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Abstract

Low-cost optical scattering particulate matter (PM) sensors report total or size-specific parti-

cle counts and mass concentrations. The PM concentration and size are estimated by the

original equipment manufacturer (OEM) proprietary algorithms, which have inherent limita-

tions since particle scattering depends on particles’ properties such as size, shape, and

complex index of refraction (CRI) as well as environmental parameters such as temperature

and relative humidity (RH). As low-cost PM sensors are not able to resolve individual parti-

cles, there is a need to characterize and calibrate sensors’ performance under a controlled

environment. Here, we present improved calibration algorithms for Plantower PMS A003

sensor for mass indices and size-resolved number concentration. An aerosol chamber

experimental protocol was used to evaluate sensor-to-sensor data reproducibility. The cali-

bration was performed using four polydisperse test aerosols. The particle size distribution

OEM calibration for PMS A003 sensor did not agree with the reference single particle sizer

measurements. For the number concentration calibration, the linear model without adjusting

for the aerosol properties and environmental conditions yields an absolute error (NMAE) of

~ 4.0% compared to the reference instrument. The calibration models adjusted for particle

CRI and density account for non-linearity in the OEM’s mass concentrations estimates with

NMAE within 5.0%. The calibration algorithms developed in this study can be used in indoor

air quality monitoring, occupational/industrial exposure assessments, or near-source moni-

toring scenarios where field calibration might be challenging.

Introduction

The direct measurement of time- and size-resolved particle matter (PM) concentrations is

essential to health-related applications, such as exposure assessments and air quality (AQ)

studies, but are challenging to implement at fine spatial and temporal scales. Human exposure
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to PM is associated with multiple adverse health effects, including cardiovascular disease, car-

diopulmonary disease, and lung cancer [1–7]. Estimates show that approximately 3% of car-

diopulmonary and 5% of lung cancer deaths are attributed to exposures to PM2.5 (particles less

than 2.5 μm in diameter) globally [8]. Particle deposition in the human respiratory tract and

the resultant adverse health effects depend on the particles’ size distribution [9, 10]. PM con-

centration varies significantly in space and time across community settings [11, 12]. Hence,

time- and size-resolved PM measurements are more informative than traditional total PM

weight measurements for assessing adverse health effects. As part of the Clean Air Act, the

National Ambient Air Quality Standard (NAAQS) set by the U.S. Environmental Protection

Agency (EPA) has adopted and established monitoring requirements for six criteria air pollut-

ants, including PM2.5 and PM10 [13, 14]. However, the sparse spatial distribution of govern-

ment monitoring sites makes fine spatial scale exposure assessment challenging [8].

Traditional PM measurement instruments are large and expensive, thus have limited use in

high spatial and temporal resolution mapping applications; these applications instead demand

compact, low-cost sensors with reliable performance.

Low-cost PM sensors find increasing use in various applications, including monitoring AQ

in the outdoor [15–18] and indoor environment [19–21] by academic researchers and citizen

scientists. The low-cost sensor networks have the potential to provide high spatial and tempo-

ral and resolution, identifying pollution sources and hotspots, which in turn can lead to the

development of intervention strategies for exposure assessment and intervention strategies for

susceptible individuals. Time-resolved exposure data from wearable monitors can be used to

assess individual exposure in near real-time [22].

As low-cost sensors find applications in pollution monitoring, and there is a need to charac-

terize and calibrate their performance under various conditions, calibration in controlled envi-

ronments with standardized test aerosols can provide the basis for such assessments. Various

studies have evaluated the performance of low-cost PM sensors in laboratory and field settings

[23–30]; these reports show that low-cost sensors yield usable data when calibrated against

research-grade reference instruments, although some drawbacks have been reported. One

common concern is that calibrations for number concentrations have not been reported, and

the mass concentration of the low-cost PM sensors is based on numerous assumptions. Sec-

ond, there is a lack of information on low-cost sensors’ ability to assess particle size distribu-

tions, which is critical for assessing health and environmental impacts. Third, calibrations

based on short-term field colocations with reference instruments are often limited by the

range of particle properties, concentrations, and environmental conditions and thus cannot be

generalized to other studies. This is a concern because with improving air quality in the devel-

oped nations, the typical PM2.5 levels are relatively low (<20 μg/m3); however, PM concentra-

tion during wildfires [31] and in occupational settings [32, 33] often exceeds regulatory limits

for short periods. In developing countries with less strict regulations, the PM level associated

with, e.g., traffic emissions [34], agricultural waste burning [35], indoor cooking [36] is signifi-

cantly higher. In these settings, field colocations with reference instruments required for cali-

bration studies can be challenging. Thus, evaluating low-cost PM sensors’ performance under

high and low loading conditions is necessary if the sensors were to be used in epidemiological

studies and PM surveillance networks.

