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Abstract

Background: Hepatitis E virus (HEV) is one of most important zoonotic viruses, and it can infect a wide range of
host species. Avian HEV has been identified as the aetiological agent of big liver and spleen disease or hepatitis-
splenomegaly syndrome in chickens. HEV infection is common among chicken flocks in China, and there are
currently no practical measures for preventing the spread of the disease. The predominant avian HEV genotype
circulating in China have been identified as genotype 3 strains, although some novel genotypes have also been
identified from chicken flocks in China.

Results: In this study, we used a meta-transcriptomics approach to identify a new subtype of genotype 3 avian HEV
in broiler chickens at a poultry farm located in Shenzhen, Guangdong Province, China. The complete genome
sequence of the avian HEV, designated CaHEV-GDSZ01, is 6655-nt long, including a 5′ UTR of 24 nt and a 3′ UTR of
125 nt (excluding the poly(A) tail), and contains three open reading frames (ORFs). Sequence analysis indicated that
the complete ORF1 (4599 nt/1532 aa), ORF2 (1821 nt/606 aa) and ORF3 (264 nt/87 aa) of CaHEV-GDSZ01 share the
highest nucleotide sequence identity (85.8, 86.7 and 95.8%, respectively) with the corresponding ORFs of genotype
3 avian HEV. Phylogenetic analyses further demonstrated that the avian HEV identified in this study is a new
subtype of genotype 3 avian HEV.

Conclusions: Our results demonstrate that a new subtype of genotype 3 avian HEV is endemic in Guangdong,
China, and could cause high mortality in infected chickens. This study also provides full genomic data for better
understanding the evolutionary relationships of avian HEV circulating in China. Altogether, the results presented in
this study suggest that more attention should be paid to avian HEV and its potential disease manifestation.
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Background
Hepatitis E virus (HEV) is the causative agent of hepa-
titis E, which is an important public health concern in
many parts of the world, particularly in developing
countries [1, 2]. HEV is a non-enveloped,
single-stranded positive-sense RNA virus that belongs to
the family Hepeviridae and includes two genera,

Orthohepevirus and Piscihepevirus [3]. The genome en-
codes three open reading frames (ORFs) flanked by a
capped 5′ terminus and a polyadenylated 3′ terminus.
Among the three ORFs, ORF1 is the longest and is lo-
cated at the 5′ terminus of the genome; this ORF en-
codes a non-structural polyprotein including a
methyltransferase, a papain-like cysteine protease, a viral
helicase, and an RNA-dependent RNA polymerase
(RdRp) [4]. ORF2 is located at the 3′ end of the genome
and encodes a capsid protein, which is the major struc-
tural protein and functionally binds to host cells, induces
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neutralizing antibody production, and participates in
viral particle assembly [5, 6]. ORF3, which overlaps with
ORF2, encodes a cytoskeleton-associated phosphopro-
tein that interacts with the ORF2 protein and a number
of cellular signal transduction pathway proteins [7, 8].
As an important zoonotic virus, HEV can infect a wide

range of host species, and its host spectrum is ever
expanding. Since the first animal strain of HEV (i.e., swine
HEV) was isolated and characterized in 1997 in the
United States [9], numerous strains of HEV have been iso-
lated from a number of different animal species and a
wide range of geographic locations. Countries that have
reported HEV infections include Japan, Taiwan, New Zea-
land, mainland China, South Korea, Hungary, Australia,
the United Arab Emirates, and the Netherlands, among
others. The infected animal species include domestic and
wild pigs, chickens, rabbits, ruminants, ferrets, minks,
bats, rodents, and aquatic birds [3, 10].
Based on sequence analysis, most of the HEVs identi-

fied thus far belong to the genus Orthohepevirus, which
contains four species, designated A, B, C, and D [11, 12].
Avian HEV, belonging to Orthohepevirus B, has been
identified as the aetiological agent of big liver and spleen
disease (BLSD) or hepatitis-splenomegaly syndrome (HS
syndrome) in broiler breeder hens and laying hens aged
30 to 72 weeks, via the faecal-oral route [13]. Avian HEV
infection can cause increased mortality, a reduction in
egg production or subclinical infection, resulting in large
economic losses in the poultry industry [14, 15]. The
avian HEV genome shares approximately 50% nucleotide
sequence identity and some similar antigenic epitopes
with mammalian HEVs [13]. Various avian HEVs have
been classified into four different genotypes based on
full or nearly complete genomes: genotype 1, which is
mainly found in Australia and Korea [16, 17], genotype
2, from the USA and Korea [13, 18], genotype 3, from
Europe and China [19, 20], and genotype 4, from
Hungary and Taiwan [21, 22].

