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Abstract: Exposure to radiation has been associated with increased risk of delivering small-for-
gestational-age (SGA) newborns. There are no tools to predict SGA newborns in pregnant women
exposed to radiation before pregnancy. Here, we aimed to develop an array of machine learning (ML)
models to predict SGA newborns in women exposed to radiation before pregnancy. Patients’ data
was obtained from the National Free Preconception Health Examination Project from 2010 to 2012.
The data were randomly divided into a training dataset (n = 364) and a testing dataset (n = 91). Eight
various ML models were compared for solving the binary classification of SGA prediction, followed
by a post hoc explainability based on the SHAP model to identify and interpret the most important
features that contribute to the prediction outcome. A total of 455 newborns were included, with
the occurrence of 60 SGA births (13.2%). Overall, the model obtained by extreme gradient boosting
(XGBoost) achieved the highest area under the receiver-operating-characteristic curve (AUC) in the
testing set (0.844, 95% confidence interval (CI): 0.713–0.974). All models showed satisfied AUCs,
except for the logistic regression model (AUC: 0.561, 95% CI: 0.355–0.768). After feature selection by
recursive feature elimination (RFE), 15 features were included in the final prediction model using the
XGBoost algorithm, with an AUC of 0.821 (95% CI: 0.650–0.993). ML algorithms can generate robust
models to predict SGA newborns in pregnant women exposed to radiation before pregnancy, which
may thus be used as a prediction tool for SGA newborns in high-risk pregnant women.

Keywords: small for gestational age; exposure to radiation; machine learning; prediction

1. Introduction

Small-for-gestational-age (SGA) neonate is defined as a birth weight below a distribution-
based gestational age threshold, usually the 10th percentile [1]. SGA newborns are at
increased risk of perinatal morbidity and mortality [2,3]. The main risk factor related to
stillbirth is unrecognized SGA before birth [4]. However, if the condition is identified
before delivery, the risk can be substantially reduced, even a four-fold reduction, because
antenatal prediction of SGA allows for closer monitoring and timely delivery to reduce
adverse fetal outcomes [2].

Environmental pollutants have been associated with adverse pregnancy outcomes
and a reduction in birth weight [5–7]. Human and animal studies have shown that the
proportion of SGA increases with exposure to radiation [8,9]. High-level radiation exposure
produced SGA neonates in the offspring of pregnant atomic bomb survivors [10]. Addition-
ally, it has been reported that the radiation exposure rate in mothers with low-birth-weight
newborns was higher than those with normal weight newborns [11]. Even data from
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studies has demonstrated that each cGy radiation reduced the birth weight of newborns
by 37.6 g [12]. The causes have been reported to be the effects of radiation on the func-
tion of the ovary and uterus, as well as the effect on the hypothalamus–pituitary–thyroid
axis [13,14]. However, no study has established a predictive model for SGA newborns in
women exposed to radiation before pregnancy.

Risk predictive models relying on conventional statistical methods affect their ap-
plication and performance in large datasets with multiple variables due to the inherent
limitations of not considering the potential interactions between risk factors [15,16]. How-
ever, these limitations can be solved by machine learning (ML) approaches which can
model complex interactions and maximize prediction accuracy from complex data [17].
In terms of SGA risk prediction, ML algorithms have been introduced into a few studies
to obtain predictive models for SGA in the general population [18–20]. Unfortunately,
these models performed poorly, with the maximum area under the receiver operating
characteristic (ROC) curve (AUC) value as high as only 0.7+. In addition, paternal risk
factors and maternal PM2.5 exposure during pregnancy have been confirmed as risk factors
for SGA newborns [21–23]. Although these independent risk factors are identified, they
have not been included in previous predictive models.

In this report, we aimed to develop and validate models using different ML algorithms
to predict SGA newborns in pregnant women exposed to radiation in a living or working
environment before pregnancy, based on data from a nationwide, prospective cohort
study in China. In addition, paternal risk factors and pregnancy PM2.5 exposure were
innovatively included in the models as predictive features.