Low-cost optical PM sensors rely on elastic light scattering to measure time- and size-

resolved PM concentrations; they are widely used in aerosol research, particularly when mea-

suring particles in the 0.5 μm to 10 μm range. Aerosol photometers that measure the bulk light

scatter of multiple particles simultaneously have limited success in measuring mass concentra-

tion [30]. Typical low-cost (<$100) particle monitors often yield unreliable number concen-

trations data [37], but PM mass estimation error can be as high as 1000% [38]. Also, low-cost
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sensor measurements may suffer from sensor-to-sensor variability due to a lack of quality con-

trol and differences between individual components [30, 37]. Sensor geometry can be opti-

mized to reduce the effect of particle CRI. Researchers have addressed CRI sensitivity by

designing optical particle sizers (OPSs) that measure scattered light at multiple different angles

simultaneously [39] or by employing dual-wavelength techniques [40]. However, these solu-

tions involve complex and expensive components not suitable for compact, low-cost devices.

Optimizing the detector angle relative to the excitation beam can reduce dependency on CRI

[41]; however, this approach has not been translated to high volume production.

Some commercially available low-cost sensors provide output in total particle counts or par-

ticle mass concentrations, and some provide size-specific counts or mass concentrations. These

quantities are not measured directly as an individual particle’s scattering signature (as in the sin-

gle particle counters) but are estimated by the OEM proprietary algorithms. These algorithms

have inherent limitations because particle scattering depends on the particles’ composition, size,

shape, and CRI [42]. A common workaround is to collect PM on a filter after or in parallel with

the OPS measurements. The filters are analyzed to determine their average particle optical prop-

erties; these data are then used to correct the optical measurements after the fact.

Environmental conditions can affect sensor output, e.g., a non-linear response has been

reported with increasing RH [43–47]. High humidity (RH > 75%) creates challenges for parti-

cle instruments; e.g., significant variations were observed between different commercially

available instruments, such as Nova PM sensor [43] and personal DataRAM [45]. In addition,

the RH measurement approach could also affect the sensor output [43, 44], e.g., the RH mea-

surement based on reference monitoring site rather than inside the sensor enclosure may be

different due to the microenvironment and transient effects. The selection of reference instru-

ments with different measuring principles may also influence the calibration of low-cost sen-

sors. For example, the calibration of the Plantower PM sensor in Jayaratne et al., 2018 was

based on the tapered element oscillating microbalance (TEOM), while Zusman et al., 2020 cali-

brated the same sensor against the beta attenuation monitor (BAM) and federal reference

method (FRM) measurements [29, 44]. The integrated mass measurements cannot account for

temporal particle size and concentration variation during the calibration experiment. The

instruments that directly measure aerosol size and concentration can be a better fit for sensor

calibration [30, 48]. The calibration against aerodynamic particle sizer (APS) or single optical

particle counter instruments can potentially provide a more robust calibration for low-cost

optical particle sensors. Correlating particle diameter measured low-cost sensor to aerody-

namic diameter measured by an APS is relevant since the aerodynamic diameter determines

particle deposition in the respiratory tract.

This study presents calibration for PMS A003 (Beijing Plantower Co., Ltd, China; referred

to as PMS hereafter) sensors as a function of particle sizes and concentration, as well as the

PM2.5 and PM1 indices. The calibration is based on four polydisperse standard testing aerosols,

including the Arizona Test Dust (ATD), two types of ceramic particles, and NaCl particles.

The PMS data from six sensors were calibrated against the APS for particle size range 0.5–

10 μm and number concentration in the range of 0–1000 #/cc. A standardized laboratory

experimental protocol was developed to control the PM concentration, environmental condi-

tions and to assess sensor-to-sensor reproducibility.

Materials and methods

Plantower PMS A003 and sensor test platform

The low-cost sensor PMS A003 was evaluated. The sensor’s photodiode is positioned perpen-

dicular to the excitation beam and measures the ensemble scattering of particles in the optical
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volume. The scattering light intensity is then converted to a voltage signal to estimate PM

number density and mass concentration using a proprietary calibration algorithm. The PMS

provides estimated particle counts in six size bins with the optical diameter in 0.3–10 μm

(#/0.1L) range and mass concentration (μg/m3) for PM1, PM2.5, and PM10. The mass concen-

trations are reported for two settings: "factory" and "atmospheric" conditions. The factory con-

dition applies a correction factor (CF) of unity to the concentration measured, whereas the

"atmospheric" condition is designed for use in the ambient environment.