Avian HEV genotype 3 was first characterized in Hungary
in 2005 and was later detected in the United Kingdom,
Germany, and Austria before 2007 [16]. In China, an Avian
HEV genotype 3 strain designated CaHEV was first de-
tected and characterized in Shandong Province in 2010
[20]. Since then, avian HEV strains genotype 3 have been
identified in chickens with HS syndrome in many provinces
of China [15, 23–26]. In recent years, many previously
undescribed genotypes of avian HEV have been found in
different regions of China [27, 28], which suggests that
there is much greater diversity of avian HEV circulating in
chicken flocks in China than previously indicated.

Results
Meta-transcriptomics based pathogen discovery
Through an unbiased high-throughput RNA sequencing
approach, a total of 42,682,590 paired-end sequencing
reads were generated, resulting in 14.5 GB of fastq for-
mat sequence data. After default quality control (QC)
and de-barcoding steps provided by the Illumina plat-
form, 40,531,484 reads (95%) remained for further
analysis.
After de novo assembly using Trinity, a total of 48,891

contigs were generated, which varied from 201 to 9584 nt
in length. These contigs were compared to non-redundant
nucleotide databases (nt) via nucleotide Blast searches. A
total of 38,878 contigs (79.1%), 206 contigs (0.53%), and
21 contigs (0.05%) were annotated as belonging to eukary-
otes, bacteria, and viruses, respectively. The remaining 43
contigs (0.11%) were labelled as N/A, showing no taxo-
nomic information (Fig. 1a). All the contigs annotated as
eukaryotic were identified as coming from chicken RNA
sources, and no fungal pathogens were found. Those con-
tigs identified as bacterial came from species from the
genera Escherichia, Acinetobacter, Bradyrhizobium, Bacil-
lus, and Rhizobacter, which are ubiquitous in the natural
environment. Those contigs identified as viral were anno-
tated as avian HEV and avian leukosis virus (ALV).

Fig. 1 (a) Homology search results for contigs assembled from NGS clean reads . (b) Total NGS clean reads remapped to the reference sequence
and genome coverage
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Strikingly, the assembled contigs covered the nearly
complete genome sequence of avian HEV. The sequences
were confirmed by reverse transcription polymerase chain
reaction (RT-PCR), and 5′ and 3′ RACE were used to ob-
tain the terminal sequences. The virus sequence obtained
in this study was designated CaHEV-GDSZ01 and has
been deposited in GenBank under accession number
MK050107.
The sequence reads were subsequently mapped to the

virus genome to estimate sequencing coverage and
depth. Using the complete virus genome of
CaHEV-GDSZ01 as the reference sequence, 3317 reads
were remapped to the avian HEV sequence, with 99.5%
genome coverage (6621/6655 nt) and pairwise identity of
97.1% at a mean depth of 8× (Fig. 1b).

Sequence comparison
The complete genome of CaHEV-GDSZ01 consisted of
6655 nucleotides (nt) excluding the poly(A) tail at the 3′
end, and it contained three major ORFs. The genome
comprised a 5′ UTR of 24 nt (1–24), ORF-1 of 4599 nt

(25–4623), encoding a non-structural polyprotein of
1532 amino acids, ORF-2 of 1821 nt (4710–6530), en-
coding a capsid protein of 606 amino acids, ORF-3 of
264 nt (4657–4920), encoding a cytoskeleton-associated
phosphoprotein of 87 amino acids, and a 3′ UTR of 125
nt (6531–6655).
Multiple sequence comparisons based on individual

ORFs showed that the complete ORF1 of
CaHEV-GDSZ01 shared 80.8 to 85.8% nucleotide se-
quence identity and 92.0 to 95.0% amino acid sequence
identity with reference strains. The nucleotide sequence
identity between the complete ORF2 of CaHEV-GDSZ01
and the reference strains varied from 83.5 to 86.7%, while
the amino acid sequence identity between them was 98.0
to 99.3%, which were higher identities than those of the
complete ORF1 (Table 1). Additionally, sequence com-
parison of the complete ORF3 with reference strains re-
vealed that they shared 92.8–95.8% nucleotide sequence
identity and 89.7–100% amino acid sequence identity,
which was significantly higher than the identities of ORF1
and ORF2. Additionally, the nucleotide sequence identities