2. Materials and Methods
2.1. Data Source

Data were obtained from the National Free Preconception Health Examination Project
(NFPHEP), a 3-year project from 1 January 2010 to 31 December 2012, which was carried
out in 220 counties from 31 provinces or municipalities and initiated by the National Health
Commission of the People’s Republic of China [24–26]. In short, the NFPHEP aimed to
investigate risk factors for adverse pregnancy outcomes and improve the health of pregnant
women and newborns. All data were uploaded to the nationwide electronic data acquisition
system, and quality control was carried out by the National Quality Inspection Center
for Family Planning Techniques. This study was approved by the Institutional Review
Committee of the National Research Institute for Family Planning in Beijing, China, and
informed consent was obtained from all participants.

2.2. Study Participants and Features

All singleton live newborns with complete birth records and gestational age of more
than 24 weeks were included in the study, and then we selected newborns whose moth-
ers were exposed to radiation in their living or working environment before pregnancy,
involving 985 cases. After removing records with missing and extreme data of baseline
characteristics, 455 births were included in the final analysis.

A pre-pregnancy examination was conducted, and follow-up was performed during
pregnancy and postpartum. Information of 153 features regarding parents’ social demo-
graphic characteristics, lifestyle, family history, pre-existing medical conditions, laboratory
examinations and neonatal birth information were collected through face-to-face investi-
gation and examination performed by trained and qualified staff. PM2.5 concentrations
for all included counties were provided by the Chinese Center for Disease Control and
Prevention, using a hindcast model specific to historical PM2.5 estimation provided by
satellite-retrieved aerosol optical depth [27]. The definition of SGA was newborns with
a birth weight below the 10th percentile for the gestational age and sex according to the
Chinese Neonatal Network [28].
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2.3. Study Design

The data processing flow is shown in Figure 1. All analyses were developed in Python
(version 3.8.5). The dataset was divided randomly into the training set (80%, n = 364) and
the testing sets (20%, n = 91) for the development and validation of the ML algorithms,
respectively. Initially, 153 related features (Table S1) were included in ML as candidate
variables for predictors. In the current study, eight ML algorithms were applied to develop
the predictive models. The performances of the eight ML algorithms were evaluated by
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV)
and AUC. Another measure of the quality of binary classification, Matthew’s correlation
coefficient (MCC), was also evaluated, which is not affected by heavily imbalanced classes.
Its value ranges from −1 to 1, where the random classification has a value of 0, the perfect
classification has a value of 1, and the “completely wrong” classification has a value of −1.
Furthermore, Cohen’s kappa was evaluated, which is another metric estimating the overall
model performance. The AUC metric results were taken as the main index to measure the
performances of the ML algorithms.
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Figure 1. A flow chart of the methods used for data extraction, training, and testing.
NFPHEP = National Free Preconception Health Examination Project, LR = logistic regression,
RF = random forest, GBDT = gradient boosting decision tree, LGBM = light gradient boosting ma-
chine, XGBoost = extreme gradient boosting, CatBoost = category boosting, SVM = support vector
machine, MLP = multi-layer perceptron, RFE = recursive feature elimination, SHAP = Shapley
Additive Explanation.

Being the best performing model, the extreme gradient boosting (XGBoost) algorithm
was chosen for the final prediction model. In order to reduce the computational cost
of modeling, 15 features which contributed greatly to the prediction were selected from
153 features by recursive feature elimination (RFE) to reduce the number of variables in the
prediction model, incorporating a XGBoost classifier as the estimator. The effectiveness of
RFE approach has been proven in various medical data [29–31]. A 5-fold cross-validation
was performed to select the 15 most important features. These 15 features were included
in the final prediction model using the ML algorithm which performed best among the
eight algorithms. Grid search was employed for the hyperparameter tunning, and the
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employed hyperparameters of the best performed ML algorithm (XGBoost) were max
depth = [(2, 3, 4, 5, 6, 7, 8), min child weight = (1, 2, 3, 4, 5, 6) and gamma = (0.5, 1, 1.5,
2, 5). The characteristics of the final model used in the hyperparameter tunning were
booster = gbtree, gamma = 1, importance type = gain, learning rate = 0.01, max depth = 6,
min child weight = 1, random state = 0, reg alpha = 0, reg lambda = 1.

