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Abstract

Selection of endpoints for clinical trials in pulmonary arterial hypertension

(PAH) is challenging because of the small numbers of patients and the

changing expectations of patients, clinicians, and regulators in this evolving

therapy area. The most commonly used primary endpoint in PAH trials has

been 6‐min walk distance (6MWD), leading to the approval of several targeted

therapies. However, single surrogate endpoints such as 6MWD or hemo-

dynamic parameters may not correlate with clinical outcomes. Composite

endpoints of clinical worsening have been developed to reflect patients' overall

condition more accurately, although there is no standard definition of

worsening. Recently there has been a shift to composite endpoints assessing

clinical improvement, and risk scores developed from registry data are

increasingly being used. Biomarkers are another area of interest, although

brain natriuretic peptide and its N‐terminal prohormone are the only markers

used for risk assessment or as endpoints in PAH. A range of other genetic,

metabolic, and immunologic markers is currently under investigation, along

with conventional and novel imaging modalities. Patient‐reported outcomes

are an increasingly important part of evaluating new therapies, and several

PAH‐specific tools are now available. In the future, alternative statistical

techniques and trial designs, such as patient enrichment strategies, will play a

role in evaluating PAH‐targeted therapies. In addition, modern sequencing

techniques, imaging analyses, and high‐dimensional statistical modeling/
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machine learning may reveal novel markers that can play a role in the

diagnosis and monitoring of PAH.
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Pulmonary arterial hypertension (PAH) is a rare and
underdiagnosed condition, making it a challenge to
recruit enough patients for clinical trials to give reliable
results.1 This leads to variability in trial populations, as
broad inclusion criteria are necessary to maximize
recruitment.1,2 The introduction of PAH‐targeted treat-
ments has shifted the expectations of patients and
clinicians from prevention of deterioration to clinical
improvement,3,4 even though such endpoints are not yet
accepted by agencies such as the US Food and Drug
Administration (FDA) or European Medicines Agency
(EMA). Mortality‐driven trials may not be appropriate for
PAH, because there are few mortality events, particularly
in the presence of targeted therapies.4 This article
discusses the selection, strengths, and weaknesses of
endpoints for PAH clinical trials, and proposes a path
forward to the development of more relevant and
validated endpoints for future studies.

SINGLE ENDPOINTS

Up to now, the most common primary endpoint in PAH
trials, particularly during phase 3, has been 6‐min walk
distance (6MWD), and statistically significant improve-
ments in this parameter have led to regulatory approval
of targeted therapies.3–5 However, meta‐analyses have
indicated that exercise capacity at baseline or changes
after treatment do not reliably predict overall or event‐
free survival,6 or the effects of treatment on mortality.7

Threshold values of 6MWD, rather than changes, have
been used previously as prognostic predictors, with
higher mortalities in patients with 6MWD< ≈ 250
meters (m), and lower mortalities in patients with
6MWD> 440m.8,9 Accordingly, treatment guidelines in
PAH include 6MWD in assessments of mortality risk,
with values > 440m representing low risk, 165–440m
representing intermediate risk, and <165m representing
high risk.5 However, these 6MWD thresholds can be
arbitrary and there is often within‐interval heterogeneity
in patients. To improve the analysis of this important
patient‐centered outcome, a nonlinear term could be
included in the analysis (i.e., no assumption of a linear
relationship between 6MWD and mortality risk) rather
than creating threshold values.

Hemodynamic measures, such as pulmonary vascular
resistance, are commonly used as primary endpoints in
PAH trials, particularly during phase 2, and as secondary
endpoints in phase 3 trials.4 While fewer patients are
needed to show an improvement compared with other
outcomes, and they have the potential to predict survival
at baseline and after therapy,10 drug‐induced changes in
hemodynamics may not predict clinical events and
explain little of the variance in outcomes.11,12

COMPOSITE ENDPOINTS

Composite endpoints of clinical worsening have been
used in several PAH trials,3–5 but there is no standard
definition of clinical worsening, its relationship with
survival is not well defined, and individual components
are not weighted based on frequency or clinical impor-
tance.3,4 Although there are some clinical trial data
showing that patients who experience clinical worsening
are more likely to experience further clinical worsening
and mortality, further assessment of whether time to
clinical worsening is a valid surrogate for mortality
would be useful.3,13 Additionally, such event‐driven trials
may require longer follow‐ups with larger patient
populations, potentially increasing the time and costs
associated with the assessment of new drugs.4 Composite
endpoints of clinical improvement have been less widely
used than clinical worsening and it remains to be seen
how they might be employed in trials of add‐on
therapy.4,14–17

