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PURPOSE. To describe and demonstrate appropriate statistical approaches for estimating
sensitivity, specificity, predictive values and their 95% confidence intervals (95% CI) for
correlated eye data.

METHODS. We described generalized estimating equations (GEE) and cluster bootstrap to
account for inter-eye correlation and applied them for analyzing the data from a clinical
study of telemedicine for the detection of retinopathy of prematurity (ROP).

RESULTS. Among 100 infants (200 eyes) selected for analysis, 20 infants had referral-
warranted ROP (RW-ROP) in both eyes and 9 infants with RW-ROP only in one eye
based on clinical eye examination. In the per-eye analysis that included both eyes of
an infant, the image evaluation for RW-ROP had sensitivity of 83.7% and specificity of
86.8%. The 95% CI’s from the naïve approach that ignored the inter-eye correlation were
narrower than those of the GEE approach and cluster bootstrap for both sensitivity (width
of 95% CI: 22.4% vs. 23.2% vs. 23.9%) and specificity (11.4% vs. 12.5% vs. 11.6%). The
95% CIs for sensitivity and specificity calculated from left eyes and right eyes separately
were wider (35.2% and 30.8% respectively for sensitivity, 25.4% and 17.3% respectively
for specificity).

CONCLUSIONS. When an ocular test is performed in both eyes of some or all of the study
subjects, the statistical analyses are best performed at the eye-level and account for the
inter-eye correlation by using either the GEE or cluster bootstrap. Ignoring the inter-eye
correlation results in 95% CIs that are inappropriately narrow and analyzing data from
two eyes separately are not efficient.
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Diagnostic and screening tests play an important role in
the detection and management of eye diseases, as well

as in laboratory research. Evaluation of advances in ocular
imaging technologies, telemedicine, machine learning, arti-
ficial intelligence technologies, biomarkers, and statistical
prediction models or risk scores (broadly referred to as
“ocular tests” within this paper) often involves determining
whether a specific condition is present. Examples of symp-
toms, signs, or laboratory values to identify or predict a
specific condition include cup-to-disc ratio to identify glau-
coma, large drusen to predict development of late age-
related macular degeneration, or the level of the anti-
body SSa (Ro) to diagnose Sjogren Syndrome. Before a
new ocular test can be adopted for clinical use, its accu-
racy in identifying the specific condition must be evalu-
ated in a sample from the targeted population, using perfor-
mance indices, including sensitivity, specificity, and predic-
tive values.1 Because ocular measures are commonly taken
from both eyes of a subject, thereby generating correlated
eye data, statistical analyses for evaluating the accuracy of
the ocular test need to account for the correlation. In this
paper, we describe and demonstrate appropriate statistical

approaches for estimating these performance indices and
their 95% confidence intervals (CIs). In addition, we consider
whether the presence of the condition should be evaluated
per subject or per eye.

We start with a general introduction of performance
indices (sensitivity, specificity, and predictive values) and
the calculations for their point estimates and 95% CIs when
the data are independent (e.g. one test measure from each
subject). We then describe statistical methods to account
for inter-eye correlation when an ocular test is performed
in both eyes of a subject. We demonstrate these statisti-
cal methods by analyzing the data from a clinical study of
telemedicine for the detection of retinopathy of prematurity
(ROP).

CALCULATING PERFORMANCE INDICES FOR A TEST

USING INDEPENDENT DATA

Sensitivity and Specificity

To evaluate the accuracy of a test, we use a sample of
subjects who have results from both the test (T) and the
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TABLE 1. A 2 × 2 Table for Comparing Results from a Test and a
Reference Standard Procedure

True Disease Status From Reference
Standard Procedure

Test Result Absent (D−) Present (D+)

Negative (T−) n00 n10
Positive (T+) n01 n11
Total n0 n1

reference standard procedure for determining disease status
(D). We assume that the reference standard procedure is
100% accurate for determining disease presence (D+) or
absence (D-). For a test that yields binary test results (i.e. test
positive [T+] or negative [T-]), results from the test and the
reference standard procedure can be summarized in a 2 × 2
Table (Table 1). For a test that provides continuous or ordi-
nal values, a 2 × 2 table can be made by applying a cutpoint
to dichotomize the test results into test positive or negative.
The choice of a cutpoint depends on several factors, includ-
ing the relative harms and costs of missing true disease and
of falsely identifying disease as present when it is not.2

