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Abstract: Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the leading
causes of human deaths globally according to the WHO TB 2019 report. The continuous rise in
multi- and extensive-drug resistance in M. tuberculosis broadens the challenges to control tuberculosis.
The availability of a large number of completely sequenced genomes of M. tuberculosis has provided
an opportunity to explore the pangenome of the species along with the pan-phylogeny and to
identify potential novel drug targets leading to drug discovery. We attempt to calculate the
pangenome of M. tuberculosis that comprises a total of 150 complete genomes and performed the
phylo-genomic classification and analysis. Further, the conserved core genome (1251 proteins) is
subjected to various sequential filters (non-human homology, essentiality, virulence, physicochemical
parameters, and pathway analysis) resulted in identification of eight putative broad-spectrum
drug targets. Upon molecular docking analyses of these targets with ligands available at
the DrugBank database shortlisted a total of five promising ligands with projected inhibitory
potential; namely, 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose, uridine diphosphate glucose,
2′-deoxy-thymidine-beta-l-rhamnose, thymidine-5′-triphosphate, and citicoline. We are confident
that with further lead optimization and experimental validation, these lead compounds may provide
a sound basis to develop safe and effective drugs against tuberculosis disease in humans.

Keywords: Mycobacterium tuberculosis; pangenome; drug targets; molecular docking; lead compounds;
drug discovery; tuberculosis

1. Introduction

According to the 2019 global World Health Organization (WHO) report, tuberculosis (TB)
is among the top ten causes of death and the leading cause of a single infectious agent (above
HIV/AIDS) [1]. In 2018, this disease was responsible for 1.2 million deaths among HIV-negative people
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and an additional 251,000 deaths among HIV-positive people. The causative agent of human TB is
Mycobacterium tuberculosis (M. tuberculosis).

TB is majorly an airborne disease where M. tuberculosis establishes infection inside the human
body by overcoming the immune responses directed by the host against the foreign pathogen. Once
inside, the bacteria infiltrate the host macrophages and persist inside them for years thus causing a
chronic infection that reflects the failure of host immunity [2]. The increased occurrence of multidrug
resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis has been attributed to
spontaneous mutations in the bacterial genome, followed by the emergence of these mutant strains
at the expense of wild type strains [3]. This, in turn, has led to the loss of effectiveness of standard
anti-TB drugs isoniazid and rifampicin.

The availability of the first M. tuberculosis genome sequence in 1998 along with further
developments in the genomics and associated disciplines has enabled us to understand the importance
of many proteins encoded in its genome [4,5]. Especially, the concept of pangenome can now be
explored to obtain the core genome, i.e., genes present in all the strains of the dataset [6]. These genes
can be exploited to design broad-spectrum therapeutics against the pathogenic species.

Various protocols in bioinformatics have helped scientists to process biological data of pathogens
in order to prioritize drug targets, while the parallel developments in the cheminformatics help
researchers access ligand databases such as the DrugBank and perform virtual screening for in
silico-aided drug discovery [7,8]. Utilizing these useful tools, scientists have endeavored to identify
lead compounds for tuberculosis [9,10]. Therefore, in this study, we used the integrative approach of
pangenome analyses, subtractive genomics, and bioinformatics to prioritize potential drug targets in
the M. tuberculosis genome. Further, we explored the structural association of these potential targets
with FDA-approved drugs using molecular docking to shortlist promising lead molecules to aid drug
development against TB.

Developing a new drug through conventional methods takes at least ten years of comprehensive
research and huge funding; Nevertheless, the inclusion of computer-aided analyses at the initial
stages can decrease the associated time and costs [11,12]. In silico drug screening serves as a valuable
method to shortlist/prioritize only the most relevant compounds that could be checked later through
experimental studies, and hence remove biomolecules that do not meet the required specifications
to optimize the overall research in drug discovery [13]. Instead of focusing our attention on one
drug target, we intended to scrutinize all high-ranked drug targets obtained computationally. Subject
to experimental validation, this research work will provide a sound basis for developing novel
therapeutics against the most troublesome bacterial pathogen M. tuberculosis.

