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Local electronic descriptors for solute-defect
interactions in bcc refractory metals
Yong-Jie Hu 1, Ge Zhao2, Baiyu Zhang3, Chaoming Yang1, Mingfei Zhang 1, Zi-Kui Liu 4, Xiaofeng Qian3 &

Liang Qi 1*

The interactions between solute atoms and crystalline defects such as vacancies, disloca-

tions, and grain boundaries are essential in determining alloy properties. Here we present a

general linear correlation between two descriptors of local electronic structures and the

solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory

metals (such as W and Ta) with transition-metal substitutional solutes. One electronic

descriptor is the bimodality of the d-orbital local density of states for a matrix atom at the

substitutional site, and the other is related to the hybridization strength between the valance

sp- and d-bands for the same matrix atom. For a particular pair of solute-matrix elements, this

linear correlation is valid independent of types of defects and the locations of substitutional

sites. These results provide the possibility to apply local electronic descriptors for quanti-

tative and efficient predictions on the solute-defect interactions and defect properties in

alloys.
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Solute atoms, whether they are added voluntarily for specific
needs, inevitably remained as impurities after the synthesis,
or introduced during the materials service, can affect var-

ious properties of alloys by changing the stability and mobility of
crystalline defects1–5. One characteristic example is body-
centered-cubic (bcc) refractory alloys based on group V (V, Nb,
Ta) and VI (Mo, W) elements. These alloys are usually composed
of a single bcc solid–solution phase, of which many properties are
mainly managed by controlling the interactions of crystalline
defects with solute elements, especially transition metal
elements4,6–10. These interactions can be quantitatively char-
acterized as the solute–defect binding energy, which is often cor-
related with the elastic strain energy variations caused by the size
mismatch between solute and matrix atoms at different atomistic
sites11–13. Beyond elastic interactions, especially in/near the core
regions of defects, the variations in local electronic structures and
chemical bonding caused by solute and defect geometries should
contribute to the solute–defect binding energies, so this variation
is usually referred to as the electronic contribution in the
literature14,15. Understanding and quantifying these electronic
contributions are critical for both fundamental science and
technological development of advanced alloys in future.

Scientifically, a general physics-based model is required to
explain electronic effects on the solute binding for various types
of defects and alloys recently found by first-principles calcula-
tions. The solute–defect binding in bcc refractory metals seems to
show strong dependences on the electronic features of solute
elements. A unique regularity—the solute–defect interaction
becomes more attractive when the solute element has more
valence electrons—has been reported for the interactions between
transition metal elements and various types of crystalline defects
in W/Mo alloys in different dimensions, including vacancies16,
dislocations4,6,17, and grain boundaries (GBs)18.

Technically, quantifying the electronic contributions may
provide effective and robust descriptors to represent the features
of materials in the complex compositional and structural spaces.
Both first-principles calculations and atomistic simulations using
empirical potentials are often difficult to provide computationally
efficient and chemically accurate descriptions for various types of
complex defects simultaneously, especially for alloy systems. The
recent development of data-centric materials science based on
machine learning methods may help resolve the problem. How-
ever, these new methods usually require the descriptors derived
from physical principles to improve their transferability19–21.
Electronic structures related to defect–solute interactions can be
potential candidates for such descriptors, which have been sug-
gested by many recent first-principles calculations. Some of these
studies were related to electronic band filling effects14,22,23; others
also indicated alternative electronic structure features that can
affect energetic properties of the transition metal alloys, including
d-band bimodality24, the transition between eg and t2g orbital
sets25, eg/t2g population ratio17, and upper band edge26.