Furthermore, in order to correctly interpret the ML prediction model, we applied post
hoc explainability on the final model using the XGBoost algorithm, based on the Shapley
Additive Explanation (SHAP) model, to explain the influence of all features included for
model prediction. SHAP is a game theory approach which can evaluate the importance of
individual input features to the prediction of a given model [32].

2.4. ML Algorithms

A conventional logistic regression (LR) method and seven popular ML classification
algorithms, including random forest (RF), gradient boosting decision tree (GBDT), XGBoost,
light gradient boosting machine (LGBM), category boosting (CatBoost), support vector
machine (SVM) and multi-layer perceptron (MLP), were applied in the current study to
model the data. All these algorithms are the most popular and up-to-date supervised ML
methods for the problem of classification. The LR model is used to predict the probability
of the binary dependent variable using a sigmoid function to determine the logistic trans-
formation of the probability [33]. RF is an ensemble classification algorithm that combines
multiple decision trees by majority voting [34,35]. GBDT is based on the ensembles of
decision trees, which is popular for its accuracy, efficiency and interpretability. A new
decision tree is trained at each step to fit the residual between ground truth and current
prediction [36]. Many improvements have been made on the basis of GBDT. LGBM aggre-
gates gradient information in the form of a histogram, which significantly improves the
training efficiency [37]. CatBoost proposes a new strategy to deal with categorical features,
which can solve the problems of gradient bias and prediction shift [38]. XGBoost is an
optimized distributed gradient boosting library designed for speed and performance. It
uses the second-order gradient, which is improved in the aspects of the approximate greedy
search, parallel learning and hyperparameters [39]. SVM is a supervised learning model
which targets to create a hyperplane. The hyperplane is a decision boundary between
two classes, enabling the prediction of labels from one or more feature vectors. The main
goal of SVM is to maximize the distance between the closest points of each class, called sup-
port vectors [40,41]. MLP is based on a supervised training process to generate a nonlinear
predictive model, which belongs to the category of artificial neural network (ANN) and is
the most common neural network. It consists of multiple layers such as input layer, output
layer and hidden layer. Therefore, MLP is a hierarchical feed-forward neural network,
where the information is unidirectionally passed from the input layer to the output layer
through the hidden layer [42].

2.5. Statistical Analyses

Categorical variables were described as number (%) and compared by Chi-square or
Fisher’s exact test where appropriate. Continuous variables that satisfy normal distribution
were described as mean (standard deviation [SD]) and compared by the 2-tailed Student’s
t-test; otherwise, median (interquartile range [IQR]) and Wilcoxon Mann–Whitney U test
were used. The sensitivity, specificity, PPV, NPV, MCC and kappa of the models were
calculated. The predictive power of the ML models was measured by AUC in the training
and testing datasets. A two-sided p value < 0.05 was considered statistically significant. All
statistical analyses were performed with Python (version 3.8.5).

