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P H Y S I C S

Double universality of the transition in the  
supercritical state
Cillian Cockrell and Kostya Trachenko*

Universality aids consistent understanding of physical properties and states of matter where a theory predicts 
how a property of a phase (solid, liquid, and gas) changes with temperature or pressure. Here, we show that the 
matter above the critical point has a remarkable double universality. The first universality is the transition be-
tween the liquid-like and gas-like states seen in the crossover of the specific heat on the dynamical length with a 
fixed inversion point. The second universality is the operation of this effect in many supercritical fluids, including 
N2, CO2, Pb, H2O, and Ar. Despite different structure and chemical bonding, the transition has the same fixed 
inversion point deep in the supercritical state. This advances our understanding of the supercritical state previously 
considered to be a featureless area on the phase diagram and a theoretical guide for improved deployment of 
supercritical fluids in green and environmental applications.

INTRODUCTION
Our view of the phase diagram of ordinary matter is dominated by 
the three states of solid, liquid, and gas, and the first-order phase 
transition lines between them, which branch out from the triple 
point. Of these phase transitions, two have coexistence lines that are 
finite in length, including the solid-gas sublimation line and the 
liquid-gas boiling line terminating at the critical point. The matter 
above the critical point, the supercritical matter, was not thought of 
as a distinct state of matter and instead seen as a homogeneous state 
intermediate to liquids and gases and lacking transitions. In partic-
ular, distinction between liquid-like and gas-like states within this 
region was thought to be impossible (1, 2). Critical anomalies, such 
as the heat capacity maxima, do not persist far beyond the critical 
point and furthermore depend on the path taken on the phase dia-
gram (3, 4). Understanding both the supercritical and liquid states 
involves several fundamental problems related to dynamical disorder 
and strong intermolecular interactions (1, 4–8). However, such un-
derstanding is believed to enhance the deployment of supercritical 
fluids in important green and environmental applications (2, 9–13).

The Frenkel line (FL) separates two qualitatively dynamical re-
gimes of particle motion: combined oscillatory and diffusive motion 
below the line and purely diffusive above the line (14). Practically, 
the line is calculated from either the dynamical criterion based on 
the minima of velocity autocorrelation function or the thermodynamic 
criterion based on the disappearance of transverse modes. This sep-
aration of the supercritical state into two different states involves a 
physical model. It is interesting to ask whether this separation can 
also be done in a way that is model free. A related question is whether 
the separation involves universality across all supercritical systems 
in terms of suitably identified physical parameters.

Here, we show that a deeply supercritical state has a clearly iden-
tifiable transition between liquid-like and gas-like states seen in the 
dependence of the specific heat cV on the dynamical length d, which 
is doubly universal. The first universality is a fixed path-independent 
inversion point of the cV(d) crossover, seen as the change of the 
sign of the derivative of cV with respect to d. The second universality 

is that the location of the inversion point is similar in all simulated 
fluids, including supercritical N2, CO2, Pb, Ar, and, to some extent, 
H2O. Supercritical water has an anomaly, displaying not only simi-
larities but also differences to the other systems in which the universal 
transition is identified. The inversion point therefore constitutes a 
system-independent, path-independent, and an unambiguous sep-
aration between two physically distinct supercritical states.

RESULTS
Specific heat and dynamical length
Using molecular dynamics (MD) simulations (see Methods for de-
tail), we have simulated several fluids with different structures and 
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Fig. 1. Specific heat as a function of the dynamical length in N2. Specific heat cV 
in the units of kB as a function of the dynamical length d in supercritical nitrogen 
across seven phase diagram paths spanning the supercritical state up to 240 times 
the critical temperature and 3700 times the critical pressure, showing the collapse 
onto the main sequence with an inversion point at cV ≈ 2.9 and ​​​ d​​  =  1 ​A ̊ ​​. Here and 
elsewhere, kB = 1.
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chemical bonding to ascertain the effect in a wide range of systems. 
We simulate molecular (N2 and CO2), metallic (Pb), hydrogen- 
bonded network fluid (H2O), and noble Ar. Supercritical CO2 and 
H2O are particularly important from the industrial point of view 
due to their deployment in extracting, cleaning, and dissolving en-
vironmental and green energy applications (2, 11–13). We simulate 
these fluids along several isobars, isotherms, and isochores in the 
deep supercritical state.