Two basic measures of test accuracy, sensitivity and speci-
ficity, can be estimated from the values in Table 1. Sensitivity
is the test’s ability to detect the disease when the disease is
present (i.e. Sensitivity (Se) =P(T+|D+) = n11 / n1) or, in
words, the probability of a positive test result given that the
disease is present. Specificity is the test’s ability to exclude
the disease when the disease is absent (i.e. Specificity
(Sp) = P(T-|D-) = n00 / n0) or, in words, the probability of a
negative test result given that the disease is absent.

To determine the uncertainty of the estimates of sensi-
tivity and specificity, 95% CIs are calculated. For indepen-
dent large samples, the 95% CIs can be calculated using the
normal approximation3:

Se ± 1.96 ×
√

Se×(1−Se)
n1

Sp± 1.96 ×
√

Sp×(1−Sp)
n0

When the sample size is small or the sensitivity or speci-
ficity is close to 0 or 1 (e.g. n1 × Se × (1 − Se) or n0 ×
Sp × (1 − Sp) is less than 5), the normal approximation
may not be accurate.4 Other methods,4 such as the Clopper-
Pearson exact method or the Wilson method, should be used
to provide better accuracy and to guarantee the 95% CIs are
within the desired range of 0 to 1.5 The Clopper–Pearson
interval provides an exact interval because it is directly
based on the cumulative probabilities of the binomial distri-
bution rather than an approximation to the binomial distri-
bution. The Clopper–Pearson interval never has less than
the nominal coverage (e.g. 95%), so it is usually conserva-
tive.5 The Wilson interval is an improvement over the normal
approximation interval in that the actual coverage proba-
bility is closer to the nominal value. The Wilson method
has good properties even for a small number of observa-
tions and/or an extreme alpha error level. Clopper-Pearson,
Wilson, and other alternative intervals are available in most
statistical packages, and further details on their implemen-
tation and performance are described elsewhere.4,5

Positive and Negative Predictive Values

Sensitivity and specificity measure the intrinsic accuracy of a
test and require that the status of disease is known. However,

in clinical practice when using a test, the true disease status
is usually unknown and we perform the test to inform us
about the presence of the disease. When using a test, we
need to know how well the test result predicts the presence
or absence of disease. The positive predictive value (PPV)
and negative predictive value (NPV) provide such informa-
tion. The PPV is the probability that a positive test result
correctly predicts the presence of disease, whereas NPV is
the probability that a negative test result correctly predicts
the absence of disease.

The PPV and NPV are dependent on both the under-
lying prevalence of disease in the population to be tested
and the intrinsic accuracy (i.e. sensitivity and specificity) of
the test. For any given test, when the disease prevalence
is higher, the PPV is higher while the NPV is lower. For
this reason, it is usually not appropriate to calculate the
PPV and NPV directly from studies that oversample subjects
with disease (such as a 1:1 case-control study that artificially
sets the disease prevalence at 50%), because such studies
do not reflect the true disease prevalence in the population
that the test will be used in. Instead, using the following
formula, the sensitivity (Se) and specificity (Sp) estimated
from a case-control study can be applied to calculate the
PPV and NPV of a test in a target population with disease
prevalence (P), which is usually estimated from a separate
study.

PPV = Se×P
Se×P+(1−Sp)×(1−P)

NPV = Sp×(1−P)
(1−Se)×P+Sp×(1−P)

To calculate 95% CIs for the PPV and NPV, their variances
need to be determined using the following formula6:

Var(PPV ) = [P×(1−Sp)×(1−P)]2× Se×(1−Se)
n1

+[P×Se×(1−P)]2× Sp×(1−Sp)
n0

[Se×P+(1−Sp)×(1−P)]4

Var(NPV ) = [Sp×(1−P)×P)]2× Se×(1−Se)
n1

+[(1−Se)×(1−P)×P]2× Sp×(1−Sp)
n0

[(1−Se)×P+Sp×(1−P)]4

where P is the prevalence of the disease of interest (assumed
known), Se and Sp are the sensitivity and specificity of
the test for detecting the disease of interest, n1 and n0
are the number of subjects with and without disease in
the study for calculating the sensitivity and specificity,
respectively.

