengue fever also

show intermittent outbreaks.

Discussion

This study examined the relationship between dengue fever epidemics and meteorological fac-

tors based on weekly data from the past 9 years in Guangdong province. Our findings showed

that an optimal minimum temperature was observed for dengue fever epidemics in Guang-

dong province. Analysis of data from 2008 to 2016 showed that the majority of dengue cases

occurred when the minimum temperature was above 18˚C. Studies have reported that when

the minimum temperature is <18˚C, virus propagation in the vector will be blocked; at

<17˚C, the mosquitoes will stop ingesting food; and at<16˚C, there will be a prolonged mos-

quito larval stage[8,23–25]. Above the optimal minimum temperature, dengue fever cases

accounted for nearly 98% of the total number of cases. Therefore, we constructed a prediction

model for dengue fever that removed values below the optimal temperature to improve the

accuracy and timeliness of dengue fever predictions.

In our study, the correlation coefficient between a single meteorological factor and the inci-

dence of dengue fever is low, but when considering the interaction between meteorological

factors, the correlation coefficient is high. It also shows that there is a real interaction between

meteorological factors. Compared to single average temperature-related factors, the interactive

effects led to slower growth in dengue epidemics, instead of sharp exponential growth when

considering minimum air pressureandaverage relative humidity. This indicates that when

studying the correlation between diseases and meteorological factors, using a single meteoro-

logical indicator will lead to poor accuracy. The interactive effects of different meteorological

factors should be considered, which will provide a more valuable parameter of dengue fever

model.

Chowellet et al[26]and Bambricket et al[27]used annual data to analyse factors influencing

dengue epidemics in Peru and Australia, respectively. These studies found that the timing of

dengue epidemics was closely correlated with seasonal temperature changes. In addition,

Colon-Gonzalez et al[23]used monthly data to analyse the reasons for dengue outbreaks in

Mexico and found that dengue epidemics were correlated with El Nino strength and minimum

temperatures of the cool and dry seasons; no interactive effects were considered between

Fig 2. Model construction for dengue fever cases and meteorological factors. (a) Results of model fitting for a total of 477 weeks from 2008 to 2016.

The green curve indicates logit fitting. (b) Results of model prediction for the first 41 weeks of 2017. The green curve indicates the predicted dengue

cases.

https://doi.org/10.1371/journal.pone.0225811.g002
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different factors. However, using weekly data, we found that temperature, atmospheric pres-

sure, and relative humidity had interactive effects on dengue epidemics. There are many fac-

tors that affect the incidence of dengue fever, including but not limited to mosquito factors,

meteorological factors, and population mobility and so on. At a coarser scale (years), the over-

all change range of meteorological in same area is not obvious, so it is difficult to determine

the relationship between the incidence and meteorological factors. The present results demon-

strate that analysis based on weekly data can more precisely reveal the relationship between

meteorological factors and dengue epidemics compared to that of monthly or yearly data. This

implies that the scale of data analysis played a substantial role in these findings. Therefore,

smaller scale data should be selected when analysing the patterns of dengue epidemics.

The majority of models for dengue epidemics using meteorological factors, mosquito-vec-

tor factor, preventive and control measures, and socioeconomic factors, such as seasonal time

series models, regression analyses, and generalised additive models, are based on statistical

models in quantitative research[7,9,28]. However, these do not consider the interactive effects

among different factors or the occurrence of special events (e.g. imported cases, extreme cli-

mate). Furthermore, most studies cover a narrow range of time, a small number of cases, and

fewer meteorological factors[8], leading to a poorer fit of the model. For example, the fitness of

the SARIMA model constructed by Gharbietal. was 0.72[8], and that of the binomial regres-

sion model constructed by Adde et al. was 0.88[7]. Our study constructed a probitregression

model, which incorporated interactive meteorological factors, the mosquito-vector factor, and

the importation factor, based on dengue epidemic data from the last 9 years in Guangdong

province. The model showed goodness of fit, at R2 = 0.72, indicating that the model calibration

value fits the observed value effectively. Additionally, prediction of the actual number of cases

for the first 41weeks of 2017 demonstrated that our constructed model has high reliability.

Moreover, our model can predict the scale of dengue cases for the following week; hence its

timeliness is higher than models constructed using months as the basic unit. Based on the

above results, we can use meteorological forecasts to predict future dengue fever cases. Hence,

our model can serve as a good theoretical basis for the prevention and control of dengue fever.

A limitation of this study is that direct data on mosquito density were not obtained; instead,

calculations were based on mean temperature. Moreover, this study was based on ecological

data, thus factors besides meteorological factors, such as population growth and unreasonable

waste disposal methods, should also be considered in future studies.
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