2. Results and Discussion

2.1. Pangenome and Pan-Phylogeny Analysis of Mycobacterium tuberculosis Genomes

A total of 150 complete genomes and associated proteomes of M. tuberculosis were downloaded
from the NCBI. Their information such as the accession number, strain name, and genome statistics are
provided in Supplementary Table S1. The metadata associated with these bacterial strains such as
the isolation source and the country of isolation is provided in Supplementary Table S2. Pangenome
analysis of 150 M. tuberculosis complete genomes revealed that there were 5009 gene families in total
(pangenome), among them, 1251 proteins were common (core genome) in all the studied genomes. The
ratio of the core and pangenome size was found to be 0.25, thus the core forms 25% of the pangenome.
This signifies the low level of genetic diversity in the M. tuberculosis strains. This trend is also visible in
the pan-core genome plot, which projects that the global gene repertoire of this species is difficult to
alter considerably in the future (Figure 1).
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Figure 1. Pan-core plot of 150 Mycobacterium tuberculosis genomes. X-axis shows the number of genomes
while the y-axis represents the number of gene families. With the addition of every genome, the
pangenome size increased while the core genome size declined. The pangenome curve (shown in
brown) has almost flattened, i.e., reached plateau. This suggests that the global gene repertoire of this
species is unlikely to change significantly in the future and the pangenome is almost closed.

According to pangenome calculations, the b value of 0.0542 in the power-law regression model is
indicative of a nearly close pangenome for M. tuberculosis. The pan-phylogeny based phylogenetic tree
along with geographical source information is provided in Figure 2.

Each genome on average contained a total of 4102 protein-encoding genes. The core genome
size (1251) thus accounted for 30.5% of the average genome size. Similarly, the minimum number
of protein-encoding genes (3622) was present in strain RGTB423 while the maximum number of
protein-encoding genes (4599) was present in strain 2279.

The level of conservation in the M. tuberculosis genomes is believed to be very high, with limited
genetic variability between/across its various strains. Our genome-level analysis also indicates that
the pangenome of this species is almost closed, with minimum variations. Multiple studies have
corroborated this claim [14–16]. This is expected, as the lifestyle of this bacterium and its restricted
niche makes it difficult to alter its gene pool [17]. Due to these unique conditions and their dependence
on the host, it is suggested that there is less flexibility in its genome to accommodate more genes into
the global gene repertoire. Hence, considering all this information now is the perfect opportunity to
design and develop effective broad-spectrum therapeutics against this deadly human pathogen and to
control the further spread of tuberculosis.
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Figure 2. Pan-phylogeny tree of 150 complete genomes of Mycobacterium tuberculosis. Colored strips
show the continental origin of strains. Overall, the strains originating from different geographical
regions of the World clustered into different clades. This pan-phylogeny has been constructed based on
accessory gene presence/absence data in different strains.

2.2. Subtractive Proteomics Revealed Putative Mycobacterium tuberculosis Drug Targets

Differential genome analysis was conducted on the core proteins of M. tuberculosis for the
identification of therapeutic targets. Targets found to be human homologs could adversely affect the
host metabolism, therefore, all those proteins were excluded in the first step that were identified as
human homologs. The Rv numbers (gene identifiers or virulent strain of Mycobacterium tuberculosis)
and the gene annotation were also conducted on these core proteins; the core genomes-associated
data is provided in Supplementary Table S3. A total of 1185 proteins were identified as non-human
homologous (Supplementary File S1) and were further screened based on their essentiality. Among
them, 377 proteins were characterized as essential proteins and were considered crucial for pathogen
survival (Supplementary File S2). If essential proteins are also functionally characterized as virulent,
they are especially of vital significance to unveil novel therapeutic targets as these proteins help bacteria
to modulate or degrade host defense mechanisms and may contribute to pathogenesis [18]. Therefore,
the essential proteins were further screened to identify genes associated with pathogenicity. Among 377
essential proteins, VFDB and MvirDB identified a total of 93 virulence-related proteins involved in M.
tuberculosis pathogenicity (Supplementary File S3). Since all the 93 proteins are non-human homologs
and essential proteins associated with virulence, they represent an attractive dataset that could be
explored for future vaccine production and drug design to tackle tuberculosis disease. However, for
the purpose of this study, we further mined this large dataset to shortlist a few potential drug targets
in order to facilitate the drug design and development against M. tuberculosis.
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A total of 55 proteins were obtained after applying physiochemical checks, i.e., low molecular
weights, a high value of the aliphatic index and negative GRAVY score (Supplementary File S4). Out
of these, only eight proteins were identified by comparative pathway analysis to be involved in the
unique bacterial metabolic pathway/s and were positively selected as M. tuberculosis drug targets to
avoid targeting any human pathway upon drug therapy (Table 1).