3. Results
3.1. Baseline Characteristics

Of the 455 newborns whose mothers had been exposed to radiation in their living or
working environment before pregnancy from 1 January 2010 to 31 December 2012 in the
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NFPHEP database, a total of 60 SGA births occurred (13.2%). Demographic characteristics
of the study population are shown in Table 1. Supplementary Table S1 lists the results
comparing the 153 candidate variables for predictors in the study cohort. Overall, the
median gestational age of the newborns in the cohort was 40.0 weeks (IQR, 39.0–40.0).
The birth weight of SGA newborns (2.6 kg [2.2–2.8]) was significantly lower than that of
non-SGA newborns (3.4 kg [3.1–3.6]). Maternal height was significantly lower in the SGA
newborns compared to the non-SGA newborns (158.0 cm [155.0–160.0] versus 160.0 cm
[157.0–163.0]). The mothers of SGA newborns had a significantly higher incidence of ad-
nexitis before pregnancy (15.0% vs. 3.5%) compared to the mothers of non-SGA newborns.
In addition, the number of previous pregnancies in the mothers of SGA newborns was
significantly higher than those of non-SGA newborns. Furthermore, the fathers of SGA
newborns had a significantly higher incidence of anemia (8.3% vs. 1.3%) compared with
those of non-SGA newborns.

Table 1. Demographic characteristics of the subjects included in analysis.

Parameters Overall
(n = 455)

Not SGA
(n = 395)

SGA
(n = 60) p Value

Gestational at birth, week 40.0 (39.0–40.0) 40.0 (39.0–40.0) 40.0 (39.0–40.0) 0.013
Birth weight, kg 3.3 (3.0–3.6) 3.4 (3.1–3.6) 2.6 (2.2–2.8) <0.001

Maternal age, year 24.0 (23.0–27.0) 24.0 (23.0–27.0) 24.5 (22.0–26.0) 0.184
Maternal height, cm 160.0 (156.0–163.0) 160.0 (157.0–163.0) 158.0 (155.0–160.0) 0.014

Maternal BMI, kg/m2 20.2 (18.8–22.0) 20.2 (18.8–22.0) 20.0 (18.6–22.2) 0.332
Maternal education level
Below junior high school 168 (36.9%) 149 (37.7%) 19 (31.7%) 0.635

Senior high school 146 (32.1%) 126 (31.9%) 20 (33.3%)
Bachelor’s degrees and above 141 (31.0%) 120 (30.4%) 21 (35.0%)

Mother adnexitis before pregnancy 23 (5.1%) 14 (3.5%) 9 (15.0%) 0.001
Number of previous pregnancies 0.0 (0.0–1.0) 0.0 (0.0–1.0) 1.0 (0.0–1.0) 0.003

Paternal age, year 26.0 (24.0–29.0) 26.0 (24.0–28.0) 26.0 (24.0–29.0) 0.328
Paternal height, cm 171.4 ± 5.3 171.6 ± 5.2 170.2 ± 5.6 0.055

Paternal education level
Below junior high school 174 (38.2%) 153 (38.7%) 21 (35.0%) 0.810

Senior high school 151 (33.2%) 131 (33.2%) 20 (33.3%)
Bachelor’s degrees and above 130 (28.6%) 111 (28.1%) 19 (31.7%)

Father anemia before pregnancy 10 (2.2%) 5 (1.3%) 5 (8.3%) 0.003

SGA = small for gestational age, BMI = body mass index. Data are presented as median (interquartile range),
mean (standard deviation) or number (%). Categorical variables are compared by Chi-square or Fisher’s exact test
where appropriate. Continuous variables that satisfy normal distribution are compared by the 2-tailed Student’s
t-test; otherwise, Wilcoxon Mann–Whitney U test are used.