Six PMS units were installed on a custom printed circuit board (PCB), which also included

a Bosch BME680 temperature and relative humidity (RH) sensor (Fig 1). All sensors were con-

nected to an Arduino Nano microcontroller through a data selector (multiplexer NXP

74HC4051 breakout board, Sparkfun, Boulder, CO). The controller collects data from the six

PMS sensors and an RH and temperature sensor simultaneously with the data acquisition rate

of 1 Hz. The data reported in "factory" mode were used in the analysis.

The reference instrument used in this study is the TSI Aerodynamic Particle Sizer (APS)

3321 spectrometer. APS measures both the aerodynamic size and optical size of a particle.

Using the time-of-flight principle, the APS measures size-resolved particle counts with aerody-

namic particle diameter (AD) of 0.523 to 20 μm in 52 size bins. The lower detection limit for

optical size is 0.37 μm. The APS’s optical sensor detects particles with AD<0.523 μm, but they

can not be resolved based on their aerodynamic size. Thus these particles are assigned to a sin-

gle bin<0.523 μm. The aerodynamic size determined the particle’s aerodynamic behavior,

such as settling velocity or penetration into the respiratory tract. Thus, we evaluate the

Fig 1. Photograph test platform, consisting of six PMS units mounted on the PCB, a temperature and humidity

sensor, a multiplexer, and an Arduino microcontroller.

https://doi.org/10.1371/journal.pone.0259745.g001
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correlation between the PMS number concentrations and the APS aerodynamic size bin num-

ber concentrations. The instrument estimates mass concentration by assuming spherical parti-

cles and particle density input. APS reports particle concentrations with a 5-second resolution.

In the experiments, the sampling inlet was placed near the PMS sensors. Per APS specifica-

tions, the maximum recommended particle concentration is 1000 #/cm3 at 0.5 μm with < 5%

coincidence. Therefore, the total number concentration of the aerosols in the test chamber was

maintained below 1000 #/cc (105 #/0.1L).

Aerosol chamber tests

We tested four polydisperse aerosols: Arizona Test Dust (ATD) (Powder Technology Incorpo-

rated, Arden Hills, MN), polydisperse W210, and W410 ceramic particles (3M™, St. Paul, MN),

and sodium chloride (NaCl) particles. NaCl particles were generated by nebulizing the aque-

ous solution of 10% wt [49]. The challenge aerosols’ properties and typical size distributions

are summarized in Table 1 and S3 Fig., respectively. The experiments were conducted in a cus-

tom-built aerosol chamber (0.56 m × 0.52 m × 0.42 m) (Fig 2). A full description of the cham-

ber can be found in ref [50]. The PMS sensor platform was placed in the well-mixed aerosol

test chamber, elevated to the same height as the APS inlet. The APS sampled particle-laden air

through static-dissipative tubing to eliminate electrostatic losses in the tubing. Particles were

generated using a medical nebulizer (MADA Up-Mist Medication Nebulizer) [51]. During the

experiments, the RH was controlled by nebulizing deionized water using a separate nebulizer

or introducing dry filtered air; tests were conducted in the range of RH = 17%– 80%. Two mix-

ing fans inside the chamber provided well-mixed conditions through the experiments; particle

concentration was continuously monitored.

We controlled the aerosol generation rate by adjusting the compressed air flow rate to the

nebulizer. The aerosol generation was stopped when the total number concentration (based on

the APS count) reached 1000 #/cm3. Then, the particle concentration was allowed to decay as

the chamber was evacuated at a rate of 9.8 L/min; the make-up air entering the test was aspi-

rated through a HEPA filter. The sensor array data and the APS data were acquired via two

universal serial buses (USB) cables in real-time until the total number concentration from the

APS reached 15 #/cm3.

Data analysis and modeling

The collected data with concentrations > 1000 #/ cm3 were removed. The number concentra-

tion reported by the APS was aggregated as summarized in Table 2 to match the cumulative

number concentrations of the PMS. The 1-second PMS measurement and 5-second APS mea-

surement were aggregated to obtain 1-minute averaged data for calibration. The smallest size

bin of the APS (< 0.523 μm) was used as a reference for calibrating PMS size bin> 0.3 μm.