Table 1 Comparison of the nucleotide and amino acid identities of complete ORF1and ORF2 gene sequences among avian HEV
strains

Gene Strains 1 2 3 4 5 6 7 8 9 10 11 12

ORF1 1 MK050107/China 81.2 80.8 80.8 85.6 85.8 82.6 83.3 81.1 81.5 81.5 81.6

2 AM943647/ Australia 92.2 86.5 86.3 81.5 81.7 80.2 81.0 81.3 81.5 81.5 81.9

3 JN597006/South Korea 92.4 95.9 91.5 81.8 81.7 81.0 80.9 81.5 81.6 81.6 81.9

4 KC454286/South Korea 92.0 96.1 97.8 81.0 81.1 80.2 81.2 81.2 81.5 81.5 81.4

5 GU954430/China 94.8 93.0 92.6 92.2 98.3 82.5 83.1 81.1 80.6 80.6 81.6

6 AM943646/Hungary 94.8 93.1 93.0 92.6 98.8 83.0 83.3 81.2 80.9 80.9 81.6

7 JN997392/Hungary 93.7 92.0 92.2 91.8 94.1 94.3 87.3 80.5 81.1 81.1 81.1

8 KF511797/Taiwan 95.0 93.1 93.3 92.8 94.8 94.9 95.9 81.6 81.4 81.4 81.6

9 KM377618/South Korea 92.3 93.3 93.0 92.8 93.0 93.2 92.5 93.1 89.8 89.8 89.3

10 AY535004/United States 92.6 93.7 93.4 93.3 93.0 93.2 92.7 93.6 96.9 100 89.6

11 NC023425/ United States 92.6 93.7 93.4 93.3 93.0 93.2 92.7 93.6 96.9 100 89.6

12 EF206691/ United States 93.2 93.9 93.5 93.5 92.8 93.0 92.6 93.4 96.5 97.4 97.4

ORF2 1 MK050107/China 84.8 83.5 84.0 86.7 86.5 86.7 84.9 83.9 84.5 84.5 84.7

2 AM943647/ Australia 98.3 87.9 88.1 84.4 84.1 83.9 84.1 83.6 84.3 84.3 84.5

3 JN597006/South Korea 98.2 98.8 91.6 85.0 85.0 84.2 84.4 85.0 86.2 86.2 84.6

4 KC454286/South Korea 98.0 98.3 98.3 84.8 84.6 84.7 84.5 83.8 84.5 84.5 84.2

5 GU954430/China 99.0 98.8 98.7 98.5 98.5 87.3 85.0 84.0 84.5 84.5 84.1

6 AM943646/Hungary 98.7 98.7 98.3 98.2 99.7 87.1 84.8 83.6 84.4 84.4 84.0

7 JN997392/Hungary 99.3 98.7 98.5 98.3 99.7 99.3 87.9 84.0 84.9 84.9 84.6

8 KF511797/Taiwan 98.5 98.7 98.2 98.0 99.2 99.0 99.0 84.6 84.3 84.3 84.7

9 KM377618/South Korea 97.9 98.2 98.0 97.9 98.3 98.2 98.2 98.5 91.7 91.7 89.6

10 AY535004/USA 98.5 98.8 99.0 98.2 99.0 98.7 98.8 98.5 98.7 100 90.7

11 NC023425/USA 98.5 98.8 99.0 98.2 99.0 98.7 98.8 98.5 98.7 100 90.7

12 EF206691/USA 98.2 98.5 98.3 97.5 98.3 98.2 98.2 98.5 98.7 99.0 99.0

The comparison was done using MegAlign ClustalW analysis. Boldface indicates percentage identities of amino acid sequences
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of the 5’UTR and 3’UTR of CaHEV-GDSZ01 were 64.0–
88.0% and 54.3–83.7%, respectively, compared to other
avian HEV strains (Table 2).

Phylogenetic analysis
To examine the evolutionary relationships of avian HEV
determined in this study with other virus strains, phylo-
genetic analyses were performed based on the complete
nucleotide sequences of ORF1 and ORF2 of HEV. All
the phylogenetic trees were estimated using the max-
imum likelihood method with 1000 bootstrap replicates,
and the cutthroat trout virus was used as the outgroup
in each case.
Phylogenetic analysis based on the complete ORF1

showed that all known Orthohepeviruses, including the
virus newly identified CaHEV-GDSZ01, were divided into
four clades. All the viruses isolated in chickens, including
CaHEV-GDSZ01, clustered together and constituted the
species Orthohepevirus B. Furthermore, CaHEV-GDSZ01
was clustered together with two avian HEVs isolated in

China and Hungary with short branch lengths and was al-
located to the genotype-3 subclade of the Orthohepevirus
B species (Fig. 2a). A similar phylogenetic relationship was
observed in a maximum-likelihood tree based on the
complete sequences of ORF2 (Fig. 2b).