3.2. ML Algorithms’ Performance Comparison

LR, RF, GBDT, XGBoost, LGBM, CatBoost, SVM and MLP were developed in the
training dataset (n = 364), and their SGA prediction performance was compared in the
testing dataset (n = 91). Figure 2 shows the ROC curve comparison of the developed
models in the testing dataset for SGA prediction. Overall, the model obtained by XG-
Boost achieved the highest AUC value in the testing set, 0.844 [95% confidence interval
(CI): 0.713–0.974]. All models showed a good AUC for predicting SGA: XGBoost (AUC:
0.844, 95% CI: 0.713–0.974), RF (AUC: 0.835, 95% CI: 0.682–0.988), GBDT (AUC: 0.821, 95%
CI: 0.699–0.944), CatBoost (AUC: 0.801, 95% CI: 0.698–0.904), LGBM (AUC: 0.768, 95%
CI: 0.566–0.970), MLP (AUC: 0.723, 95% CI: 0.492–0.953) and SVM (AUC: 0.673, 95% CI:
0.474–0.873), except for LR (AUC: 0.561, 95% CI: 0.355–0.768). In addition, the AUC values
in the training set and testing set, sensitivity, specificity, PPV, NPV, MCC and kappa values
of each model are listed in Table 2. Model sensitivity, specificity, PPV, NPV, MCC and kappa
ranged from 0.714 to 1.000, 0.333 to 0.869, 0.111 to 0.312, 0.970 to 1.000, 0.161 to 0.408 and
0.071 to 0.367, respectively.
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Figure 2. Receiver operating characteristic (ROC) curves of the eight machine learning (ML) mod-
els in predicting small for gestational age (SGA) in the testing dataset. LR = logistic regression,
RF = random forest, GBDT = gradient boosting decision tree, LGBM = light gradient boosting ma-
chine, XGB = extreme gradient boosting, CB = category boosting, MLP = multi-layer perceptron,
SVM = support vector machine.

Table 2. Performance of models by different algorithms in predicting small for gestational age
(SGA) neonates.

Model AUC
Training

AUC
Testing Sensitivity Specificity PPV NPV MCC Kappa

LR 0.620 0.561 0.857 0.440 0.113 0.974 0.161 0.074
RF 0.897 0.835 0.714 0.845 0.278 0.973 0.374 0.325

GBDT 0.850 0.821 0.714 0.845 0.278 0.973 0.374 0.325
XGBoost 0.958 0.844 0.857 0.774 0.240 0.985 0.377 0.290
LGBM 0.844 0.768 0.714 0.869 0.312 0.973 0.408 0.367

CatBoost 0.853 0.801 0.857 0.774 0.240 0.985 0.377 0.290
SVM 0.836 0.673 1.000 0.333 0.111 1.000 0.192 0.071
MLP 0.902 0.723 0.714 0.774 0.208 0.970 0.295 0.231

AUC = area under the receiver-operating-characteristic curve, PPV = positive predictive value, NPV = nega-
tive predictive value, MCC = Matthews correlation coefficient, LR = logistic regression, RF = random forest,
GBDT = gradient boosting decision tree, XGBoost = extreme gradient boosting, LGBM = light gradient boosting
machine, CatBoost = category boosting, SVM = support vector machine, MLP = multi-layer perceptron.

3.3. Feature Selection and Final Prediction Model

In order to reduce the computational cost of modeling, 15 features which contributed
greatly to the prediction were selected from 153 features by the RFE method. These fea-
tures were maternal adnexitis before pregnancy, maternal body mass index (BMI) before
pregnancy, maternal systolic blood pressure before pregnancy, maternal education level,
maternal platelet count (PLT) before pregnancy, maternal blood glucose before pregnancy,
maternal alanine aminotransferase (ALT) before pregnancy, maternal creatinine before preg-
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nancy, paternal drinking before pregnancy, paternal economic pressure before pregnancy,
paternal systolic blood pressure before pregnancy, paternal diastolic blood pressure before
pregnancy, paternal ALT before pregnancy, maternal PM2.5 exposure in the first trimester
and maternal PM2.5 exposure in the last trimester. These 15 features were included in the
final prediction model using the XGBoost algorithm which exhibited the highest AUC value
in the previous model comparison. Figure 3 shows the ROC curve of the final prediction
model in the training and testing dataset for SGA prediction. The AUC values in the
training set and testing set, sensitivity, specificity, PPV, NPV, MCC and kappa values of
the final model were 0.953 (95% CI: 0.918–0.988), 0.821 (95% CI: 0.650–0.993), 0.714, 0.881,
0.333, 0.974, 0.427 and 0.391, respectively, proving the superiority of the feature selection
approach and the employed ML algorithm.
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generated after recursive feature elimination (RFE) in predicting small for gestational age (SGA).