Using first-principles calculations based on density functional
theory (DFT), herein we show that the binding behavior between
transition metal substitutional solute elements and various types
of crystalline defects (zero-, one- and two-dimensional (0D, 1D,
and 2D, respectively)) in non-magnetic bcc refractory metals is
highly correlated to the variations in the local electronic struc-
tures of the matrix atom in the unalloyed defect. This correlation
largely depends on two electronic descriptors inspired by tight-
binding theory24,27–30. One descriptor is the variation in the
bimodality feature of the d-orbital local density of states (LDOS)
of the matrix atom before substitution; the other is the change in
the bond hybridization strength between the valance sp- and d-
bands of the same matrix atom. Moreover, based on these two
electronic descriptors, a linear regression model is proposed to

describe the solute–defect interaction energies in binary alloys of
bcc refractory metals with transition metal substitutional solutes.
For a particular pair of solute–matrix elements, this linear cor-
relation is valid independent of types of defects and the locations
of substitutional sites. We also provide detailed examples to
demonstrate the promising potential of this correlation for effi-
cient predictions of the defect–solute interaction energies at dif-
ferent atomic sites in complex defect structures. The prediction
accuracy can be further improved by a residual-corrected non-
parametric regression model solely based on descriptors estab-
lished from the local electronic structures of the matrix atom. The
observed generality of the solute–defect interaction can provide
physical guidance on the proper selection of solute elements in a
quantitative manner to control the crystalline defects in alloys
with targeted properties.

Results
Solute interaction and LDOS of dislocation core. Figure 1a
shows the calculated interaction energy (i.e., binding energy) Eint
between the 1

2 111h i screw dislocation core and five types of
transition metal substitutional solutes in bcc W, namely, Ta, Re,
Os, Ir, and Pt. In this paper, positive/negative values of Eint
indicate attractive/repulsive interactions between solutes and
defects. The dislocation structure is fully relaxed to reach its
equilibrium state in pure W and subsequently used for solute
substitution. The interaction energies are calculated under two
conditions: relaxing and fixing atomic positions during the total
energy calculations of the solute-doped dislocation structures.
Therefore, the difference between the relaxed Erelax

int

� �
and fixed-

lattice interaction energies Efix
int

� �
gives the energy gained by the

relaxation of the W lattice upon the solute substitution. As shown
in Fig. 1a, both the relaxed and fixed-lattice interaction energies
are negative for the solute with fewer d electrons than W and
become more positive when the solute has more d electrons. In
addition, the relative difference between Erelax

int and Efix
int is small for

all the solutes. These results indicate that the observed depen-
dence of the interaction energies on the number of d electrons of
the solute element mainly originates from the local changes in the
electronic structure near the dislocation core rather than the
effects of the lattice relaxation upon the solute substitution.

Owing to the localized characteristics of d orbitals, the LDOS of
transition metals can display considerable shape features that are
characteristic of the given crystal structure27,29. Using W as an
example, Fig. 1b shows that the bcc structure results in a bimodal
d-band LDOS (solid-blue line) with a pseudo-band gap in the
middle of the d-band, while the LDOS of close-packed structures
(i.e., face-centered cubic (fcc)/hexagonal close-packed (hcp)) has
a unimodal shape (solid-orange line). Interestingly, it is found
that the LDOS of the W atom surrounding the screw dislocation
core (dashed-blue line) also has a less bimodal shape compared to
that of perfect bcc, as a consequence of the change in local
atomistic structures. Similar variation in LDOS is also observed
for the 1