Table 1. Characteristics of the standard testing aerosols used in the study [52].

Aerosol ATD W210 W410 NaCl

Composition SiO2, Al2O3, Fe2O3, Na2O a Alkali aluminosilicate ceramic Alkali aluminosilicate ceramic Sodium Chloride

Assumed density (g/cm3) 2.5–2.7 b 2.4 2.4 1.03

CRI 1.63 1.53 1.53 1.54

a Four major components are listed.
b For analysis purposes, a density of 2.6 g/cm3 was used.

https://doi.org/10.1371/journal.pone.0259745.t001

PLOS ONE Calibration of low-cost particle matter sensor for size-resolved particle count and PM2.5 measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0259745 November 11, 2021 5 / 18

https://doi.org/10.1371/journal.pone.0259745.t001
https://doi.org/10.1371/journal.pone.0259745


Fig 3 shows the data from all six PMS sensors during the typical experimental run. In all

experiments, the time-series of the uncalibrated concentration measurements from the six

PMS sensors were consistent for all size bins (Pearson correlation coefficient (r) > 0.98) (S4–

S12 Figs). The data consistency between the six sensors allows us to develop generalized mod-

els by fusing the readings from all sensors and then correlating the data against the APS mea-

surement with matching time stamps for each size bin. The calibrations models of the

following form were fit for number concentration data from the APS and PMS:

APSt ¼ b0 þ b1 PMSt þ εt ð1Þ

where APSt is the number concentration for each aggregated APS size bin at timestamp t;

PMSt is the linear term of the PMS measurement (the number concentration of each PMS size

bin) at timestamp t; RHt is the RH measurement of the Bosch BME680 sensor at timestamp t;

β0 and β1 are regression coefficients; εt is the residual. In addition to Eq (1), other forms of

Fig 2. A 3D view of the experimental setup.

https://doi.org/10.1371/journal.pone.0259745.g002

Table 2. The PMS manufacturer’s specified size bins and mass indices with the corresponding reference APS aero-

dynamic size bins for calibration.

PMS indices Reference APS indices

Number concentration
> 0.3 μm counts aggregated from all size bins (< 0.523 μm and 0.542–19.81 μm)

> 0.5 μm counts aggregated from size bins 0.542–19.81 μm

> 1 μm counts aggregated from size bins 1.037–19.81 μm

> 2.5 μm counts aggregated from size bins 2.642–19.81 μm

> 5 μm counts aggregated from size bins 5.048–19.81 μm

> 10 μm counts aggregated from size bins 10.37–19.81 μm

Mass concentration
PM1 mass aggregated from size bin < 0.523 μm– 0.965 μm

PM2.5 mass aggregated from size bin < 0.523 μm– 2.458 μm

PM10 mass aggregated from size bin < 0.523 μm– 9.647 μm

https://doi.org/10.1371/journal.pone.0259745.t002
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linear models adjusted for relative humidity, particle density, and CRI were evaluated (S1

Table). For calibration of mass concentration, models including quadratic terms of the PMS

measurement were evaluated (S1 Table). Since the test temperature variations were within

±2˚C, the temperature was not included as a variable in the models. Based on a priori assump-

tion that the PMS particle count and mass indices should be zero when the APS count is zero,

the intercept (β0) of the models was set to zero. The number of terms included in the optimal

calibration model for each size bin was determined based on the Bayesian Information Crite-

rion (BIC). The models with lower BIC were chosen as the optimal models. After identifying

the optimal models using BIC and estimating model coefficients, the model was then applied

to the pre-calibrated 1-minute PMS measurement to produce the post-calibrated concentra-

tions for model evaluation. Calibration performance was assessed using the normalized mean

absolute error (NMAE), which was calculated using the following equation [53]:

NMAE %ð Þ ¼
MeanðjCPMS post� cal � CAPSjÞ

MeanðCAPSÞ
ð2Þ

where CPMS_post-cal is the post-calibrated 1-minute averaged PMS concentration and CAPS is

Fig 3. Time-series plots of the uncalibrated, 1-second number concentration measurement from the six PMS sensors are presented. The experiments were

conducted under 30% relative humidity with W210 aerosols.

https://doi.org/10.1371/journal.pone.0259745.g003
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the 1-minute averaged APS concentration. The linear models were fitted using the lm function

in R. All the analyses were conducted using R version 3.6.3.