3.4. Assessment of Variable Importance

In order to identify the features that had the greatest impact on the final prediction
model (XGBoost), we drew the SHAP summary diagram of the final prediction model
(Figure 4). The feature names were plotted on the y-axis from top to bottom according to
their importance, while the x-axis represented the mean SHAP values. Each dot represented
a sample. Plot was colored red (blue) if the value of the feature was high (low). The
6 most important features for the SGA prediction were maternal ALT before pregnancy,
maternal PLT before pregnancy, maternal adnexitis before pregnancy, maternal blood
glucose before pregnancy, maternal PM2.5 exposure in the last trimester and maternal
BMI before pregnancy. In addition, Figure 5 shows two examples for newborns that were
classified correctly as non-SGA and SGA, respectively.
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age (B).

4. Discussion

This study represents the first report using ML algorithms in the development and
validation of a risk prediction model for SGA newborns in pregnant women exposed
to radiation before pregnancy. Additionally, paternal risk factors and maternal PM2.5
exposure during pregnancy were innovatively included in our ML models as predictive
features. Our study demonstrates that ML algorithms can yield more effective prediction
models than the conventional logistic regression, and the XGBoost model exhibited the best
performance for SGA prediction (AUC: 0.844), suggesting that ML is a promising approach
in predicting SGA newborns. With our models, the antenatal prediction of SGA could be
made to monitor at-risk fetuses more closely and improve perinatal outcomes.
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Evidence indicated that the SGA proportions increased with the radiation exposure [8,9].
Females who have received abdominal or pelvic radiation, radiation for their childhood
cancer and diagnostic radiography for idiopathic scoliosis experienced an increased risk of
low birth weight among their offspring [12,43–45]. Low birth weight has been considered to
be an indicator of genetic damage caused by mutations in humans exposed to radiation [46].
However, to our knowledge, no study has established a prediction model for SGA newborns
in women exposed to radiation before pregnancy. In our study, eight ML models were
used for a comparative evaluation (Table 2). Among these models, XGBoost, RF, GBDT and
CatBoost showed similar performance based on the AUC value, with XGBoost having the
highest AUC value (0.844). However, the LR model had the lowest AUC value of 0.561.
This might be due to the fact that the LR algorithm is sensitive to outliers and requires a
large dataset to work well. Additionally, the imbalanced dataset may affect the performance
of the LR model. The results of our study indicated that the ML algorithm was a promising
approach to predict SGA newborns in women exposed to radiation before pregnancy, with
superior discrimination than the conventional LR (AUC: 0.844 versus 0.561).

Only based on 15 features including the demographic characteristics of parents, simple
and feasible clinical test indexes and regional PM2.5 exposure, an effective SGA prediction
model could be established (AUC: 0.821, Figure 3), indicating that the appropriate features
were selected from 153 features by RFE approach. The RFE algorithm is a wrapper-based
backward elimination process by recursively computing the learning function, perform-
ing a recursive ranking of a given feature set [47]. Its effectiveness has been extensively
proven in various medical data [29–31,48]. Recently, a new ensemble feature selection
methodology has been proposed, which aggregates the outcomes of several feature se-
lection algorithms (filter, wrapper and embedded ones) to avoid bias [49,50]. The robust
feature selection methodology can be applied in future work. Additionally, advanced ML
algorithms provided great potential for improving SGA prediction. The reason was that
the interactions between predictors might exist but were not detected by conventional
modeling methods. Such weakness could be remedied with the advanced ML algorithms
explored in our current study. The ability of ML algorithms to automatically process mul-
tidimensional and multivariate data could eventually reveal novel associations between
specific features and the SGA outcome and identify trends that would be unobvious to
researchers otherwise [51].