We zero in on the dependence of the specific heat cV on the dy-
namical length d = c, where  is liquid relaxation time (15) (for 
details of calculation and interpretation of , see Methods), and c is 
the transverse speed of sound. The specific heat, cV (heat capacity per 
atom), is an obvious important choice of a thermodynamic quantity 
because it reflects the degrees of freedom in the system. The role of 
the dynamical length d is that it sets the upper range of wavelengths 
of transverse phonons in the liquid-like regime of supercritical dy-
namics below the FL (14). Details of this mechanism are given in 
Methods. In the gas-like dynamics above the FL, d corresponds to 
the particle mean free path and sets the wavelength of the remaining 
longitudinal mode. This way, d governs the phase space available 
to phonons in the system. Since the energy of these phonons con-
tributes to liquid cV (4–8), we predict a unique universal relation-
ship between cV and d in the supercritical state.

We show the calculated plots of cV on d in nitrogen, carbon di-
oxide, lead, and water in Figs. 1 to 4. We set kB = 1 everywhere in the 
paper. The variation of cV and d shown in these figures corresponds to 
a very wide range of pressure and temperature in the supercritical part 
of the phase diagram. To illustrate this, we also plot several repre-
sentative paths simulated on the pressure and temperature phase dia-
gram using the data for argon in Fig. 5 (16) and the corresponding 
cV versus d in Fig. 6.

The dependence of cV on d across all simulated paths nearly 
collapses onto a group of “c”-shaped curves, which we refer to as the 

main sequence. The main sequence is c-shaped and has an inver-
sion point corresponding to the change of the sign of the derivative 
of cv with respect to d.

The origin of the inversion point is as follows. The dynamical 
length always has a minimum as a function of temperature when 
crossing from liquid-like to gas-like regimes of particle dynamics. 
Recall that this crossover is related to the dynamical crossover at the 
FL (14). In the liquid-like regime below the FL, particle dynamics 
combines oscillatory motion around quasi-equilibrium positions 
and flow-enabling diffusive jumps between these positions (15). In 
this regime,  and d = c decrease with temperature. In the gas-like 
regime above the FL, the oscillatory component of particle motion 
is lost, leaving the diffusive jumps only (14). In this regime, d 
becomes the particle mean-free path, which increases with tem-
perature (see Methods for more details). The inversion point is 
therefore related to the transition between liquid-like and gas-like 
particle dynamics.

The values of d and cV at the inversion point are physically 
meaningful. The value of d = 1 Å corresponds to the ultraviolet cutoff, 
approximately equal to the shortest length scale in the condensed 
matter system: the interatomic separation set by the length of the 
chemical bond. When d matches this length scale, the fluid stops 
supporting all transverse phonons simply because the modes with 
shorter wavelength are nonexistent. Concomitantly, particle dynamics 
can be viewed as the motion with the particle mean-free path ap-
proximately equal to the interatomic separation.

The value of cV of about 2 in monatomic argon and lead is im-
portant, too. cV = 2 corresponds to the loss of the contributions from 
the two transverse phonon branches, with only the kinetic part 
​​​(​​ ​c​ V​​  = ​ 3 _ 2​​)​​​​ and the potential part of the longitudinal mode ​​​(​​ ​c​ V​​  = ​ 1 _ 2​​)​​​​ 
remaining. Since this loss corresponds to the disappearance of the 
oscillatory component of particle motion, cV = 2 is taken as a ther-
modynamic criterion of the FL (8, 14). Phonon anharmonicity can 

Fig. 2. Specific heat as a function of the dynamical length in CO2. Specific heat 
cV as a function of the dynamical length d in supercritical carbon dioxide across six 
phase diagram paths spanning the supercritical state up to 33 times the critical 
temperature and 550 times the critical pressure, showing the collapse onto the 
main sequence with an inversion point at cV ≈ 2.9 and ​​​ d​​  =  1 ​A ̊ ​​.

Fig. 3. Specific heat as a function of the dynamical length in Pb. Specific heat cV 
as a function of dynamical length d in supercritical lead along eight phase dia-
gram paths spanning the supercritical state up to 20 times the critical pressure and 
3400 times the critical temperature, showing the collapse onto the main sequence 
but with path dependence remaining. The different paths exhibit the same quali-
tative behavior and share an inversion point of cV ≈ 2.0 and d ≈ 1 Å.
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change this result by a relatively small amount (8), and the disap-
pearance of transverse modes corresponds to cV = 2 approximately. 
The inversion point in nitrogen and carbon dioxide corresponds to 
cV = 2.8 − 2.9 (in molecular systems, cV is heat capacity per 
molecule) due to the additional rotational term contributing 1 to 
cV. Subtracting 1 from calculated cV, we arrive at cV = 1.8 − 1.9 as in 
monatomic fluids.