PAH risk scores, such as those derived from the
French, Swedish, Comparative, and Prospective Registry
of Newly Initiated Therapies for Pulmonary Hyper-
tension (COMPERA) registries, and the Registry to
Evaluate Early and Long‐term PAH Disease Manage-
ment (REVEAL), combine various measures to predict
prognosis, reflecting how a patient functions (World
Health Organization/New York Heart Association func-
tional class, 6MWD, right atrial pressure, and cardiac
index), feels (quality of life [QoL] measures), and
improves (mortality and morbidity).4,18,19 Studies that
applied risk scores to clinical trials as post hoc analyses
or exploratory endpoints have previously suggested that
risk scores distinguish between treatment arms in
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clinical trials15,18,20–22; however, an individual patient
data meta‐analysis of the SERAPHIN, GRIPHON, and
AMBITON clinical trials did not find that risk scores
were predictive of long‐term outcomes.23 REVEAL 2.0
and REVEAL Lite 2.0 have been shown to predict
prognosis in individual patients on treatment and have
excellent concordance indices (> 0.7),24–27 demonstrating
that they may have the potential to be used in clinical
practice. Risk scores can be seen as more clinically
meaningful than single endpoints, with a dynamic
relationship between changes in score and changes in
outcome, a key requirement for surrogate endpoints28;
however, further refinement of risk scores may be
necessary to infer surrogacy. It should also be noted that
no current scores examine right ventricular (RV)
function, which is essential to prognosis.

BIOMARKERS

Brain natriuretic peptide (BNP) and N‐terminal prohor-
mone of BNP (NT‐proBNP) are the only circulating
biomarkers currently used for risk assessment or as PAH
trial endpoints.2,5 Neither marker has been formally
validated, nor do they meet regulatory criteria, and there
is no standard testing protocol.2 In the GRIPHON study,
NT‐proBNP levels at baseline and after selexipag treatment
were prognostic for morbidity or mortality,29 and similarly
in PATENT‐2, NT‐proBNP levels before and after riociguat
treatment were associated with survival and clinical
worsening‐free survival.30 However, in the SERAPHIN
study, absolute levels of BNP and NT‐proBNP, but not
their changes, correlated with morbidity and mortality.31

Several markers appear to be associated with
prognosis in patients with PAH. For example, plasma
levels of galectin‐3, a circulating biomarker of fibrosis,
appear to be correlated with risk profile and mortality in
PAH.32,33 Insulin‐like growth factor binding protein
(IGFBP)‐4 has been linked to disease severity and patient
survival in PAH.34 IGFBP‐1 levels, along with eight other
PAH‐related proteins, were also correlated with a high
risk of mortality, and upon addition to the REVEAL
equation, improved the concordance indices.35 Proteomic
analyses have also revealed a panel of proteins that
provides prognostic information in PAH.35 Metabolic
pathways affected in PAH include glucose oxidation,
fatty acid oxidation, and glutamine metabolism.36 One
study reported that correction of metabolic abnormalities
was associated with improved outcomes in patients with
PAH.37 Gene variants have also demonstrated a similar
association, with bone morphogenetic protein receptor
type II mutations increasing disease severity, risk of
death, transplantation, and all‐cause mortality.38

There is a growing interest in identifying
gene variants that may predict responses to PAH
drugs; however, they have not been widely studied.2

Endothelin‐1 plays a critical role in the pathophysiology
of PAH; polymorphisms affecting endothelin metabolism
may influence the efficacy of endothelin receptor
antagonists.39 Based on gene‐expression profiles, tadalafil
has been reported to alter the expression of genes
associated with interleukin‐12 and maintenance of the
intracellular matrix in patients with PAH associated with
systemic sclerosis.40 Thus, differential gene‐expression
profiles may act as prognostic markers for responders
versus non‐responders.