Selection pressure analysis
In the selection pressure analyses, as shown in Fig. 3, the
mean dN-dS values of ORF1, ORF2, and ORF3 were −
2.04, − 1.61, and − 0.37, respectively. Many negatively se-
lected sites were observed in ORF1, ORF2, and ORF3
(642, 305, and 7, respectively), while no positively se-
lected sites were found, which suggests a lack of positive
selected sites in the three ORFs examined.

Discussion
Avian HEV causes diseases that threaten the healthy de-
velopment of the poultry industry worldwide. Since the
CaHEV strain was first detected and characterized in
China in 2010, avian HEV genotype 3 strain has been

Table 2 Comparison of the nucleotide and/or amino acid sequences identities of complete ORF3, 5’UTR and 3’UTR gene sequences
among avian HEV strains

Gene Strains 1 2 3 4 5 6 7 8 9 10 11 12

ORF3 1 MK050107/China 93.9 92.8 92.8 95.5 95.8 95.8 95.8 93.2 93.2 93.2 93.2

2 AM943647/ Australia 95.4 96.6 95.8 93.9 93.6 94.3 94.3 95.5 95.5 95.5 95.5

3 JN597006/South Korea 94.3 96.6 95.8 93.6 93.2 93.9 93.2 95.1 95.1 95.1 95.1

4 KC454286/South Korea 93.1 95.4 96.6 93.6 93.2 93.9 94.3 93.9 93.2 93.2 93.2

5 GU954430/China 94.3 92.0 90.8 92.0 98.9 95.8 95.1 93.2 93.9 93.9 93.9

6 AM943646/Hungary 94.3 92.0 90.8 92.0 97.7 96.2 95.5 92.8 93.6 93.6 93.6

7 JN997392/Hungary 96.6 94.3 93.1 92.0 93.1 93.1 97.0 92.8 92.8 92.8 94.3

8 KF511797/Taiwan 100 95.4 94.3 93.1 94.3 94.3 96.6 92.0 92.0 92.0 92.0

9 KM377618/South Korea 92.0 95.4 92.0 90.8 87.4 87.4 89.7 92.0 97.0 97.0 97.0

10 AY535004/United States 93.1 96.6 93.1 92.0 88.5 88.5 90.8 93.1 98.9 100 97.0

11 NC023425/ United States 93.1 96.6 93.1 92.0 88.5 88.5 90.8 93.1 98.9 100 97.0

12 EF206691/ United States 89.7 94.3 90.8 89.7 88.5 88.5 93.1 89.7 94.3 95.4 95.4

3’UTR
/5’UTR

1 MK050107/China 77.5 76.7 74.4 82.9 83.7 54.3 74.4 78.3 76.0 76.0 81.4

2 AM943647/ Australia — 89.1 89.9 79.1 80.6 55.0 76.0 79.1 79.8 79.8 78.3

3 JN597006/South Korea 84.0 — 96.1 81.4 82.2 53.5 82.9 77.5 77.5 77.5 76.7

4 KC454286/South Korea 88.0 — 96.0 79.1 79.8 52.7 79.1 78.3 76.7 76.7 76.0

5 GU954430/China 64.0 — 64.0 68.0 97.7 54.3 83.7 85.3 83.7 83.7 85.3

6 AM943646/Hungary — — — — — 55.8 81.4 86.0 82.9 82.9 86.0

7 JN997392/Hungary — — — — — — 51.2 55.8 53.5 53.5 55.8

8 KF511797/Taiwan 80.0 — 88.0 92.0 60.0 — — 79.8 84.5 84.5 82.2

9 KM377618/South Korea 88.0 — 96.0 100 68.0 — — 92.0 89.1 89.1 93.0

10 AY535004/USA 88.0 — 96.0 100 68.0 — — 92.0 100 100.0 91.5

11 NC023425/USA 88.0 — 96.0 100 68.0 — — 92.0 100 100 91.5

12 EF206691/USA 88.0 — 96.0 100 68.0 — — 92.0 100 100 100

The comparison was done using MegAlign ClustalW analysis. Boldface indicates percentage identities of amino acid sequences. The italic font numbers show the
nucleotide sequences identities of 5’UTR among the avian HEV strains. —: Sequence couldn’t be obtained from GenBank
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identified as prevalent in many regions of China [15, 23–
26]. In recent years, many new avian HEV strains belong-
ing to a tentatively novel genotype of species Orthohepe-
virus B were detected in chickens in Hebei, Guangdong,
Anhui, and Jilin Provinces, China [28]. In this study, a
new subtype of genotype 3 avian HEV strain was