We note that the c plot is not limited in pressure and tempera-
ture as long as the system remains chemically unaltered (the same 
proviso as for the melting line), extending to the entire supercritical 
state of matter.

All phase diagram paths of different types in argon, nitrogen, 
and carbon dioxide collapse onto the main sequence curve. As 
discussed in the next section in more detail, cV(d) along different 
phase diagram paths follows the same c shape of the main sequence 
in lead, but moderate path dependence remains far from the inver-
sion point. This could be related to the electronic contribution (not 
accounted for in the theory based on phonons) represented by the 
many-body empirical potential in classical MD simulations.

Water, however, shows a different behavior in Fig. 4. This is not 
unexpected, given that water has many anomalies that continue to 
inspire inquiry and research (17, 18). Water’s supercritical state is 
little understood despite extensive exploitation in industrial and en-
vironmental applications (2, 11–13). The specific heat of liquid wa-
ter at the melting point at atmospheric pressure is almost twice as 
high as that of ice and is related to large “configurational” contribu-
tion to the liquid heat capacity. This contribution is related to 
water-specific hydrogen-bonded network undergoing the coordi-
nation change from four to six, with the associated contribution to 
entropy and specific heat (19). This effect precludes the description 
of water’s heat capacity using phonons only as discussed earlier. 
Although different paths still result in the c-shaped curves, we see 

significant path dependence in Fig. 4. cV at the inversion point varies 
in the range of about five to six per molecule. This higher cV can be 
understood as a result of the additional configurational term in water 
mentioned earlier as well as the rotational term. Nevertheless, the 
inversion points correspond to d close to 1 Å̊ as in previous fluids.

Path dependence
The universality of the inversion point and c-shaped main sequence 
curves observed in the previous section is best taken in the context 
of the path dependence of cV as a function of parameters other than 
the dynamical length d. In this study, we performed simulations 
along isobars, isotherms, and isochores. The dynamical parameter 
, the relaxation time introduced in the main article, provides a way 
to compare cV versus  along different paths. In Fig. 7, we observe 
substantial path dependence of cV(), which manifests in several dif-
ferent ways. The first is that different paths, particularly isochores, 
have different shapes from one another. The second is that these 
curves do not coincide at the values of cV or . Third, there is no 
fixed inversion point. This is to be contrasted to the main sequence 
curves seen in Figs. 1 to 4 and 6, wherein all phase diagram paths 
share a cross-system universal fixed inversion point at the minimal 
value of about d = 1 Å and cV = 2 (cV = 2 in monatomic fluids or 
appropriately modified cV in molecular fluids).

In summary, we see very different plots depending on which 
path on the phase diagram is chosen: There is no fixed inversion 
point, and all curves are far away from each other. This variation is 
removed once we plot cV versus d = c as seen in Figs. 1 to 4 and 6.

Similar to d,  is a dynamical parameter. However, the stark 
path dependence of cV() emphasizes that the c transition is not a 
consequence of simply reducing cV to dynamics, but that the intro-
duction of the special new dynamical parameter d = c is necessary 
to achieve a fixed inversion point and data collapse and to observe 
double universality discussed in the next section.
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the critical point, together with the boiling and melting lines, are shown.

1000 K

2000 K

1.6 g ml 1

2.2 g ml 1

2 kbar

5 kbar

10 kbar

20 kbar

0.5 1.0 1.5 2.0 2.5 3.0

3

4

5

6

7

8

9

10

d (Å)

c
V

(k
B)

Water

Fig. 4. Specific heat as a function of the dynamical length in H2O. Specific cV as 
a function of dynamical length d in supercritical water along eight phase diagram 
paths spanning the supercritical state up to 15 times the critical temperature and 
500 times the critical pressure, showing significant differences in behavior be-
tween different phase diagram paths including the location of the inversion point 
in cV and d.
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We observe that although there is a moderate path dependence 
of cV(d) for lead in Fig. 3, this path dependence of cV() in Fig. 7 is 
much more profound. Hence, in cases where the cV(d) plot does 
not achieve the full data collapse, it brings the paths significantly 
closer together.