2 111h i screw dislocation in Nb and Mo31. The bimodality
distinction of LDOS was found previously to be essential for
differentiating the energetic stabilities between the bulk phases
with bcc and close-packed structures in transition metal
systems27–29. When d-band is about half-filled, the Fermi level
(EF) is located close to the minimum of the pseudo-band gap in
the LDOS of bcc structure, as shown in Fig. 1b. Qualitatively
speaking, the LDOS of bcc structure has more occupied states far
below EF and less occupied states close to EF compared to that of
fcc/hcp structure when the d-band is about half-filled29. This
leads to a lower electronic band energy, which makes bcc
structure more stable compared to the close-packed structure29.
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Interestingly, solute substitutions do not significantly change
the bimodality features of LDOS for the dislocation core and the
bcc bulk site, showing characteristics of the so-called canonical d-
band27,29,32. Figure 1c, d show the LDOS of atoms at a dislocation
core site and a bulk bcc site far away from the core when these
sites are occupied by Re or Ta instead of W, respectively. The
solute atom at the core site still has a less bimodal LDOS
compared with its counterpart at the bulk site. However, the
filling fraction of the local d-band of the solute atom is changed as
it has a different number of d electrons than W. As Re has more d
electrons than W, the position of the EF on LDOS of Re shifts
away from the minimum of the pseudo-band gap, toward the
right band edge. Moreover, it is found that EF will keep shifting
closer to the right band edge for the solute with more d electrons
(Supplementary Fig. 6). According to bond-order potential
theory, a structure with less bimodal DOS can usually be
stabilized when the filling fraction is towards to the band edges,
while a more bimodal DOS is favored for a half-filled band27–30.
Therefore, compared to placing W atoms at the core site, the
system may benefit from a stabilization contribution from the
band energy when the core site is occupied by the solute atom
with more d electrons than W. Correspondingly, there is a
positive/attractive interaction tendency between the dislocation
core and these solute elements as shown in Fig. 1a. A similar
solute-induced stabilization mechanism has also been demon-
strated on the 112�1f g twin boundary (TB) of hcp Re24. On the
other hand, compared to that of the W atom, EF shifts to a
position even closer to the minimum of the pseudo-band gap of

the LDOS of the Ta solute as shown in Fig. 1d. Since the
difference in the number of the occupied state close to EF between
the core and bulk LDOS may be maximized at the minimum of
the pseudo-band gap, Ta atom should be less preferred by the
core site than W atom by considering occupied states close to and
far below the EF. This consequently yields a negative/repulsive
interaction energy as shown in Fig. 1a.

Electronic attributes of solute–defect interactions. The results
of Fig. 1 reveal a qualitative correlation between the d-band
bimodality and the solute–dislocation interaction in the binary
alloys of bcc W and transition metal solutes. To further explore
this correlation, we investigate the local electronic structures of
atoms near several 0D, 1D, and 2D defects in pure W, including
mono-vacancy, < 100 >-dumbbell, < 111 >-dumbbell, 1

2 111h i
screw dislocation, Σ3 11�2ð Þ TB, Σ3(111), Σ5(310), and Σ5(210)
GBs. To quantify the bimodality of the DFT-calculated LDOS,
Hartigan’s dip test was performed33,34. A completed unimodal
LDOS corresponds to a test statistic of 0, while a more bimodal
LDOS has a larger value of test statistic33,34. We then use a
parameter, Δdip, to quantify the change in the bimodality of the
LDOS of the atoms near the defect relative to a reference atom
that is far away from the defect, where Δdip= dip(reference)−
dip(defect). Therefore, W atom at a site with a more positive Δdip
will have a less bimodal LDOS compared to the atom at the
reference site. Furthermore, for the W atoms where the Δdip
calculations are performed, we also calculate the corresponding
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Fig. 1 Solute-interaction energy and electronic structures of the 1
2 111h i screw dislocation in bcc W. a Interaction energy between transition metal solute and

the 1
2 111h i screw dislocation in bcc W. The interaction energy, Eint, is defined as the difference between the total energies of the dislocation structure with a

solute atom X occupying an atomic site far away from and at the dislocation core. The dislocation structure is initially fully relaxed to reach its equilibrium
state in pure W and sequentially used for solute substitution. A positive value of Eint indicates an attractive binding tendency. The interaction energies were
calculated under two conditions: relaxing Erelaxint

� �
and fixing atomic positions Efixint

� �
during the total energy calculations after the solute atom added into the

supercell. The values of Erelaxint are taken from our recent publication6. b LDOS of a W atom in perfect bcc lattice (solid-blue line), perfect fcc lattice (solid-
orange line), and at the 1

2 111h i dislocation core site (dashed-blue line) in pure W. c, d LDOS of an Re and Ta atom occupying the bcc site (solid-blue line)
and the 1

2 111h i dislocation core site (dashed-blue line) in the W matrix, respectively. The bcc bulk site and core site refer to the atomic sites marked in blue
and red colors in a, respectively
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fixed-lattice solute–defect interaction energies Efix
int

� �
when these

W atoms are substituted by the Pt, Re, and Ta solutes, respec-
tively. The results are summarized in Supplementary Note 2. In
addition, like the solute–dislocation interactions, it is found that
the effects of solute-induced lattice relaxation on the interaction
energy are also small for other defect structures in W (details in
Supplementary Note 3).