IMAGING ‐BASED ENDPOINTS

Echocardiographic markers of adverse outcomes in PAH
based on European Society of Cardiology/European
Respiratory Society guidelines include pericardial effu-
sion and right atrial enlargement.41 Follow‐up data from
a 12‐week trial of prostacyclin in patients with PAH
showed that pericardial effusion, right atrial area, and
degree of septal shift in diastole were significant
predictors of the composite endpoint of death or
transplantation, while pericardial effusion and right
atrial area were independent predictors for mortality.41

In a prospective study of 63 patients with pulmonary
hypertension, every 1‐mm decrease in tricuspid annular
plane systolic excursion (TAPSE) was associated with a
17% increase in mortality.42

Several cardiac magnetic resonance imaging (cMRI)
parameters can assess hemodynamics and predict
outcomes such as clinical worsening and mortality.2,43

In a meta‐analysis of eight studies assessing 21 different
cMRI parameters, RV ejection fraction was the
strongest predictor of mortality in PAH, while RV
end‐diastolic and end‐systolic volume index, and left
ventricular end‐diastolic volume index were also
significant predictors of mortality.44 cMRI parameters
could therefore serve as clinical trial endpoints,2,43,45 as
seen in the REPAIR study,46 although the use of cMRI
is limited by availability and patient acceptability.
Utilizing high‐resolution computed tomography pul-
monary angiography to evaluate changes in cardiac,
vascular, and lung parenchymal findings in patients
with PAH may also have the potential to predict and
evaluate outcomes.2,47 Multivariate analyses based on
data from the ASPIRE registry, for example, have
shown that inferior vena caval area, and the presence of
pleural effusion and septal lines, were significant
predictors of mortality in untreated patients with
PAH.47
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PATIENT ‐REPORTED OUTCOMES

Early trials of PAH‐targeted therapies used generic QoL
scores or those developed for patients with heart
failure.48 The first pulmonary hypertension‐specific
patient‐reported outcome (PRO) questionnaire was the
Cambridge Pulmonary Hypertension Outcome Review
(CAMPHOR), which has good internal consistency and
the potential for applications in clinical trials and
cost–utility analyses.49 However, it contains 65 items,
and repeated assessments over time do not add predictive
value over that obtained at diagnosis.50 The 10‐question
emPHasis‐10 survey appears sensitive to clinical param-
eters and has been reported to predict prognosis.51 The
41‐item PAH Symptoms and Impact questionnaire
differentiates well between degrees of PAH severity.52

The 21‐item Living with Pulmonary Hypertension
questionnaire has been shown to be valid and reliable.53

PAH‐targeted therapies improve QoL in patients with
PAH.51 PROs may therefore be a quick, practical way to
identify treatments with little or no long‐term benefit. It
is advised by the FDA that PRO instruments are used
when measuring concepts best known by the patient
or best measured from the patient's perspective. It is
important to ensure that instruments yield consistent
and reproducible results; thus, PRO instruments are
thoroughly reviewed alongside clinical trial data to
substantiate any label claims.54 The amount and kind
of evidence required for a label claim are the same as for
a claim based on other data. In some populations, such as
PAH associated with connective tissue disease, improve-
ment of QoL is difficult55; therefore, this approach should
be applied with caution.

FUTURE DIRECTIONS

Adapting endpoints to the stage of drug
development

For phase 2 studies, invasive hemodynamics are likely to
remain an important endpoint until a reliable biomarker
of drug efficacy is discovered. For phase 3 studies,
composite endpoints, especially clinical improvement,
are expected to become the norm.

Surrogate endpoints

Biomarkers should be identified that can detect deterio-
ration of the patient before symptoms or functional class
change, predict clinical worsening and/or hospitalization
for heart failure, or detect potential “super responders.”56

Various genomic, transcriptomic, proteomic, and meta-
bolomic approaches have been used to identify pathways
in PAH that could serve as surrogate endpoints.2 Proteins
related to myocardial stress, inflammation, pulmonary
vascular cellular dysfunction, circulating cells, micro-
RNAs, exosomes, and cell‐free DNA are being investi-
gated.2,57 Probing blood and tissue repositories, such as
the National Institutes of Health/National Heart, Lung,
and Blood Institute Pulmonary Vascular Disease Phe-
nomics Program database,58 may reveal further potential
novel biomarkers and trial endpoints. The Redefining
Pulmonary Hypertension through Pulmonary Vascular
Disease Phenomics initiative aims to enroll patients to
undergo deep clinical phenotyping to aid in the develop-
ment of a new pulmonary hypertension classification
scheme based upon shared biologic features, in addition
to identifying molecular risk factors, pulmonary vascular
disease markers, and potential disease mediators.58

Advances in imaging, with xenon MRI, three‐
dimensional echocardiography, positron emission
tomography (PET), or advanced computed tomography,
possibly combined with other modalities such as genetic
testing, may disclose potential surrogate endpoints.2,43