Double universality
We now come to the main finding of this work related to double 
universality of the c transition. Figures 1 to 6 show the first univer-
sality: For each system, the c-transition plot has an inversion point 
that is fixed and corresponds to about d = 1 Å and cV = 2 (cV = 2 for 
monatomic systems or appropriately modified cV in molecular sys-
tems) for all paths on the phase diagram, including isobars, iso-
chores, and isotherms, and spanning orders of magnitude of 
temperature and pressure. This inversion point provides an unam-
biguous, theory-independent, and path-independent transition be-
tween liquid-like and gas-like states in the sense discussed earlier. 
The second universality seen in Figs. 1 to 6 is that this behavior is 
generic on the supercritical phase diagram and is the same for all 
fluids simulated.

To make the second universality more apparent, we analyze our 
four systems (which excludes water) on the same set of axes. To 
compare, we must remove the rotational degrees of freedom from 
the heat capacity of nitrogen and carbon dioxide, which amounts to 
subtracting 1 from cV, as mentioned earlier. This inter-system plot 
is presented in Fig. 8A.

The four fluids exhibit qualitatively similar main sequence 
curves: The c shape is present in all curves, and the divergent 
liquid-like branches converge into almost the same gas-like branch. 
This plot exhibits what we are calling “double universality”: the 
function cV(d) across not only different phase diagram paths but 
also different fluids converges at the universal inversion point 

approximately corresponding to cV = 2, d = 1 Å. The inversion 
point therefore constitutes a system-independent, path-independent, 
and unambiguous model-free separation between liquid-like and 
gas-like states in the supercritical state.
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Fig. 7. Specific heat as a function of relaxation time. cV of simulated Ar, N2, CO2, 
and Pb as a function of relaxation time  across different diagram paths.

Fig. 6. Specific heat as a function of the dynamical length in Ar. Specific cV as a 
function of the dynamical length, d = c across nine paths spanning the supercrit-
ical state of argon up to 300 times the critical temperature and 8000 times the 
critical pressure. All these paths collapse onto the main sequence curve, thereby 
undergoing a unified dynamic-thermodynamic transition at the path-independent 
inversion point cV ≈ 1.9 and ​​​ d​​  =  1 ​A ̊ ​​.
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DISCUSSION
To draw the analogy with ordinary phase transitions, we recall the 
behavior of liquid and gas densities on the coexistence line as the 
critical point is approached, depicted in Fig. 8B. The experimental 
relationship between reduced density and reduced temperature of 
the coexisting liquids and gases is system independent for several 
small, noble, and molecular elements near the critical point (20). In 
this plot, the specific microscopic details of different systems are 
often irrelevant to the qualitative behavior near a phase transition, 
and the transition falls into a universality class determined by sys-
tem symmetries and dimensionality (21).

The plots in Fig. 8A depict the relationship between a thermody-
namic quantity, cV, and a dynamical quantity, d. It is in this sense 
that we consider the c transition to represent a dynamical- 
thermodynamic transition. The system independence of the main 
sequence for simple fluids is further suggestive of a universal transition 

operating in the supercritical state. The fixed point of this dynamical- 
thermodynamic transition approximately corresponds to (d = 1 Å, 
cV = 2).

We note that the c transition is not observed in proximity to the 
critical point. The critical anomalies, caused by diverging correla-
tion lengths, present in this region disrupt the relationship between 
the dynamical length and the heat capacity in all systems studied here. 
As mentioned earlier, the inversion point is far above the critical.

We also note that the universal inversion point and the related 
dynamical transition at the FL corresponds to the solubility maxima 
(known as “ridges”) and optimal extracting and dissolving abilities 
of supercritical fluids (14). This importantly addresses the widely 
held belief that improved and more efficient deployment of super-
critical fluids will benefit from better theoretical understanding of 
the supercritical state (2, 9, 10). Our current results therefore give a 
universal way to locate the inversion point where the perfor-
mance of a supercritical fluid is optimized, improving the supercrit-
ical technologies.

In summary, we have shown that the supercritical state has a 
remarkable double universality. First, the transition between the 
liquid-like and gas-like states is characterized by fixed inversion 
point and near path independence. Second, this effect universally 
applies to many supercritical fluids. This provides new understand-
ing of the supercritical state of matter and a theoretical guide for 
improved deployment of supercritical fluids in green and environ-
mental applications.