By comparing the calculated Δdip with Efix
int, we notice a very

interesting phenomenon that the variations in Efix
int of the Re and

Pt solutes are strongly correlated with the variations in the
bimodality of the LDOS for the W atoms that is being substituted
at the sites with different separation distance to the defect center.
Taking the 1

2 111h i screw dislocation as an example, as shown in
Fig. 2a, the defect site with a higher Δdip generally has a more
attractive interaction with the solutes (higher Efix

int). This
correlation is consistent with the analyses in Fig. 1b–d, since a
more positive Δdip corresponds to a less bimodal LDOS feature
for W atom at that site. If we assume that the solute substitutions
do not significantly change the bimodality features of LDOS as
shown in Fig. 1c, d, a less bimodal LDOS indicates that this
atomic site prefers to be occupied by the solute atoms with more
d electrons than W because EF will be at a position closer to the
edge of their d-band. In addition, the correlation between Δdip
and Efix

int is found to be also valid for the Re and Pt solutes
interacting with the defects in transition states, such as the
generalized stacking faults (GSF) shown in Supplementary
Note 4.

Moreover, if we plot all the calculated Efix
int together with respect

to the corresponding Δdip parameter, an approximately linear
relationship can be revealed between Efix

int and Δdip for both Re-
and Pt-substitutional solutes, as shown in Supplementary Fig. 11a,
b, respectively. These results indicate that the filling energy of the
d-band associated with the bimodality variation indeed has
significant contribution to the solute–defect interaction energy,
which can be quantitatively described by the Δdip parameter. On
the other hand, compared to the W–Re and W–Pt systems, the
correlation between Efix

int and Δdip in the W–Ta system becomes
more scattered. For example, as shown in Fig. 2b, the Ta solute
generally interacts in a repulsive way with the W Σ3 11�2ð Þ TB,
which yields a negative correlation between Efix

int and Δdip (Δdip >
0→ Efix

int < 0), consistent with the analyses in Fig. 1d. However,
quantitative discrepancies can be seen for several individual sites
near the defects. For example, sites 4 and 5 in Σ3 11�2ð Þ TB shown
in Fig. 2b have nearly zero values of Δdip and notable values of
Efix
int in contrast. This implies that there could be other underlying

mechanisms contributing to the solute–defect interaction ener-
gies, which cannot be solely described by the Δdip term.

One possible mechanism could be the energy contributions
from the valence sp-band. Owing to the covalent feature of the d-
band, the valence sp-band can be strongly hybridized with and
thus strongly influenced by the valence d-band. Within a tight-
binding framework35–42, the strength of the sp–d hybridization
(Esp) of an atom in transition metal alloys can be correlated with a
function of (i) the interatomic distances between the atom and its
neighboring atoms (dij) and (ii) the spatial extents of the d-

orbitals of the atom and its neighboring atoms rdi&rdj

� �
, which is

Esp /
P
j
r
3
2
di
r
3
2
dj
=d5ij (see Supplementary Note 5 for details). This

suggests that the strength of the sp–d hybridization in a defect
structure should vary with each individual atom since dij of the
atom at each defect site can be different and the rdi of the solute
element can differ from that of the neighboring matrix element.
Therefore, the effect of the sp–d hybridization may not be ignored

for determining solute–defect interactions in the bcc refractory
alloys.

General correlation between electronic descriptors and Efix
int.