With variances of PPV and NPV calculated using the
above formula, 95% CIs for PPV and NPV can be calculated
as:

PPV ± 1.96
√
Var(PPV )

NPV ± 1.96
√
Var(NPV )

When the PPV or NPV is close to 0 or 1, their 95% CIs
calculated using the normal approximation can be out of
the desired range of 0 to 1. The logit transformation,6 as
described below, can be used to calculate the 95% CIs to
guarantee that they fall between 0 and 1.

logit (PPV ) = log
(

PPV
1−PPV

)

logit (NPV ) = log
(

NPV
1−NPV

)
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The variance of the logit(PPV) and logit(NPV) can be
calculated as follows:

Var(logit(PPV )) = [
1−Se
Se

]
. 1
n1

+
[

Sp
1−Sp

]
. 1
n0

Var(logit(NPV )) = [
Se

1−Se
]
. 1
n1

+
[
1−Sp
Sp

]
. 1
n0

The 95% CI for PPV is calculated as follows:

[
elogit(PPV )−1.96

√
Var(logit(PPV ))

1+elogit(PPV )−1.96
√
Var(logit(PPV ))

, elogit(PPV )+1.96
√
Var(logit(PPV ))

1+elogit(PPV )+1.96
√
Var(logit(PPV ))

]

The 95% confidence interval for NPV can be calculated
similarly.

An SAS macro for calculating the PPV, NPV, and their 95%
CIs using both the normal approximation and the logit trans-
formation for a given set of values for sensitivity, specificity,
and prevalence of disease is provided in Appendix 1.

PERFORMANCE INDICES OF AN OCULAR TEST FOR

CORRELATED EYE DATA

Determination of Ocular Test Performance at
Eye Level

As most eye diseases can be bilateral, ocular tests are often
performed in both eyes of a subject, yielding correlated eye
data. To maximize the use of the available data, sensitiv-
ity and specificity can be calculated at the eye-level (i.e.
using the eye as the unit of analysis), whereas the corre-
lation between the two eyes (i.e. the inter-eye correlation)
is accounted for. When each subject contributes both eyes
for the study, the standard method previously described
above for a sample of independent observations provides
unbiased point estimates of sensitivity and specificity for
correlated eye data. However, calculating their 95% CIs
needs to account for the inter-eye correlation. Ignoring
the inter-eye correlation (i.e. treating data from two eyes
of the same subject in the same way as data from two
eyes from two different subjects) yields 95% CIs that are
too narrow. When some subjects contribute only one eye
whereas other subjects contribute both eyes for the study,
using the previously described analysis approaches for inde-
pendent samples that ignore the inter-eye correlation could
lead to biased estimates for sensitivity and specificity and
their 95% CIs.

One approach for adjusting for the inter-eye correlation
is through use of generalized estimating equations (GEEs).7

In applying the GEE approach to estimating sensitivity and
specificity, the ocular test result for each eye (T+ or T-) is
modeled as the outcome variable, the variable for true eye
disease status (D+ or D-) from the reference standard proce-
dure is considered as a predictor, and the logit link is used.
By convention, a positive test result is assigned a value of 1
and a negative value is assigned a value of 0, and likewise
for disease presence. One way to use the GEE approach
is to specify in the statistical software code that the data
are “independent” and rely on the approach’s robust esti-
mator to provide accurate variance estimates to be used for
calculation of 95% CIs. This specification is often the default
option for procedures using GEE. Although this appears to
be an incorrect choice for correlated data, this method works
well for the case of modeling a 2 × 2 table. More detailed

descriptions of the GEE method for accounting for inter-eye
correlation in analyzing categorical ocular measures may be
found elsewhere.8 The SAS code for the calculation of the
95% CI of sensitivity and specificity using GEE is given in
Appendix 2. Of note, in fitting GEE using PROC GENMOD
in SAS, the DESCENDING option was specified so that it
models the probability of disease. In R, GEE modeling can
be performed by using the function geeglm() of the “geep-
ack” package or using the function gee() of the “GEE” pack-
age. When running these GEE functions in R, it is important
to first sort the data by subject ID so that data from two eyes
of the same subject are adjacent to each other; otherwise,
the data from the two eyes of a subject will be analyzed as
independent. In SAS, sorting the data by subject ID is not
needed for GEE.