Paternal risk factors and maternal PM2.5 exposure during pregnancy were included in
the ML prediction models for SGA newborns for the first time. Mounting studies have been
devoted to identifying maternal risk factors for the adverse birth outcomes. Little attention
has been paid to the fact that paternal factors could also predict adverse birth outcomes.
Several paternal factors have been confirmed as risk factors for SGA newborns, such as
paternal age, height, ethnicity, education level and smoking during pregnancy [21,22,52–54].
Moreover, women exposed to excessive PM2.5 during pregnancy also had an increased
risk of delivering SGA offspring [23]. However, these factors have not been considered in
the previous SGA prediction models established in the general population. The results of
our study demonstrated that paternal drinking, economic pressure, blood pressure and
ALT, maternal PM2.5 exposure in the first trimester and last trimester were all included
in the top 15 most contributing features, suggesting that the paternal factor and maternal
PM2.5 exposure during pregnancy were involved in the risk prediction for SGA in the
study population.

Figure 4 showed the features’ impact on the output of the final model (XGBoost). The
SHAP values were used to represent the impact distribution of each feature on the model
output. For instance, a low maternal PLT level increased the predicted status of the subjects.
The features maternal blood glucose, creatinine and systolic blood pressure presented a
similar behavior. In contrast to that, maternal adnexitis, high education level and high
paternal blood pressure had a positive effect on the prediction outcome. The top 6 most
influential features in the SHAP summary plot of the final prediction model were maternal
ALT, PLT, adnexitis, blood glucose, PM2.5 exposure in the last trimester and BMI before
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pregnancy. In addition to the known risk factor maternal PM2.5 exposure, recent studies
showed that reduced fetal growth was associated with increased maternal ALT [55]. The
significant association between maternal PLT and adverse perinatal outcome has been
reported [56]. Additionally, pelvic inflammatory diseases have been linked to adverse
perinatal outcomes including SGA [57,58]. In addition, maternal blood glucose and pre-
pregnancy BMI have been reported to be associated with increased risk of delivering SGA
infants [59–61], which is consistent with our findings. Changes in these features caused by
radiation exposure also have been reported in previous studies [62–65]. In addition, using
SHAP force plots, two examples that were classified correctly as non-SGA and SGA were
selected to explain the effects of the features on the prediction outcome (Figure 5). The
contribution of each feature to the output result was represented by an arrow, the force of
which was related to the Shapley value. They showed how each feature contributed to push
the model output from the baseline prediction to the corresponding model output. The red
arrows represented features increasing the predicted results. The blue arrows represented
features decreasing the predicted results. It was observed that lower values of maternal
BMI, blood glucose, systolic blood pressure and higher values of maternal ALT pushed the
output prediction to the SGA class.

This study has several limitations. Firstly, although the data were collected nationally,
the sample size was small which may indicate bias. With a larger sample size in the
future work, a stratified k-fold cross validation can be used to improve the accuracy of the
results. Secondly, there was a lack of the type and average daily exposure of the radiation
in mothers’ living or working environment before pregnancy in the dataset. Moreover,
ultrasound biometrics measurements were lacking in the dataset, and their inclusion in the
prediction model may further improve the accuracy and applicability of the model. Further
validation and application of ML into the daily clinical practice is still necessary to better
understand its real value in predicting SGA newborns.

5. Conclusions

In this work, a comprehensive analysis of SGA newborns prediction in pregnant
women exposed to radiation in their living or working environment before pregnancy was
carried out, with the help of feature selection and optimization techniques. It is concluded
that ML algorithms show good performances on the classification of SGA newborns. The
final model using the XGBoost algorithm achieves effective SGA prediction (AUC: 0.821)
only based on 15 features, including the demographic characteristics of parents, simple
and feasible clinical test indexes and regional PM2.5 exposure. Furthermore, the post
hoc analysis complemented the prediction results by enhancing the understanding of the
contribution of the selected features to the classification of SGA newborns. ML models may
be a potential assistant approach for the early prediction of delivering SGA newborns in
high-risk populations. Future work aims to work with other ensemble feature selection
methodologies and apply the proposed methodology to other high-risk populations for
delivering SGA newborns.
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