determined in broiler chickens with high mortality show-
ing the clinical symptoms of HS syndrome through un-
biased high-throughput sequencing. All of these results
suggest that there is a larger diversity of avian HEV circu-
lating in China, and avian HEV infection should be moni-
tored as an emerging disease agent on chicken farms.

A B

Fig. 2 Phylogenetic analysis based on the complete nucleotide sequences of ORF1 (a) and ORF2 (b) and reference isolates. The trees were
constructed based on the maximum likelihood method implemented in PhyML v3.0. Bootstrap values were calculated with 1000 replicates of the
alignment. GenBank accession numbers are followed by the name of avian HEV strains. Red dots indicate the avian HEV determined in this study

Fig. 3 Differences between non-synonymous and synonymous (dN-dS) rates plotted for avian HEV ORF1, ORF2 and ORF3. dN-dS < 0 indicates a
negatively selected site. dN-dS > 0 indicates a positively selected site
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The comparative analysis of individual ORFs among
avian HEV strains, including CaHEV-GDSZ01, showed
80.8–85.8%, 83.5–86.7%, and 92.8–95.8% nucleotide se-
quence identities for ORF1, ORF2, and ORF3, respect-
ively. Comparison of the amino acid sequence showed
higher identities: 92.0–95.0% for ORF1, encoding a
non-structural polyprotein; 98.0%-99.3 for ORF2, encod-
ing a capsid protein; and 89.7–100% for ORF3, encoding
a cytoskeleton-associated phosphoprotein. However, the
nucleotide sequence identities of ORF3 among all the
avian HEV strains were often higher than the amino acid
sequence identities, suggesting that non-synonymous
mutations may occur more frequently in this fragment
(Table 2).
In the phylogenetic analysis of the complete ORF1 and

ORF2, CaHEV-GDSZ01 was grouped with other viruses
of the Orthohepevirus B species isolated from chickens,
which were clustered into the genotype-3 subclade with
two avian HEVs isolated in China and Hungary. These
results were consistent with the results of sequence
comparison analyses of ORF1 and ORF2 indicating that
CaHEV-GDSZ01 showed the highest nucleotide se-
quence identity with the isolate from Hungary (accession
no. AM943646; 85.8% identity) and the isolate from
China (accession no. GU954430; 86.7% identity). Taken
together, these results suggest that CaHEV-GDSZ01 may
be a new subtype of avian HEV genotype 3.
In selection pressure analyses, negatively selected sites

were observed predominantly in ORF1, ORF2, and
ORF3, and no positively selected sites were observed,
suggesting that negative selection was predominant in
ORF1, ORF2, and ORF3. Additionally, the mean dN-dS
values of the three ORFs were − 2.04, − 1.61, and − 0.37,
respectively, also reflecting the predominance of negative
selection. Therefore, the results showed that the micro-
evolution of avian HEV seems to be driven by negative
selection (dN < dS) of all the three ORFs (summarized in
Fig. 3). This conclusion is consistent with the expected
behaviour of a small-genome virus, in which most com-
ponents are probably essential for viral viability.

Conclusion
Through unbiased high-throughput sequencing, we iden-
tified a new subtype of genotype 3 avian HEV from a
poultry farm experiencing high mortality of broiler chick-
ens showing HS syndrome. In combination with previous
studies, our results suggest a larger diversity of avian HEV
circulating in China, and much greater efforts should be
exerted towards the surveillance of avian HEV.

Methods
Case history and clinical sample collection
In May 2018, many 130-day-old broiler chickens on a
poultry farm in Shenzhen, Guangdong Province, China,

experienced a sudden mass die-off. The species of these
chickens was Qingyuan partridge chicken, one of the
three prevalent chicken species in Guangdong Province,
and all the chickens were are free roaming. All the de-
ceased chickens died naturally, and the clinical symp-
toms and postmortem lesions presented by the affected
chickens were recorded. The deceased chickens were
subjected to necropsy, and tissue samples from heart,
liver, spleen, lung, kidney, duodenum, brain, pancreas,
and bursa of fabricius were aseptically collected and
snap-frozen in liquid nitrogen immediately and stored at
− 80 °C for further use.