Another approach to account for the inter-eye correlation
is the cluster bootstrap. Various bootstrap approaches have
been proposed for clustered data.9 Bootstrapping is a resam-
pling technique involving computing a statistic of interest
(e.g. sensitivity, specificity, predictive values, etc.) repeatedly
based on a large number of random samples drawn from the
original sample, so that the variability of the statistic of inter-
est can be determined. The bootstrap provides a way to draw
probability-based, assumption-free inference for a statistic of
interest.10 Operationally, bootstrapping involves repeatedly
taking a random sample of size n with replacement from
an original sample of size n, and computing a statistic of
interest θ (e.g. sensitivity, specificity, and predictive values).
Because the sampling is done with replacement, some obser-
vations may appear more than once and other observations
may not be selected. The process of drawing a new sample
and computing the statistic of interest is performed B times
(e.g. 1000 times) to generate B estimates of θ . From this
large number of θ estimates, the median is taken as the esti-
mate of θ and the nonparametric CIs (e.g., 95% CI) use the
2.5th and 97.5th percentiles of the ordered distribution of
the θs.

For the cluster bootstrap of correlated eye data, the
subjects need to be stratified by both the number of study
eyes per subject (e.g. 1 or 2) and by the number of eyes with
the ocular disease of interest (e.g. 0, 1, or 2). For each stra-
tum, the first step is to randomly select the same number
of subjects with replacement as the number of subjects in
a given stratum.11 For each subject selected from sampling
with replacement, all eligible eyes of the selected subjects
are included in the bootstrapped sample. The desired statis-
tic is computed using the bootstrapped sample and the
process is repeated B times. The nonparametric CIs can
be derived in the same way as the standard bootstrapping
procedure. The SAS code for the cluster bootstrap for sensi-
tivity and specificity is given in Appendix 3.

As described previously, for studies that oversampled
subjects with disease, the PPV and NPV cannot be calcu-
lated directly from the study data. Instead, the PPV and NPV
of an ocular test should be calculated based on its sensitiv-
ity, specificity, and the disease prevalence in the population
in which the ocular test will be administered. For the clus-
ter bootstrap of PPV and NPV, the sensitivity and specificity
will be calculated first from each bootstrap sample, then PPV
and NPV will be calculated based on the calculated sensitiv-
ity, specificity, and the assumed prevalence. The nonpara-
metric CIs for PPV and NPV are derived from their empiri-
cal distributions over many (B) bootstrap samples. The SAS
code for the cluster bootstrap for PPV and NPV is given in
Appendix 4.
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Determination of Test Ocular Performance at the
Person Level

In some situations, although the ocular test is performed in
both eyes of a subject, calculating sensitivity, specificity, and
predictive values at the person level (i.e. using the person
as the unit of analysis) may be more relevant than calculat-
ing sensitivity and specificity at the eye level. For example,
when screening for ocular disease, a subject may be referred
when the test is positive for one or both eyes. For a person-
level analysis, we define ocular disease present in a subject
if ocular disease is present in either eye, and we define the
test positive in a subject if the ocular test is positive in either
eye. After the person-level data are derived, the sensitivity,
specificity, predictive values, and their 95% CIs can be calcu-
lated using the standard method as described previously for
independent data. When sensitivity and specificity of a test
are analyzed in this way, the person level sensitivity will be
higher and the specificity lower than when the test accuracy
is assessed per eye.