RV–pulmonary arterial coupling detected by cMRI has
been shown to predict clinical worsening even in patients
with preserved RV ejection fraction.59 PET allows
abnormal glucose metabolism in PAH‐associated pulmo-
nary vasculature remodeling to be visualized and
measured by assessing the accumulation of the glucose
analog 2‐deoxy‐2‐[(18)F]‐fluoro‐D‐glucose (18FDG).60

Results from studies of 18FDG PET have shown that
lung standardized uptake values (SUVs) are significantly
higher in patients with pulmonary hypertension than in
healthy controls.61 Lung SUVs do not, however, appear
to correlate with other markers such as NT‐proBNP
levels, 6MWD, or echocardiography parameters.60,61 In
addition, lung SUV does not appear to predict mortality
in patients with idiopathic PAH.60 The value of 18FDG
PET for monitoring treatment response therefore
remains unclear.

Advances in monitoring

Continuous monitoring devices will provide new indices
of physical activity that could be used to assess functional
capacity; small studies of these devices in PAH and
related conditions have been reported.62–65 Home‐
measured 6MWD by digital devices and mobile phone
applications takes away the practical limitations of
conducting the traditional 6MWD test, which requires
dedicated hospital corridors, physicians, and travel time
for the patients.65 In addition, data can be collected more
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frequently and compared with hospital tests, potentially
providing a more accurate reflection of health status.
Although home‐measured 6MWD could prove useful for
routine outpatient monitoring and patient‐centered
studies, particularly in countries that lack resources, it
is unlikely to function as a reproducible clinical trial
endpoint due to the nature of unsupervised home testing.
Additionally, any digital device measuring 6MWD would
have to be validated to ensure accuracy versus the
traditional 6MWD test. Nevertheless, as 6MWD remains
an important outcome to patients, its prognostic value
still stands and improving its practicality in clinical trials
may still be of interest even if additional steps have to be
taken to ensure reproducibility.

As right heart catheterization (RHC) and imaging
techniques such as cMRI usually require the patient to be
prone, most hemodynamic studies report resting values. In
PAH, however, many symptoms are related to exertion, and
it may be valuable for future research to focus on exercise
hemodynamics, RV pressure–volume loops,66 RV−pulmo-
nary arterial coupling,67 and similar endpoints. Noninvasive
or minimally invasive hemodynamic monitoring devices68–70

could enable endpoints to be measured more frequently than
with RHC and under safer and more natural conditions.
This might be especially relevant to phase 2 trials. The
CardioMEMS Heart Failure system is an FDA‐approved
ambulatory implantable hemodynamic system that allows
clinicians to remotely monitor measures such as the capacity
of the right ventricle to respond to physiologic stress,
pulmonary arterial pressure, and stroke volume on a daily or
even hourly basis.70 This remote system has the potential to
be utilized in clinical trials to bring research opportunities to
more patients and may play a key role in therapy
optimization.

Patient‐focused endpoints

PROs must be further researched and validated, poten-
tially as secondary endpoints. The generic Short Form‐36
QoL score has been shown to predict prognosis in
patients with PAH.71–73

Patient utility assessments, such as the standard gamble,
which directly measures patients' assessment of their health
state, and time trade‐off assessments, which identify what
costs (e.g., payment, pill burden, or longer‐term outcomes)
they are willing to pay for a given improvement in their
condition,74 should be performed. These may be conducted
alongside or within a study, either as a standard endpoint or
part of a composite endpoint or PRO. Improvements in QoL
with targeted therapies do not always correlate with
objective assessments such as clinical failure14; this issue
requires investigation.

Refinement of risk scores

Prospective validation of multiple risk scores is needed,
including how they change over time, minimal clinically
important differences, and correlations between changes
in risk scores and patient outcomes. Patient health state
utility studies75 could be used to assign a weighting to
each component of a risk score according to its impact on
the patient; this would require consensus on the
weightings and validation of the modified score. Combi-
nation of imaging with risk scores may refine risk
stratification. Recent studies have reported that predic-
tion of 1‐year mortality can be improved by the addition
of right heart reverse remodeling detected by echo-
cardiography to the REVEAL 2.0 risk score,76 and by use
of percentage‐predicted RV systolic volume index on
cMRI in conjunction with the REVEAL 2.0 or French
risk scores.45 A study reporting on the addition of various
echocardiographic parameters to REVEAL Lite 2.0
demonstrated that a combination with left ventricular
end‐diastolic eccentricity index provided more statisti-
cally accurate risk predictions compared with the risk
stratification tool alone.77 Another study also reported
that the addition of surrogate markers of RV–pulmonary
artery coupling (RV basal diameter, right atrial area/
pressure, tricuspid regurgitation velocity, and TAPSE) to
COMPERA and French risk stratification tools improved
risk stratification.78 The REVEAL echocardiographic risk
score was derived using retrospective echocardiographic
data from the REVEAL registry database (RV chamber
enlargement, reduced RV systolic function, tricuspid
regurgitation severity, and pericardial effusion), and was
shown to discriminate risk and signal probability of 12‐
month survival.79 However, these findings should be
validated in larger, multicenter cohorts.