Results and discussion

Test conditions

During the experiments, the average temperature in the chamber was 24.8˚C (range: 23.2 to

26.6˚C), the RH was varied in the range of 17.5–79.4%, all experiments were performed at

atmospheric pressure conditions. The one-minute APS total number concentration averaged

237.9 #/cm3 (range: 8.5 to 985.9 #/cm3). The one-minute PM2.5 measurement from the APS

and PMS before calibration (6 sensors pooled together) averaged 106.0 μg/m3 (range: 1.9 to

641.3 μg/m3) and 51.5 μg/m3 (range: 0 to 218.8 μg/m3), respectively.

Particle size distribution

The particle size distribution of each test aerosol by the APS is shown in S3 Fig. The NaCl par-

ticles (from the nebulized liquid solution) were the smallest among the test aerosols, with

nearly all particles < 3 μm. The W410 mixture had slightly larger particles than W210 and had

the same CRI as W210 [52]. Fig 4 shows the typical particle size distributions reported by the

PMS and the APS; the APS bins were aggregated to match the PMS. For all aerosols and all

tested concentrations, the PMS appeared to underestimate particle counts for the size bin 0.5–

1 μm and 1–2.5 μm. For larger size bins (2.5–5 μm and 5–10 μm), the PMS overestimate the

particle counts. The particle count varies significantly in the lowest size bin (PMS: dp = 0.3–

0.5 μm; APS: dp <0.523 μm). Both the APS and PMS use the optical channel. Since APS is a

single particle instrument, its detection limit is based on the excitation wavelength, photode-

tector sensitivity, and particle optical properties; it is reported to be 0.37 μm. The PMS does

not count every single particle; it relies on the internal calibration of the bulk scattering signal.

Fig 4. A comparison of the size distribution measured by the APS and PMS using OEM calibration: Data from one of the six PMS for ATD, NaCl, W210, and

W410 particles taken 15 minutes after the aerosols were introduced into the chamber. The data from APS bins are aggregated to match the size bins reported by PMS.

For PMS bin 0.3–0.5 μm, APS bin< 0.523 μm was used for comparison.

https://doi.org/10.1371/journal.pone.0259745.g004
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The PMS OEM calibration significantly overestimates the counts in the 0.3–0.5 μm size range.

For PMS, we measured the lower detection limit for the number concentration for the NaCl

particles. In NaCl particle experiments, the initial (non-zero) response in the most sensitive

PMS bin (dp > 0.3 μm) was observed at ~ 83 #/0.1 L as measured by APS. The PMS sensors

seemed to follow the overall trends in the size distribution of the particles greater than 0.5 μm;

however, the number concentration and particle sizing do not agree with the single-particle

counter. Thus, calibration is needed if PMS is to be used for PM number concentration

measurement.

Model fit

Despite the apparent shift in size distribution shown by Fig 4, a matrix of Pearson correlations

between the PMS number concentrations (before calibration) and the APS reference number

concentrations for different size ranges suggests that the matching size bins between the two

instruments are well-correlated (S1 Fig). Notably, the PMS number concentration data corre-

lated well with the APS for size bin up to 2.5 μm (r> 0.97). For measurement of size bin larger

than 2.5 μm, the PMS exhibited moderate correlation with the APS (r<0.78). The worst corre-

lation was observed for particles > 5 μm.

A similar Pearson correlation matrix comparing the mass concentrations measured by the

PMS (before calibration) and the APS for different particle size ranges suggests a good correla-

tion between matching sizes (S2 Fig). The PM1, PM2.5, and PM10 measurements by the PMS

all exhibited high correlations with their corresponding sizes measured by the APS (r>0.90).

Because of the close correlations between corresponding APS and PMS size-specific mea-

surements (S1 and S2 Figs), the sizes listed in Table 2 were chosen to develop calibration mod-

els for both PM number concentration and PM mass concentration. For example, APS size

bin> 0.5 μm number concentrations was chosen as the reference (independent variable) for

calibrating the PMS size bin> 0.5 μm number concentrations (dependent variable). Based on

the same rationale, the corresponding APS mass concentration measurement was chosen as

the reference for calibrating the PMS mass concentration index. The densities for each testing

aerosol are shown in Table 1; these were used to determine the APS mass concentration mea-

surement for calibration.