Example: Telemedicine System for the Evaluation
of Acute-phase Retinopathy of Prematurity

The evaluation of acute-phase retinopathy of prematurity
(e-ROP) study was a multicenter study to evaluate the valid-
ity of a telemedicine system for identifying infants who
have sufficiently severe retinopathy of prematurity (called
referral-warranted ROP [RW-ROP]) to require evaluation by
an ophthalmologist.12 The study enrolled 1257 premature
infants and each infant underwent a regularly scheduled
diagnostic examination by an ophthalmologist and digital
imaging by a nonphysician imager. Ophthalmologists docu-
mented findings consistent with RW-ROP (defined as pres-
ence of either zone I ROP, ROP stage 3 or higher, or plus
disease). Masked nonphysician readers graded a standard 6-
image set per eye for ROP stage, zone, and presence of plus
disease. The validity of the telemedicine system was evalu-
ated using sensitivity and specificity by comparing the image
evaluation (ocular test) findings to the ophthalmologist clin-
ical examination findings (reference standard).

For the purpose of demonstration, we selected an
enriched (higher prevalence of RW-ROP) sample of 100
infants that included 29 infants with RW-ROP in either
eye and 71 infants without RW-ROP as determined based
on clinical eye examination. The sensitivity and specificity
were calculated using data from one session of digital
image/clinical eye examination from each infant. For infants
with RW-ROP based on the clinical eye examination, the
session when the results of the clinical examination are first
identified as RW-ROP were used. For infants without RW-
ROP, a session was selected randomly. At the same selected
session, we compared the RW-ROP finding from evaluation
of an image set (positive or negative) to the RW-ROP find-
ing of the clinical eye examination (presence or absence).
We calculated sensitivity, specificity and their 95% CIs per-
eye and per-infant, with per-eye analysis as the primary and
per-infant analysis as the secondary end point as executed
in the e-ROP study.12 For the per-eye analysis, the inter-eye
correlation was accommodated by using both GEE and clus-
ter bootstrap approaches. In the cluster bootstrap, because
each infant contributed both eyes for the study, infants were
divided into 3 strata including 1 stratum for 71 infants with-
out RW-ROP in both eyes, a second stratum for 9 infants with
RW-ROP only in 1 eye, and a third stratum for 20 infants with

TABLE 2. Inter-Eye Agreement in RW-ROP Status From Clinical Eye
Examination (N = 100 infants)

Right Eye

Left Eye RW-ROP Absent RW-ROP Present Total

RW-ROP absent 71 3 74
RW-ROP present 6 20 26
Total 77 23 100

Kappa (95% CI) = 0.76 (0.61–0.91)

TABLE 3. Cross-Tabulation of RW-ROP Status From Diagnostic Eye
Examination and From Image Evaluation at the Eye-Level (N = 200
Eyes From 100 Infants)

Clinical Eye Examination

Image Evaluation RW-ROP Absent RW-ROP Present Total

RW-ROP negative 131 (86.8%) 8 (16.3%) 139
RW-ROP positive 20 (13.2%) 41 (83.7%) 61
Total 151 49 200

RW-ROP in both eyes. If some infants had only contributed
one eye to the study, two additional strata would be formed
(e.g. one stratum for infants without RW-ROP in the study
eye and another stratum for infants with RW-ROP in the
study eye). The SAS code for these analyses can be found
in Appendix 2 for the GEE approach, and Appendix 3 for
the cluster bootstrap approach.

Using the sensitivity and specificity values and the antic-
ipated prevalence of RW-ROP, we calculated the PPV and
NPV using the methods described above. In the e-ROP study,
the overall RW-ROP rate was 19.4% at the infant level, but
varied across neonatal intensive care units, ranging from
8.8% to 29.7%. Thus, we calculated the PPV and NPV and
their 95% CIs under the assumption of prevalence of RW-
ROP ranging from 5% to 30%. The sensitivity and specificity
from both infant-level analysis and eye-level analysis were
used for the PPV and NPV calculation. The cluster bootstrap
was used for the calculation of 95% CIs of eye-level PPV and
NPV. The SAS code for the calculations of NPV and PPV is
in Appendix 1 for infant-level analysis and Appendix 4 for
eye-level analysis using the cluster bootstrap approach.