Current risk scores assume that the variables used are
independent of each other. A Bayesian network (BN)‐based
machine learning approach (titled Pulmonary Hypertension
Outcome Risk Assessment [PHORA]), allowing for variables
to affect outcomes both independently and through their
effects on other variables, was recently shown to be superior
to REVEAL 2.0 in predicting 1‐year survival of patients with
PAH.80 BN models that analyze continuous data, as well as
the categorical variables used in current risk scores, are
under development.80

New longitudinal composite ordinal outcomes could
increase statistical power, especially in comparison with
time‐to‐event analysis, and increase interpretability by
including death as part of the outcome scale without the
necessity of numerically scaling death against nonfatal
outcomes. While experience with these scales in PAH is
limited, a COVID‐19 trial recently used ordinal outcome
measures (hospitalization, death, and symptom count) to
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assess the effectiveness of a treatment in reducing
symptoms.81 The use of longitudinal ordinal outcomes
gives superior power when compared with the use of
pooling in composite outcomes, which is not able to
distinguish component outcome severities.

Analyses should be performed to determine whether
surrogate endpoints meet the coefficient of determina-
tion statistic, as proposed for validation of surrogate
outcomes in oncology.82

Fully sequential trials, enrichment
strategies, and patient phenotyping

The rarity of PAH means that many clinical trials recruit
modest numbers of patients and are statistically under-
powered. For example, the recent TRITON study
recruited only 247 patients to assess triple versus double
therapy in newly diagnosed patients.83 Fully sequential
trials may overcome this limitation as they incorporate a
flexible sample size calculation that avoids unnecessarily
large patient populations while ensuring that the trial is
appropriately powered. The design also incorporates
analyses at intervals during the trial to assess efficacy,
harm, or futility with the potential to inform the decision
to terminate the trial. Attempts could also be made to
recruit larger trial populations. Alternatively, enrichment
of trials with intermediate‐ or high‐risk patients could
improve their statistical power by increasing the fre-
quency of clinical endpoints. A preliminary study has
demonstrated the feasibility of using the REVEAL 2.0
risk algorithm for this purpose.84

Further research is needed to inform enrichment
strategies and better identify patient phenotypes and
their variations in response to treatment. “Deep pheno-
typing” with metabolomics, proteomics, transcriptomics,
and other technologies (e.g., advanced DNA and RNA
sequencing) might identify the molecular basis for the
variability in treatment response and aid the selection of
more appropriate trial populations.57 BN‐based machine
learning has been used to identify PAH immune
phenotypes associated with different clinical risks.85

Machine learning and big data analysis

High‐dimensional statistical models or machine learning
may permit deeper analysis of data to identify and/or
refine PAH endpoints and optimize study design. cMRI
coupled with machine learning has shown that RV motion
has greater prognostic benefits compared with conven-
tional imaging and biomarkers.86 Machine learning or big
data analysis should also be utilized to combine data from

PAH registries to enable data mining to link genomic,
demographic, and clinical data and outcomes to identify
surrogate endpoints and facilitate the design of more
representative clinical trials. For example, the PHORA was
designed to utilize BN‐based machine learning as a risk
prediction model and has been demonstrated to success-
fully predict 1‐year mortality and depict risk in the
REVEAL registry from which it was derived, but also in
external registry cohorts (COMPERA and Pulmonary
Hypertension Society of Australia and New Zealand
registry).80 Artificial intelligence may also play a part in
future trial design, but its role in the immediate future is
unclear. Retrospective analysis of clinical trial databases to
examine data continuously will likely demonstrate that
power can be increased while better revealing the time
course of treatment effects. Amalgamation of the numer-
ous PAH trial registries currently running throughout the
world could also reveal potential new endpoints.