After fitting a set of alternative calibration model forms to the APS and PMS number con-

centration data, the results show excellent R2 and low NMAE for>0.3 μm, >0.5 μm, and

>1 μm size bins when the full range of concentrations from 0–1000 #/cm3 was used for fitting

(Table 3 and S2 Table). However, the model performance was worse for larger size bins, i.e.,

>2.5 μm, >5 μm, and>10 μm size bins. Based on the previous findings on the impacts of rela-

tive humidity on optical particle sensor output and particle optical properties, the models

adjusted for CRI and RH were considered in addition to the linear model, see Table 3. For

most size ranges, the relatively simple linear model without the CRI dependent term per-

formed nearly as well as the models with the additional parameters. The BIC suggests that the

models (shown in bold in S2 Table) with the adjustment for CRI and RH have similar NMAE.

The table also includes the models based on the lower concentration data (data points with

APS total number concentration <100 #/cm3). The models based on the low PM concentra-

tion do not perform as well as the full range concentration models.

The OEM calibration for PM mass concentration showed significantly better agreement

with the reference instrument than the OEM number density calibration. An additional qua-

dratic term was included for fitting mass concentration data, as shown in Table 4 and S3

Table. Similar to the number concentration models, restricting the mass concentration model

to only lower concentrations (data points with APS total number concentration <100 #/cm3)
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resulted in worse performance vs. model based on the entire concentration range. The optimal

models (shown in bold in S3 Table) included quadratic terms of PMS measurement, terms

related to particle properties, and environmental conditions (CRI, density, and in some cases,

RH) resulted in NMAE < 3.4% for the entire concentration range. Compared to the relatively

simple linear models without these added parameters (CRI, density, and RH terms), the

improvements in NMAE for models adjusted for these parameters tended to be larger than

those observed for the number concentration models. The inclusion of quadratic term of PMS

measurement in these optimal models also highlighted the non-linearity in the OEM’s mass

concentrations estimates (Table 4 and S3 Table). CRI adjustment did not produce a signifi-

cantly better fit for mass concentration calibration. In addition, the R2 values of the PM10 mod-

els (ranged between 0.85–0.88) are lower than the R2 values of the PM2.5 models (ranged

between 0.94–0.96), which potentially indicated that the sensor performance dropped for par-

ticle size within the range of 2.5–10 μm. The poorer performance of the PMS for the coarse

PM fraction was observed; the relationship between the estimated PMS and APS mass concen-

tration values for the coarse size fraction (i.e., particle sizes from 2.5 to 10 μm) was markedly

worse than smaller size fractions (S13 Fig).

Table 3. Summary of the calibration models for number concentration, R2, BIC, and the NMAE of the calibration models.

Indices Equation Regression a R2 BIC NMAE

Full concentration range (APS total number concentration 0–1000 #/ cm3) (n = 4,134)
>0.3 μm Linear y = 5.93 x 0.99 78723 2.20%

Linear + CRI + RH y = 6.00 x—1090 CRI + 28.23 RH 0.99 78567 2.06%

>0.5 μm Linear y = 14.17 x 0.98 79716 2.92%

Linear + CRI + RH y = 14.40 x—1434 CRI + 40.68 RH 0.98 79518 2.78%

>1 μm Linear y = 14.85 x 0.96 76002 2.88%

Linear + CRI + RH y = 14.98 x—784.93 CRI + 26.40 RH 0.97 75884 2.89%

>2.5 μm Linear y = 2.20 x 0.66 62906 3.87%

Linear + CRI + RH y = 2.42 x—156.71 CRI + 3.38 RH 0.68 62695 3.95%

>5 μm Linear y = 0.11 x 0.31 38958 2.71%

Linear + CRI + RH y = 0.14 x—2.41 CRI—0.06 RH 0.33 38848 2.83%

>10 μm Linear y = 0.11 x 0.70 8117 3.66%

Linear + CRI + RH y = 0.14 x—2.41 CRI—0.06 RH 0.71 8000 3.68%

Lower concentration range (APS total number concentration< 100 #/ cm3) (n = 1,838)

>0.3 μm Linear y = 4.84 x 0.97 30263 7.96%

Linear + CRI + RH y = 4.94 x—358.12 CRI + 13.68 RH 0.97 30235 7.94%

>0.5 μm Linear y = 14.17 x 0.93 30285 10.39%

Linear + CRI + RH y = 10.83 x—385.61 CRI + 18.91 RH 0.94 30234 10.23%

>1 μm Linear y = 14.85 x 0.92 26963 8.50%

Linear + CRI + RH y = 11.10 x—105.04 CRI + 10.59 RH 0.93 26713 7.57%

>2.5 μm Linear y = 2.20 x 0.60 14298 7.73%

Linear + CRI + RH y = 0.45 x—8.38 CRI + 0.48 RH 0.66 14018 7.22%

>5 μm Linear y = 0.11 x 0.35 -2612 11.52%

Linear + CRI + RH y = 0.003 x + 0.007 CRI + 0.002 RH 0.44 -2869 11.91%

>10 μm Linear y = 0.11 x 0.19 -5846 15.16%

Linear + CRI + RH y = 0.002 x + 0.003 CRI + 0.0003 RH 0.22 -5920 17.91%

a y: APS measurement; x: PMS measurement.