RESULTS

Among 100 infants selected for analysis, 29 infants had RW-
ROP in either eye based on clinical eye examination, includ-
ing 20 infants with RW-ROP in both eyes and 9 infants with
RW-ROP only in one eye (Table 2). Ninety-one (91%) of
100 infants were in agreement between 2 eyes in the status
of RW-ROP from clinical eye examination, with Kappa of
0.76 (95% CI = 0.61–0.91).13

The agreement between RW-ROP status from image eval-
uation versus clinical eye examination is shown in Table 3
for an eye-level comparison and in Table 4 for an infant-level
comparison. The sensitivity and specificity and correspond-
ing 95% CIs from various approaches are reported in Table 5.
In the per-eye analysis that included both eyes of an infant,
the sensitivity was 83.7% and specificity 86.8% for both the
naïve approach that ignored the inter-eye correlation and the
GEE approach and cluster bootstrap that accounted for the
inter-eye correlation. However, the 95% CIs from the naïve
approach calculated using the exact method were narrower
than those of the GEE approach and cluster bootstrap for
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TABLE 4. Cross-Tabulation of RW-ROP From Diagnostic Eye Examination versus Image Evaluation at Eye Level (N = 100 Infants)

Clinical Eye Examination: RW-ROP Status in Left Eye/Right Eye

Image Evaluation: RW-ROP Status in Left Eye/Right Eye Absent/Absent Absent/Present Present/Absent Present/Present Total

Negative/negative 61 0 0 1 62
Negative/positive 4 1 3 1 9
Positive/negative 3 0 1 2 6
Positive/positive 3 2 2 16 23
Total 71 3 6 20 100

TABLE 5. Sensitivity and Specificity of Image Evaluation for RW-ROP Using Various Analysis Approaches

Analysis Approach Sensitivity Specificity

Per-Eye Analysis N Estimate 95% CI Width of 95% CI N Estimate 95% CI Width of 95% CI

Naïve approach: normal approximation 49 83.7% 73.3–94.0% 20.7% 151 86.8% 81.4–92.2% 10.8%
Naïve approach: exact method 49 83.7% 70.3–92.7% 22.4% 151 86.8% 80.3–91.7% 11.4%
GEE 49 83.7% 69.0–92.2% 23.2% 151 86.8% 79.3–91.8% 12.5%
Cluster bootstrap 49 84.4% 70.8–94.7% 23.9% 151 87.0% 80.6–92.6% 11.6%
Left eye only* 26 80.8% 60.7–95.9% 35.2% 74 89.2% 79.8–95.2% 25.4%
Right eye only* 23 87.0% 66.4–97.2% 30.8% 77 84.4% 74.4–91.7% 17.3%
Per-infant analysis* 29 96.6% 82.2–99.9% 17.7% 71 85.9% 77.8–94.0% 16.2%

* Confidence interval was calculated using Clopper-Pearson exact method.

both sensitivity (width of the 95% CI = 22.4% vs. 23.2%
vs. 23.9%) and specificity (11.4% vs. 12.5% vs. 11.6%). As
expected in the analysis using the naïve approach, the width
of the 95% CI using the exact method is wider than using the
normal approximation method for both sensitivity (width of
95% CI = 22.4% vs. 20.7%) and specificity (width of 95% CI
= 11.4% vs. 10.8%). The 95% CIs for sensitivity and speci-
ficity calculated from left eyes and right eyes separately
were wider (35.2% and 30.8%, respectively, for sensitivity,
25.4% and 17.3%, respectively, for specificity), reflecting the
loss of information from analyzing only data from one eye.
Although we have no reason to expect differences in grad-
ing performance for right and left eyes, the sensitivity from
the right eye analysis was somewhat higher. Because infants
contributed data from two eyes, the estimated sensitivity and
specificity from the per eye analysis of all data are simply
the weighted averages of the values from the separate analy-
sis of left or right eyes, respectively. Although both the GEE
and bootstrap approaches accounted for the inter-eye corre-
lation, they provided somewhat different estimated 95% CIs
for sensitivity and specificity. These differences are due to

the fact that they used different methods to account for
inter-eye correlation. GEE is a model-based approach, and its
95% CIs were calculated based on a working independence
covariance matrix. The bootstrap we used is a nonparamet-
ric method that is based on resampling of the data to get
the empirical distribution of sensitivity and specificity for
deriving percentile-based 95% CIs.