Table 1. Metabolic pathway analysis of potential drug targets.

Protein Name Rv Locus Number KEGG Orthology Metabolic Pathway(s)

dTDP-4-dehydrorhamnose
reductase Rv3266c K00067

ko00521 Streptomycin biosynthesis
ko00523 Polyketide sugar unit biosynthesis

ko00541 O-Antigen nucleotide sugar biosynthesis
ko01100 Metabolic pathways

ko01110 Biosynthesis of secondary metabolites

glucose-1-phosphate
thymidylyltransferase Rv0334 K00973

ko00521 Streptomycin biosynthesis
ko00523 Polyketide sugar unit biosynthesis

ko00525 Acarbose and validamycin biosynthesis
ko00541 O-Antigen nucleotide sugar biosynthesis

ko01100 Metabolic pathways
ko01110 Biosynthesis of secondary metabolites

two-component system regulator
trcR Rv1033c K07672 ko02020 Two-component system

two-component system regulator
mtrA Rv3246c K07670 ko02020 Two-component system

two-component system regulator
regX3 Rv0491 K07776 ko02020 Two-component system

two-component system regulator
kdpE Rv1027c K07667 ko02020 Two-component system ko02024 Quorum

sensing
two-component system regulator

devR Rv3133c K07695 ko02020 Two-component system

dTDP-4-dehydrorhamnose
3,5-epimerase Rv3465 K01790

ko00521 Streptomycin biosynthesis
ko00523 Polyketide sugar unit biosynthesis

ko00541 O-Antigen nucleotide sugar biosynthesis
ko01100 Metabolic pathways

ko01110 Biosynthesis of secondary metabolites

Finally, a total of seven prioritized proteins were found to have similarity with targets associated
with FDA-approved drugs and thus are likely druggable. These seven proteins, and their corresponding
ligands, are tabulated in Table 2.

Table 2. The Autodock vina score of all drug targets with their ligands from the DrugBank database.
The binding energies are indicated by a bold black color in the case of top interactions.

Target Rv
Locus Number Ligand Binding

Energy

Glucose-1-phosphate
thymidylyltransferase Rv0334

2′-Deoxy-Thymidine-Beta-l-Rhamnose −9.1
2′deoxy-Thymidine-5′-Diphospho-Alpha-d-Glucose −10.1

Alpha-d-Glucose-1-Phosphate −5.8
Citicoline −8.4
Citric acid −5.7

Thymidine-5′-Triphosphate −8.9
Thymidine −7.1

Thymidine monophosphate −7.7
Uridine diphosphate glucose −9.8

DNA-binding response
regulator Rv1027c

Phosphoaspartate −5.2
Guanosine-5′-Monophosphate −7.9

AlphaBeta-Methyleneadenosine-5′-Triphosphate −7.3
Adenosine-5′-Rp-Alpha-Thio-Triphosphate −6.8

2-Hydroxyestradiol −7.9

dTDP-4-dehydrorhamnose
3,5-epimerase Rv3465

2′deoxy-Thymidine-5′-Diphospho-Alpha-d-Glucose −7.2
3′-O-Acetylthymidine-5′-Diphosphate −7.1

d-tartaric acid −4.6
SS-(2-Hydroxyethyl)Thiocysteine −4.6

Thymidine_monophosphate −6.8
Thymidine-5′-diphospho-beta-d-xylose −6.7
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Table 2. Cont.

Target Rv
Locus Number Ligand Binding

Energy

DNA-binding response
regulator TrcR Rv1033c

S-Methyl Phosphocysteine −4.6
Phosphoaspartate −4.8

Guanosine-5′-Monophosphate −7.2
Glycerine −4

AlphaBeta-Methyleneadenosine-5′-Triphosphate −7.4
Adenosine-5′-Rp-Alpha-Thio-Triphosphate −7.6

3-Aminosuccinimide −4.5
2-Hydroxyestradiol −7.1

DNA-binding response
regulator RegX3 Rv0491

2-Hydroxyestradiol −7.1
3-Aminosuccinimide −4.4

Adenosine-5′-Rp-Alpha-Thio-Triphosphate −6.7
AlphaBeta-Methyleneadenosine-5′-Triphosphate −6.6

Glycerine −3.8

However, one prioritized target (two-component transcriptional regulatory protein DevR) did not
show similarity to any drug target in the DrugBank database thus it is potentially a novel drug target
worthy of experimental testing. Virtual screening may be performed with ligands from other ligand
databases in order to find potent inhibitors of this protein. Literature studies were conducted on the
seven proteins from Table 2 to understand their relevance as a drug target.