Regulator perspectives

The FDA and the EMA encourage the use of time to
clinical worsening in PAH trials.4 The FDA has empha-
sized the importance of PROs for such trials,87 has no
objection to a PRO as the basis for drug approval,88 and has
described enrichment strategies for clinical trials to identify
a population in whom it is more likely that a beneficial
effect of treatment will be detected.89 The FDA considers
randomized discontinuation trials (RDTs) an important
enrichment strategy, in which all patients are treated with
the study drug, and then responders only are randomized
to a short‐term trial of placebo or study drug in the next
stage of the trial, and non‐responders are excluded.89 RDTs
may be particularly appropriate when placebo‐controlled
trials are no longer ethical, and statistical models suggest
that they reduce the sample size needed for phase 2 trials.90

The EMA has published recommendations for the design
of clinical trials in pediatric PAH.91

Equity, diversity, and inclusion

Diversity is an important aspect that should be scruti-
nized in future PAH clinical trials to ensure trial
populations are representative of the general patient
population. Overall, registries report that 70%–80% of
patients with PAH are female,92,93 which is consistent
with studies such as GRIPHON, SERAPHIN, PATENT‐1,
SUPER, PHIRST, and ARIES where between 78% and
80% of total patients were female.94–99 Although much is
still unknown about racial predispositions in PAH, the
REVEAL registry and data from the National Inpatient
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Sample showed that around 28% and 30% of patients with
PAH were from Black, Hispanic, Asian, or other non‐
White ethnic groups.100,101 In studies that quote data on
race/ethnicity, populations were predominately White,
with poor representation of ethnic minorities. For
example, the populations AMBITION, SUPER, and
PHIRST included only 12%, 15%, and 20% of non‐White
patients, respectively.14,97,98 Furthermore, pivotal studies
in PAH have primarily been conducted in high‐income
countries (Europe, North America, Australia, and Japan),
with some representation from countries in South
America, Asia, and the Middle East.14,94,96,98 Thus, many
patients are still facing health disparities due to the
accessibility of specialist centers and availability of
specific PAH therapies.102

Importantly, there appear to be treatment differences
among racial and ethnic groups, potentially caused by
socioeconomic disparities.103 To ensure equity and inclu-
sivity for minority and underrepresented populations with
PAH, it is essential that clinical trials are truly representa-
tive of the wider population. Some of the aforementioned
future directions of clinical trial endpoints may support a
move toward equity, diversity, and inclusion, with home
testing and monitoring systems allowing patients who

were previously unable to be enrolled in clinical trials due
to socioeconomic barriers to be recruited, increasing access
to PAH treatment. Furthermore, enrollment in clinical
trials can be a means for patients with low incomes or from
countries with limited resources to access novel
medications.

CONCLUSIONS

In clinical trials of PAH‐targeted therapies, emphasis has
moved away from single surrogate endpoints such as
6MWD to hard clinical outcomes such as clinical
worsening (Figure 1). In the future, this evolution will
continue, placing more emphasis on clinical improve-
ment rather than simply prevention of deterioration. The
role of risk scores in patient monitoring through the
disease process will also be further refined. The higher
cost of trials able to assess hard clinical endpoints, and
particularly event‐driven trials that can demonstrate
improvement, may prove too high for many smaller,
start‐up companies and affect the development of new
drugs. Hopefully, enrichment strategies and other novel
trial designs will help to make trials of clinical

FIGURE 1 Timeline of clinical endpoints in trials of pulmonary arterial hypertension (PAH)‐targeted therapies.9,14,15,17,95,104–109 aTime
to death, atrial septostomy, lung transplantation, initiation of treatment with intravenous/subcutaneous prostanoids, or worsening of PH.
bFirst event of clinical failure, which was defined as the first occurrence of a composite of death, hospitalization for worsening PAH, disease
progression, or unsatisfactory long‐term clinical response. cPatients at risk of 1‐year mortality with PDE5i treatment. dAbsence of clinical
worsening and prespecified improvements in at least two of three variables (6MWD, WHO functional class, and N‐terminal prohormone of
brain natriuretic peptide). 6MWD, 6‐min walk distance; ERA, endothelin receptor antagonist; FC, functional class; NYHA, New York Heart
Association; PDE5i, phosphodiesterase type‐5 inhibitor; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; WHO, World
Health Organization.
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improvement more practical. Figure 2 summarizes the
current situation and potential future developments.
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