Definition of abbreviations: n = number of data points.

https://doi.org/10.1371/journal.pone.0259745.t003
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Fig 5 shows a comparison between the pre-calibrated and post-calibrated PMS and APS

particle number concentrations for full and lower concentration ranges. The pre-calibrated

(OEM) number concentration vs. APS exhibits a linear trend over the entire range for all aero-

sols; however, the PMS underestimates the number of particles. The calibration significantly

improves the agreement demonstrating the importance of calibration and the accuracy gains

from applying calibrations. The simple linear relationship shows excellent agreement over the

entire range of particle concentration and properties, the fitting parameter are shown in

Table 3.

For mass concentration (Fig 6), the PMS does not increase linearly compared to APS esti-

mates, especially at higher concentrations. We do not have a satisfactory explanation for the

non-linear trend when using the OEM calibration. Also, we observed a notable discrepancy in

the PMS and APS relationship between ATD and other test aerosols, which may be related to a

wide range of particle CRI in ATD; see Table 1. The graphical comparison is consistent with

our results from Table 4 that shows lower NMAE for the models with a quadratic term. Over-

all, the mass concentration models adjusted for particle and environmental specific properties

such as CRI, density, RH, as well as adjustment for non-linearity, seem to be necessary.

Table 4. Summary of the calibration models for mass concentration a, R2, BIC, and the NMAE of the calibration models.

Indices Equation Regression b R2 BIC NMAE

Full concentration range (APS total number concentration between 0–1000 #/ cm3) (n = 4,134)

PM1 Linear y = 1.06 x 0.96 25852 3.11%

Polynomial y = 0.76 x + 0.007 x2 0.97 24480 2.41%

Linear + CRI + density y = 1.13 x + 13.88 CRI—10.13 density 0.97 24181 2.84%

Polynomial + CRI + density y = 0.83 x + 0.01x2 + 14.44 CRI—9.58 density 0.98 23432 2.33%

PM2.5 Linear y = 2.29 x 0.94 42435 4.53%

Polynomial y = 1.55 x + 0.006 x2 0.96 41341 3.41%

Linear + CRI + RH y = 2.51 x—23.27 CRI + 0.36 RH 0.95 41565 4.07%

Polynomial + CRI + RH y = 1.80 x + 0.004 x2–15.55 CRI + 0.42 RH 0.96 41152 3.44%

PM10 Linear y = 1.53 x 0.85 49963 3.56%

Polynomial y = 0.72 x—0.003 x2 0.88 48959 2.61%

Linear + CRI + RH y = 1.69 x—39.14 CRI + 0.56 RH 0.87 49544 3.31%

Polynomial + CRI + RH y = 0.73 x + 0.003 x2–17.94 CRI + 0.75 RH 0.88 48931 2.61%

Lower concentration range (APS total number concentration< 100 #/ cm3) (n = 1,838)

PM1 Linear y = 0.72 x 0.90 6211 10.10%

Polynomial y = 0.91 x—0.02 x2 0.91 6053 9.23%

Linear + CRI + density y = 0.57 x + 4.80 CRI—2.68 density 0.93 5746 8.16%

Polynomial + CRI + density y = 0.80 x—0.02 x2 + 4.93 CRI—2.95 density 0.93 5694 8.08%

PM2.5 Linear y = 1.10 x 0.91 11170 9.14%

Polynomial y = 1.34 x—0.01 x2 0.91 11087 8.80%

Linear + CRI + RH y = 0.97 x -1.87 CRI + 0.16 RH 0.92 10890 8.01%

Polynomial + CRI + RH y = 1.14 x—0.006 x2–2.43 CRI + 0.17 RH 0.92 10885 7.97%

PM10 Linear y = 0.63 x 0.89 11878 9.30%

Polynomial y = 0.86 x—0.01 x2 0.90 11686 8.53%

Linear + CRI + RH y = 0.54 x—2.15 CRI + 0.20 RH 0.91 11627 8.01%

Polynomial + CRI + RH y = 0.78 x—0.004 x2–3.57 CRI + 0.21 RH 0.91 11461 7.75%

a The APS mass concentration measurement was obtained with the assumed density for testing aerosols in Table 1.
b y: APS measurement; x: PMS measurement