Among them, trcR has a crucial role in intracellular survival of M. tuberculosis and also in the
regulation of Rv1057 expression, i.e., the β-propeller gene activated by the envelope stress [19]. In
another study by Haydel et al.; they demonstrated that trcR and trcS two-component system genes
are transcribed in broth-grown M. tuberculosis validated through reverse transcription PCR analysis.
Moreover, through the SCOTS technique the expression of these genes are observed in liquid (broth)
medium and after 18 h of M. tuberculosis growth in cultured human primary macrophages [20].
Nevertheless, the stimulatory signal for the TrcR-TrcS system is poorly understood and requires further
research. Recently, another study, based on the drug target score, also ranked TrcR as the second-best
therapeutic target in M. tuberculosis [21]. We believe that future studies are also needed to investigate
this matter.

The dTDP-4-dehydrorhamnose reductase, another protein classified as a drug target by our study,
is already known to be a high-confidence drug target [22]. This protein plays an important role in cell
wall synthesis. Targeting the cell wall of M. tuberculosis through inhibitors is a good strategy, as has
been recognized by earlier studies [23,24].

Similarly, mtrA (in Table 1) plays an important role in many crucial processes such as cell wall
homeostasis and bacterial growth. It also has a role in cell division, DNA replication, and controls
susceptibility of M. tuberculosis to the first line antimycobacterial drugs [25]. This signifies the necessity
of mtrA for the growth of M. tuberculosis.

Another prioritized drug target RegX3 (in Table 1) has a role in aerobic respiration, virulence and
phosphate absorption [26]. It is also required for optimal growth of M. tuberculosis in nutrient rich
medium [27]. Moreover, RegX3 directly interacts with exs-5, another essential gene for the growth
process. It also causes an increase in the production of membrane vesicles in M. tuberculosis [28].

The kdpE participates in the two-component system pathway and is involved in transcriptional
regulation of Kdp-ATPase [29]. KdpE also has a role in the regulation of key factors involved
in stress tolerance and energy metabolism [30,31]. Moreover, it is also notorious for its role in
virulence caused by M. tuberculosis, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus
aureus [29,32–35]. Considering the situation, kdpE can be considered as a broad-spectrum therapeutic
target for multiple pathogens.

The present study also prioritized drug target glucose-1-phosphate thymidylyltransferase.
The protein is involved in three metabolic pathways namely, polyketide sugar unit biosynthesis,
streptomycin biosynthesis, and the nucleotide sugars metabolism pathway [36–38]. All these pathways
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are crucial for survival of M. tuberculosis and elaborate on the relevance of glucose-1-phosphate
thymidylyltransferase as a drug target. Additionally, the dTDP-4-dehydrorhamnose 3,5-epimerase
protein obtained by our study is known to be a potential drug target in the rhamnose pathway [39].

2.3. Docking Analyses of Drug Targets Revealed Potential Lead Compounds for Drug Discovery

The Autodock vina docking scores of ligands with drug targets are elaborated in Table 2. Among
all the drug–ligand interaction analyses, 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose was found
to have the lowest binding energy (−10.1 kcal/mol) with glucose-1-phosphate thymidylyltransferase
(Figure 3).

Figure 3. The docked complex of 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose and glucose-1-
phosphate thymidylyltransferase.

Interestingly, 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose was found to associate with
another prioritized drug target protein of this study DNA response regulator, however, the binding
energy was somewhat higher (−7.2 kcal/mol) in that case. Nevertheless, our docking analyses proposed
the 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose compound as a high-ranked lead compound to
develop a drug against tuberculosis.

The second high-ranked ligand in our study is uridine diphosphate glucose. This compound
showed a binding energy of −9.8 kcal/mol with glucose-1-phosphate thymidylyltransferase
(Figure 4), and thus may also represent a good target for lead optimization. Meanwhile,
2′-deoxy-thymidine-beta-l-rhamnose ligand exhibited docked energy of −9.1 kcal/mol with
glucose-1-phosphate thymidylyltransferase (Figure 5).