METHODS
Simulation details
We used DL_POLY MD simulations package (22). For argon and 
nitrogen, we used the Lennard-Jones potential fitted to their prop-
erties. For nitrogen, we used a rigid two-site Lennard-Jones potential 
(23). The potential for carbon dioxide is a rigid-body nonpolariz-
able potential based on a quantum chemistry calculation, with the 
partial charges derived using the distributed multipole analysis 
method (24). The potential was derived and tuned using a large 
suite of energies from ab initio density functional theory calcula-
tions of different molecular clusters and validated against various 
sets of experimental data including phonon dispersion curves and 
PVT data. These data included solid, liquid, and gas states, as well 
as gas-liquid coexistence lines, and extended to high-pressure and 
high-temperature conditions (24). The potential used for water was 
TIP4P/2005 potential, which is optimized for high-pressure and 
high-temperature conditions (25). A careful analysis (26, 27) assigned 
this potential the highest score in terms of the extent to which the 
results agree with different experimental properties, including the 
equation of state, high-pressure and high-temperature behavior, and 
structure. The electrostatic interactions were evaluated using the 
smooth particle mesh Ewald method in the MD simulations of car-
bon dioxide and water. The potentials for water and carbon dioxide 
are rigid body potentials. Simulations of lead were performed using 
an embedded atom model potential (28), which has been used 
to calculate the properties of molten lead at temperatures up to 
25,000 K and 280 GPa, which include the range discussed here.

Systems are simulated along several isobars, isotherms, and iso-
chores in the deep supercritical state, with all paths but named 
exceptions being far from the critical point and Widom line (3) of 
their respective phase diagrams. Equilibration was performed in the 
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NPT ensemble with the Langevin thermostat to generate the mean 
densities along the isobars and isotherms. For argon, system sizes 
between 500 and 108,000 atoms were used with no discrepancy in 
calculated quantities, consistent with the earlier ascertained insensi-
tivity of viscosity to system size (29). System sizes of 512 molecules 
were used for water, nitrogen, and carbon dioxide simulations, and 
5120 atoms for lead. The timestep used was 1 fs for water and car-
bon dioxide and 0.5 fs for lead, which conserved total energy under 
the Velocity-Verlet integrator in the NVE ensemble to one part in 
105. Configurations at the target densities on all paths were then 
generated, which were then equilibrated with the NVT ensemble 
for 50 ps. Following this equilibration, we generated 20 indepen-
dent initial conditions for each state point using seeded velocities, 
and each of these initial conditions was run for 1 ns in the NVE 
ensemble, during which all properties were calculated.We calculat-
ed cV in the NVE ensemble as (30)

	​​ 〈 ​K​​ 2​ 〉 − ​〈K〉​​ 2​  = ​ 
f
 ─ 2 ​ ​NT​​ 2​​(​​1 − ​ 

f
 ─ 2 ​c​ V​​ ​​)​​​​	 (1)

with K being the kinetic energy and f being the number of trans-
lational and rotational degrees of freedom available to the molecule 
in question.

The shear modulus at high frequency and shear viscosity were 
calculated using the molecular stress autocorrelation function, from 
the Green-Kubo theory (31, 32)

	​​ G​ ∞​​  = ​  V ─ T ​ 〈 ​​​ xy​ ​(0)​​ 2​ 〉​	 (2)

	​   = ​  V ─ T ​ ​∫0​ 
∞

 ​​dt 〈 ​​​ xy​(t ) ​​​ xy​(0 ) 〉​	 (3)

with xy being an off-diagonal component of the microscopic stress 
tensor. The integration of the long-time tails of autocorrelation 
functions was implemented using the Green-Kubo formulas (33). 
The 20 independent initial conditions were used to average the 
autocorrelation function 〈xy(t)xy(0)〉 over these initial conditions. 
The end result for viscosity was insensitive to adding more initial 
conditions. The dynamical length d was calculated as d = c, where 
​  = ​   _ ​G​ ∞​​​​, ​​c​​ 2​  = ​ ​G​ ∞​​ _  ​​, and  is density.

Theory: Specific heat and dynamical length
In this section, we explain the physical origin of the interrelationship 
between the specific heat and the dynamical length in the supercrit-
ical state. The specific heat, cV, is an obvious important choice of a 
thermodynamic quantity because it reflects the degrees of freedom 
in the system. The dynamical length and its role are discussed below.