Total RNA extraction, library construction and NGS
sequencing
Approximately 100 mg of liver tissue from a chicken
with hepatitis-splenomegaly syndrome was homogenized
in 600 μL of lysis buffer by using a TissueRuptor instru-
ment (Qiagen). Total RNA was extracted by using an
RNeasy Plus Minikit according to the manufacturer’s in-
structions. The quantity and quality of extracted RNA
was evaluated with a NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, USA).
Ten RNA samples of liver tissues were pooled as one

mixed sample in equal-mass amounts. RNA library prep-
aration was conducted following the methodology previ-
ously described by Pettersson et al. [29]. Briefly, the host
ribosomal RNA (rRNA) was depleted by using a
Ribo-Zero-Gold (Epidemiology) kit (Illumina Inc., USA).
Subsequently, a library was constructed based on the
rRNA-depleted RNA samples using a TruSeq total RNA
library preparation kit (Illumina). Library cDNA levels
were quantified before, during and after library prepar-
ation with Qubit (ThermoFisher Scientific) high-sensitivity
RNA/DNA assays, and the fragment sizes were checked
with a Bioanalzyer (Agilent Technologies). Paired-end
(150-bp) sequencing was then performed on the Illumina
Hiseq2500 platform.

Transcriptome assembly and contig annotation
Transcriptome analyses were conducted following the
methodology previously described by Shi et al. [30]. Se-
quencing reads were demultiplexed and trimmed for
quality with Trimmomatic [31] before de novo assembly
using Trinity [32]. The resulting contigs were compared
against the entire nonredundant protein (nr) database
downloaded from GenBank by using BLASTX with an
E-value cutoff of 1E-5. Unmatched sequence reads were
assembled using Trinity. To confirm the assembly re-
sults, the reads were mapped back to the target contigs
with Bowtie2 [33], and any assembly errors were
inspected by using Integrated Genomics Viewer (IGV)
[34]. The final sequences of the virus genomes were
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obtained from the majority consensus of the mapping
assembly.

Sequence confirmation by RT-PCR and 5′/3’RACE
To confirm the sequences of the virus genomes and fill
the gaps generated in the merging of viral contigs with
unassembled overlaps by using the SeqMan program im-
plemented in the Lasergene software package v7.1
(DNASTAR), reverse transcriptase-PCR was conducted.
All primers were designed based on the transcriptome
assembly sequence, and amplicons were sequenced dir-
ectly by Sanger sequencing. The 5′ and 3′ ends of the
genome of avian HEV determined in this study were ob-
tained by 5′ and 3′ rapid amplification of cDNA ends
(RACE) using a RACE kit (TaKaRa, China). All primer
sequences are available upon request. Sequences were
assembled and manually edited to produce the final viral
genomes using the SeqMan program (DNASTAR, Madi-
son, WI).

Sequence comparison and phylogenetic analysis
DNASTAR’s Lasergene 12 Core Suite was used for
Sanger sequencing assembly and nucleotide sequence
translation. Sequence similarity was evaluated via a
BLASTn search in GenBank (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). The alignment of the sequences obtained
in this study and the existing reference sequences in
GenBank was carried out using ClustalW (default pa-
rameters) as implemented in the MEGA program, ver-
sion 6.0 [35].
The phylogenetic trees were estimated following the

methodology previously described by Lu et al. [36]. The
best-fit evolutionary model for all sequence alignments
was determined using jModel Test version [37]. The
General Time Reversible (GTR) nucleotide substitution
model with a gamma (Γ)-distribution model of
among-site rate variation and a proportion of invariable
sites (i.e. GTR + Γ + I) were found to be the best-fit
model for these sequences. Phylogenetic trees were esti-
mated using the maximum-likelihood (ML) method with
bootstrap support values calculated from 1000 replicates
implemented in PhyML v3.0 [38]. All phylogenetic trees
were mid-point rooted for purposes of clarity only.

Selection pressure analyses
The selection pressure of code sites was examined site
by site across the entire coding region of the genome
using the DataMonkey (http://www.datamonkey.org)
web server and assessed by calculating the difference be-
tween non-synonymous (dN) and synonymous (dS) rates
(dN − dS) for each ORF. All the analyses of the three
ORFs were performed using the SLAC method and the
REV nucleotide substitution bias model, and a P-value <
0.1 indicated negatively selected sites.
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