Definition of abbreviations: n = number of datapoints.

https://doi.org/10.1371/journal.pone.0259745.t004
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Conclusions

This study evaluated the PMS sensors and reported the calibration algorithm for both number

concentration and mass concentration. We found that the PMS’s number concentrations can

be corrected using a simple linear model, and mass concentrations can be better corrected

using a polynomial model. Although the BIC indicated models adjusted for particle properties

and environmental conditions are statistically superior, those models did not significantly

improve NMAE. When restricting the fit to the lower concentration, the model’s accuracy

decreases for both number and mass concentration, and the larger size bins tended to have

higher errors. We used particles in a relatively narrow range of CRIs (1.53–1.64) and densities

(1.03–2.7 g/cm3), and our RH was restricted within 17–80%. If the particle properties and

environmental conditions of interest are significantly different from tested scenarios, one may

Fig 5. A comparison of the pre-calibrated and post-calibrated number concentrations by full and lower concentration range. The blue line represents the 1:1

relationship between the PMS and APS concentration.

https://doi.org/10.1371/journal.pone.0259745.g005
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need to consider these effects. Despite these limitations, these results are relevant when size-

resolved number concentration is desired, especially for using these sensors in high concentra-

tion environments, including indoor air quality monitoring, occupational/industrial exposure

assessments, or near-source monitoring scenarios. Since the test aerosols used in this study are

applicable for several occupational health scenarios, a better exposure assessment could be

achieved. In monitoring near-source and indoor air quality, where field calibration might be

challenging, the more general algorithms applicable for a broader concentration range and

known particle properties could substitute for the labor-intensive gravimetric measurements.

The low-cost monitors also enable the development of distributed sensor networks with a

much higher special resolution than those currently available from government air quality

monitoring sites.

Fig 6. A comparison of the pre-calibrated and post-calibrated mass concentrations by full and lower concentration range. The blue line represents the 1:1

relationship between the PMS and APS concentration.

https://doi.org/10.1371/journal.pone.0259745.g006
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Supporting information

S1 Fig. Pearson correlation between the uncalibrated PMS number concentration (6 sen-

sors pooled together) and APS number concentration for different size ranges.

(TIF)

S2 Fig. Pearson correlation between the uncalibrated PMS mass concentration (6 sensors

pooled together) and APS mass concentration for different size ranges.

(TIF)

S3 Fig. The normalized particle size distribution of the Arizona Test Dust (ATD), NaCl,

W210, and W410 measured by the APS. The median diameter of the ATD, saline, W210 and

W410 aerosol are 0.94 μm, 0.86 μm, 0.92 μm and 0.96 μm, respectively.

(TIF)

S4 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 0.3 μm).

(TIF)

S5 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 0.5 μm).

(TIF)

S6 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 1 μm).

(TIF)

S7 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 2.5 μm).

(TIF)

S8 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 5 μm).

(TIF)

S9 Fig. Pearson correlation between pairs of PMS for number concentration (for size

range > 10 μm).

(TIF)

S10 Fig. Pearson correlation between pairs of PMS for mass concentration (for PM1).

(TIF)

S11 Fig. Pearson correlation between pairs of PMS for mass concentration (for PM2.5).

(TIF)

S12 Fig. Pearson correlation between pairs of PMS for mass concentration (for PM10).

(TIF)

S13 Fig. A comparison of the pre-calibrated PM1, PM2.5, PM10, and PMcoarse size fraction

(i.e., particle sizes from 2.5 to 10 μm).

(TIF)

S14 Fig. A comparison of the pre-calibrated and post-calibrated number concentrations by

different size bins.

(TIF)

PLOS ONE Calibration of low-cost particle matter sensor for size-resolved particle count and PM2.5 measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0259745 November 11, 2021 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259745.s014
https://doi.org/10.1371/journal.pone.0259745


S1 Table. Forms of linear model fitted for number concentration and mass concentration

for calibration.

(DOCX)

S2 Table. Summary of the R2, Bayesian Information Criterion (BIC), and the Normalized

Mean Absolute Error (NMAE) of the calibration models for number concentration.

(DOCX)

S3 Table. Summary of the R2, Bayesian Information Criterion (BIC), and the Normalized

Mean Absolute Error (NMAE) of the calibration models for mass concentration.

(DOCX)
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