The choice of the dynamical parameter is informed by the Maxwell-
Frenkel viscoelastic theory (15, 34). A liquid has a combined re-
sponse to shear stress

	​​  ds ─ dt ​  = ​   ─  ​ + ​  1 ─ ​G​ ∞​​ ​ ​ 
d ─ dt ​​	 (4)

where s is the shear strain,  is the shear stress,  is the shear viscos-
ity, and G∞ is the high-frequency shear modulus. When the external 
perturbation stops, the internal stress relaxes according to

	​​ (t ) = ​​ 0​​ exp ​(​​ − ​ t ─  ​​)​​​​	 (5)
having introduced the Maxwell relaxation time 

	​   = ​    ─ ​G​ ∞​​ ​​	 (6)

Frenkel related this time to the average time between molecular 
rearrangements. This relationship is backed up by experiments and 
modeling (35, 36) and has become an accepted view (37).

Using Eq. 4, the Navier-Stokes equation can be generalized to 
include the elastic response of the liquid, yielding (8)

	​​ c​​ 2​ ​ ​∂​​ 2​ v ─ 
∂ ​x​​ 2​

 ​  = ​  ​∂​​ 2​ v ─ 
∂ ​t​​ 2​

 ​ + ​ 1 ─  ​ ​ 
∂ v ─ ∂ t ​​	 (7)

where v is the transverse velocity field, c is the transverse speed of 
sound ​c  = ​ √ 

_
 ​G​ ∞​​ /  ​​, and  is the density.

Seeking the solution of Eq. 7 in the form v = v0 exp (i(t − kx)) gives

	​   =  −  ​  i ─ 2 ​ ± ​√ 
_

 ​c​​ 2​ ​k​​ 2​ − ​  1 ─ 
4 ​​​ 2​

 ​ ​​	 (8)

For ​k  ≤ ​  1 _ 2c​​,  has no real solutions. For larger k, the plane waves 
decay according to the decay time . We therefore define kg as

	​​ k​ g​​  = ​   1 ─ 2c ​​	 (9)

which sets the shortest wave vector for propagating transverse 
phonons and corresponds to the gap in the phonon momentum 
space (38).

Here, we work in terms of the “dynamical length” featured in 
Eq. 9, d

	​​ ​ d​​  =  c​	 (10)

d sets the propagation range, or mean-free path of transverse 
phonons, in the liquid-like regime below the FL (14). This is seen 
from Eq. 8, which gives the decay factor ​​exp ​(​​ − ​ t _ 2​​)​​​​. Since  sets the 
time over which the shear stress decays in the liquid as discussed 
earlier or, in other words, the lifetime of transverse phonons, c is a 
measure of their mean-free path. This implies no phonons with 
wavelengths longer than the propagation range and is consistent 
with Eq. 9.

In the gas-like regime of particle dynamics above the FL (14), d 
corresponds to the mean-free path of particle motion, lFP (15). The 
shear modulus in a fluid with no interactions is G∞ = nT (31), where 
n is the concentration. Meanwhile, the gas-like viscosity is (39) ​  = ​
1 _ 3​  ​v​ th​​ ​l​ FP​​​, where vth is the thermal velocity and lFP is the particle 
mean-free path. Noting that ​​1 _ 2​  ​v​th​ 2 ​  = ​ 3 _ 2​ nT​, we find ​  = ​   _ ​G​ ∞​​​  = ​  ​l​ FP​​ _ ​v​ th​​​​. 
The dynamical length in the gas-like state is d = c = vth (since the 
speed of sound in the liquid-like state below the FL, c, approximately 
becomes thermal velocity of particles in the gas-like state above the 
FL, vth), and d = lFP.

We can now see the role played by the dynamical length in the 
liquid-like and gas-like regimes of the supercritical state. kg in Eq. 9 
increases with temperature because  decreases, and the dynamical 
length in Eq. 10 becomes shorter. This reduces the phase space 
available for transverse phonons (8). When  approaches its short-
est value comparable to the Debye vibration period D, kg approaches 
the Brillouin zone boundary because cD = a, where a is the inter-
atomic separation. At this point, all transverse modes disappear, 
corresponding to cV = 2 [this value is equal to the kinetic term ​​3 _ 2​​ and 
the potential energy of the remaining longitudinal mode ​​1 _ 2​​ (8)]. On 
further temperature increase, the system crosses over to the gas-like 
regime where the phonon phase space continues to reduce, albeit 
now for longitudinal phonons. In particular, the longitudinal 
phonons with wavelengths shorter than lFP disappear because lFP sets 
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the shortest wavelength in the system. The associated potential en-
ergy of the longitudinal phonons reduces, eventually resulting in ​​
c​ v​​  = ​ 3 _ 2​​ as in the ideal gas (8). Since the phonon energy contributes 
to liquid cV (4–8), we see that d directly affects cV because it gov-
erns the phonon states in the system.
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