In the per-infant analysis that considered image evalua-
tion as positive if RW-ROP was positive in either eye, the
sensitivity was higher (96.6%), but specificity was lower
(85.9%) than those from the per-eye analysis. As shown
in Table 4, there are three infants who were RW-ROP posi-
tive on image evaluation only in the right eye and RW-
ROP disease was present from clinical eye examination only
in the left eye. For these three infants, the correct action
(referral) would be made but the actual classification of the
eyes would be incorrect.

The positive and negative predictive values correspond-
ing to the sensitivity (96.6%) and specificity (85.9%) esti-
mates from the per-infant analysis with the RW-ROP preva-
lence ranging from 5% to 30% are reported in Table 6.

TABLE 6. The Positive and Negative Predictive Values From Image Evaluation of RW-ROP at Various Prevalence

Person-Level Analysis* Eye-Level Analysis†

Assumed Prevalence of
RW-ROP

Positive Predictive Value
(95% CI)*

Negative Predictive
Value (95% CI)*

Positive Predictive Value
(95% CI)

Negative Predictive
Value (95% CI)

5% 26.5% (16.8–39.1%) 99.8% (98.6–99.9%) 25.4% (18.3–36.0%) 99.1% (98.3–99.6%)
10% 43.2% (29.9–57.6%) 98.6% (97.0–99.9%) 41.3% (31.9–54.5%) 98.0% (96.5–99.3%)
15% 54.7% (40.4–68.3%) 99.3% (95.3–99.9%) 52.8% (42.5–65.8%) 96.9% (94.6–98.8%)
20% 63.1% (49.0–75.3%) 99.0% (93.5–99.9%) 61.3% (51.7–72.7%) 95.7% (92.4–98.3%)
25% 69.5% (56.1–80.3%) 98.7% (91.6–99.8%) 68.3% (57.8–78.2%) 94.3% (90.0–97.8%)
30% 74.6% (62.2–84.0%) 98.3% (89.4–99.8%) 73.1% (64.7–82.4%) 92.7% (87.9–97.1%)

* Predictive values were calculated by using sensitivity of 96.6% and specificity of 85.9% from the per-infant analysis in Table 4, their 95%
CIs were calculated using the logit transformation.

† Predictive values were calculated by using sensitivity of 83.7% and specificity of 86.8% from the eye-level analysis in Table 5, and their
95% CIs were calculated using the cluster bootstrap.
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When the prevalence was 5%, the PPV was low (26.5%,
95% CI = 16.8–39.1%) and NPV was high (99.8%, 95% CI =
98.6–99.9%). However, when the prevalence was 30%, the
PPV increased substantially (74.6%, 95% CI = 62.2–84.0%),
whereas NPV decreased slightly (98.3%, 95% CI = 89.4–
99.8%). When the same prevalence of RW-ROP ranging from
5% to 30% and the eye-level sensitivity (83.7%) and speci-
ficity (86.8%) were used to calculated eye-level PPV and NPV,
PPV values were similar, whereas the NPV values were less
than those from infant-level analysis (see Table 6).

CONCLUSION

The performance of an ocular test is evaluated using sensi-
tivity, specificity, and predictive values. When an ocular test
is performed in both eyes of some or all of the study subjects,
the statistical analyses for the validity of an ocular test are
best performed at the eye-level and account for the inter-eye
correlation by using either the GEE or cluster bootstrap to
provide accurate coverage of the confidence interval. Ignor-
ing the inter-eye correlation results in 95% CIs that are inap-
propriately narrow. Although analyzing data from two eyes
separately avoids the need to account for the inter-eye corre-
lation, such analyses are not efficient, producing CIs that are
wider than when both eyes are analyzed. When ocular test-
ing results will ultimately lead to a person-level decision (e.g.
when the ocular test is positive in either eye, the person
will be referred for diagnostic examination in both eyes),
the evaluation of an ocular test can be supplemented by
person-level analyses for sensitivity, specificity, and predic-
tive values.
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