This ligand also interacted with another prioritized protein of our study dTDP-4-dehydrorhamnose
reductase with the binding energy of −8.3 kcal/mol. Another high-ranked ligand
thymidine-5’-triphosphate ligand was found to have −8.9 kcal/mol binding energy with
glucose-1-phosphate thymidylyltransferase (Figure 6) while citicoline, on the other hand, showed
−8.4 kcal/mol binding energy with this same drug target (Figure 7).
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Figure 4. The docked complex of uridine diphosphate glucose and glucose-1-
phosphate thymidylyltransferase.

Figure 5. The docked complex of 2′-deoxy-thymidine-beta-l-rhamnose and glucose-1-
phosphate thymidylyltransferase.

Figure 6. The docked complex of thymidine-5′-triphosphate and glucose-1-
phosphate thymidylyltransferase.
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Figure 7. The docked complex of citicoline and glucose-1-phosphate thymidylyltransferase.

Thus, overall, this study shortlisted five top-ranked ligands with good binding affinity
to drug targets and thus may guide drug development studies to counter M. tuberculosis.
These ligands are 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose, uridine diphosphate glucose,
2′-deoxy-thymidine-beta-l-rhamnose, thymidine-5′-triphosphate, and citicoline, which have good
binding affinity with metabolic pathway proteins especially glucose-1-phosphate thymidylyltransferase.
The protein is involved in three metabolic pathways namely, polyketide sugar unit biosynthesis,
streptomycin biosynthesis, and nucleotide sugars metabolism pathway [36–38]. All these pathways
are crucial for survival of M. tuberculosis and shortlisted repurposed drugs have higher affinity with
the enzyme, i.e., glucose-1-phosphate thymidylyltransferase. Moreover, these drugs have a tendency
to bind with dTDP-4-dehydrorhamnose 3,5-epimerase that is a potential drug target in rhamnose
pathway [39]. These findings may provide a basis for the development of effective therapeutics
against tuberculosis and/or replace currently available drugs to treat this deadly pathogen, however,
experimental validation is needed to confirm these results.

3. Materials and Methods

The methodology adopted in this study was visualized in Figure 8. The different steps were
elaborated below.

A total of 150 complete genome sequences of Mycobacterium tuberculosis were retrieved from
the NCBI GenBank database and pangenome analysis was conducted to identify the genes shared
by all the strains of our dataset (i.e., the core genome). The core genome was then subjected to
various sequential filters of subtractive genomics (non-homology to humans, bacterial essentiality and
virulence, physiochemical checks, comparative pathway analysis, and druggability analysis) to select
potential drug targets. Finally, these proteins were subjected to molecular docking with ligands from
the DrugBank database to identify potential lead compounds that could be useful to develop a drug
against tuberculosis.

3.1. Collection of Genomic Data

The complete genome sequences off 150 M. tuberculosis strains and their associated proteomes
were retrieved from the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) available at the
National Center for Biotechnology Information (NCBI). These strains had been earlier isolated from all
the geographical regions of the World.

https://www.ncbi.nlm.nih.gov/genbank/
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Figure 8. The methodology adopted in the study to find lead compounds (drugs) against
Mycobacterium tuberculosis.

3.2. Pangenome Analysis of Mycobacterium tuberculosis Strains

Pangenome analysis was conducted on the genomes using the Bacterial Pan Genome Analysis
(BPGA) tool to obtain highly conserved proteins of M. tuberculosis [40]. For this, we used the default
threshold of 50% identity to generate orthologous protein clusters by the USEARCH algorithm [41].
BPGA calculates pan and core genome/proteome size by randomly considering 20 permutations and
sequentially stating median values after the addition of each genome. Graphically, the core and
pan-genome curves are generated by comparing the total number of common and unique gene families
against the total number of genomes, respectively. The output also shows the number of new genes
with the addition of every genome. The pan phylogeny was generated using the pan-matrix data and
the associated pangenome tree was constructed using the neighbor-joining method with a default
combination value of 20 iterations. Protein sequences associated with the core genome were retrieved
and subjected to further screening steps to identify potential therapeutic targets.

3.3. Identification of Non-Host Homologous, Essential, and Virulence-Associated Proteins

To aid the preliminary identification of novel therapeutic targets in the core genome/proteome,
we used an in-house pipeline VacSol for non-homology, essentiality, and virulence screening steps [42].
To avoid harmful responses in humans due to drug therapy, the drug targets must be non-homologous
to human proteins, so for the identification of non-host homologous targets, the NCBI BLASTp tool
(E-value 1 × 10−3) was used to compare the core genome with the human genome [43]. From this
non-host homologous conserved proteome, essential genes were identified using BLASTp against the
Database of Essential Genes (DEG) at an E-value <0.0001 and bit score >100 [44]. The DEG comprises
experimentally validated data collected from archaea, bacteria, and eukaryotes, including currently
reported essential genomic elements such as genes that are required for cellular life. We subjected the
selected proteins to BLASTp search against the Virulence Factor Database (VFDB) and the Microbial
Virulence database (MvirDB) to identify potential virulence-associated factors [45,46]. The VFDB is a
comprehensive online database that contains information about virulence factors of bacterial pathogens.
Virulence factors are known gene products that enable a microorganism to establish itself within a host
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and thus enhance its disease-inducing potential [47]. MvirDB is another integrated online database
comprising publicly available, organized sequences related to known virulence factors, toxins, and
antibiotic resistance genes [46].

3.4. Identification of Putative Mycobacterium tuberculosis Drug Targets

To identify potential drug targets, the non-human homolog, essential, and virulence-associated
core proteins of M. tuberculosis were further filtered based on physicochemical parameters such as
molecular weight, pI (isoelectric point), grand average of hydropathicity (GRAVY) value, and aliphatic
index using the ProtParam tool [48]. Low molecular weight proteins are considered good drug
targets, as they are accessible to drugs [49]. A higher value of the aliphatic index of proteins indicates
thermostability whereas the negative GRAVY (grand average of hydropathicity) value indicates the
hydrophilic nature of putative drug targets [50]. After physicochemical filters, comparative pathway
analysis of filtered proteins was performed using the KEGG Automatic Annotation Server (KAAS)
version 2.1 to identify the proteins associated with pathogen-specific pathways to enable specific
targeting of the pathogen [51].

Finally, druggability assessment of the shortlisted proteins was performed using BLASTp against
the DrugBank database at default settings [52]. The druggability of potential targets is also a crucial
screening step that evaluates the potential of prioritized targets to be modulated by a drug or drug-like
entity [50]. The potential targets should bind to a drug or drug-like compound with high affinity.
However, this was not considered an inclusion criterion as novel drug targets may not display homology
to targets associated with FDA approved drugs and show specific affinity to other drugs from natural
products [53].

3.5. Molecular Docking of Putative Drug Targets with Drugs

The sequences of drug targets were checked for the availability of crystal structures, if any,
from the RCSB Protein DataBank [54]. Structural file PDB was downloaded, and all the attached
ligands were removed from the crystal structure. The drug targets having no associated crystal
structure available in the database were modeled using the i-TASSER server [55,56]. Structure with
the highest C-Score was selected in each case as these models are of good quality and stability. Using
the PyRx-incorporated Autodock vina tool, the structures of drug targets were subjected to molecular
docking with the FDA-approved drugs identified earlier in the druggability analysis [57,58]. Blind
docking was conducted by adjusting the grid-box in order to cover the whole protein space, and
the default value of exhaustiveness (8) was selected. Both ligands and their targets were prepared
in the PDBQT format as per requirements and molecular docking analysis was performed. Docked
complexes with the lowest binding energies were comparatively analyzed to identify those ligands
that associated strongly with drug targets. These ligands were thus shortlisted as lead compounds for
developing a potent drug against tuberculosis.
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genome given in the FASTA format. File S2: The essential and non-human homolog core proteins identified
in genomes under study given in the FASTA format. File S3: Projected virulence-associated proteins from the
non-homologous essential core proteins given in the FASTA format. File S4: Protein targets found to have
appropriate physiochemical parameters provided. Table S1: Information about 150 complete genome sequences
of Mycobacterium tuberculosis such as strain name, biosample, bioproject, and genome statistics are provided. Table
S2: The metadata associated with these bacterial strains such as isolation source and the country of isolation is
provided. Table S3: The annotation of core gene targets and their Rv numbers.
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