Based on the discussion above, we propose a linear regression
model that approximates the solute–defect interaction energy
Efix
int

� �
into two parts as shown in Eq. (1),

Efix
int � ΔEd þ ΔEsp � a1Δdipþ a2xsp ð1Þ

Here ΔEd represents the energy contribution due to the d-band
filling, which may linearly correlate with the changes in the
bimodality of the d-band through the Δdip term and a fitting
coefficient, a1. The second part in Eq. (1), ΔEsp, represents the
energy contribution related to the sp–d hybridization. We pro-
pose that ΔEsp can also be estimated through a fitting coefficient,
a2, and a variable, xsp, that describe the local environment of the
defect site related to the sp–d hybridization.
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2 111h i screw dislocation; b Σ3 11�2
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twin boundary (TB). Efixint refers to the
interaction energy calculated based on the defect structures that are
already fully relaxed in pure W and without further relaxing atomic
positions after solute substitution. The calculated Δdip (blue squares) of
each atomic site of interest in pure W, and the corresponding solute–defect
interaction energy when the site is occupied by Re (red triangles), Pt (red
circles), and Ta (red diamonds) are plotted with respect to the relative
distance from the atomic site to the defect center. The positions of the
atomic sites in the simulation cell are marked by numbers according to the
pairing distance with the defect center and the investigated site. It should
be noted that the axis value for the Δdip term in b is plotted in reverse
order (i.e. higher Δdip values pointing downward)
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In the present work, xsp of a matrix atom near the defect in
pure metals is proposed to be,

xsp ¼ 1� Vdef
vor

� ��5
3=ϵdefsp

V ref
vor

� ��5
3=ϵrefsp

ð2Þ

where Vdef
vor /V

ref
vor is the Voronoi volume of the atom at the defect

and reference site, respectively, and ϵdefsp /ϵrefsp is the center of the
occupied sp-band projected on the atom at the defect and
the reference site, respectively. The reference site is same as the
one used for the calculation of Δdip and Efix

int. The ϵdefsp term is
calculated as

ϵdefsp ¼
Z 0

�1
Eρdefsp Eð ÞdE=

Z 0

�1
ρdefsp Eð ÞdE ð3Þ

where ρdefsp Eð Þ is the projected LDOS of the sp-band on the atom

at the defect site and the Fermi energy EF is set to zero. ϵrefsp is
calculated in the same way for the atom at the reference site. In
Eq. (2), Voronoi volume (Vvor) is used to describe the average
changes in the interatomic distances (dij) of the atoms near the
defect, and 1=ϵsp is included as a scaling term to the effects of
sp–d hybridization on solute–defect interactions (see Supplemen-
tary Note 6 for details). Like the Δdip term, the Voronoi volume
and LDOS of the sp-band are also determined from the DFT
calculations of relaxed atomic structures of pure matrix metals
that contain defects. Herein we expect that the electronic features
of the matrix atoms at defects are mainly assessed by the Δdip
and xsp parameters, while the fitting coefficient a1 and a2 should
be fixed values for each matrix–solute element pair.

Based on Eq. (1), we perform linear regressions to model the
DFT-calculated Efix

int of the crystalline defects in the W–Ta, W–Re,
and W–Pt binary alloy systems. Δdip and xsp are treated as
regression variables; a1 and a2 are fitting coefficients. As shown in
Fig. 3, the solute–defect interaction energies Efix

int

� �
predicted by

the proposed linear model show good agreement with the results
of DFT calculations for the W alloys with different transition
metal solutes (i.e., Ta, Re, and Pt). Good regression quality is also
demonstrated by the close-to-one value of adjusted R2 as listed in
Table 1.

Considering the closeness of the crystal and electronic
structures between group V and VI bcc elements, one would

naturally wonder whether Eq. (1) can also be generally applied
to model the solute–defect interactions in the binary alloys of
group V element and transition metal solutes. To explore the
possible correlation, we also perform DFT calculations to
calculate the Δdip and xsp of atoms in several 0D, 1D, and 2D
crystalline defects in pure Ta. As expected, it is found that Ta
atoms near the defect center also generally have a less bimodal
LDOS compared to those far away. For example, the d-orbital
LDOS for a Ta atom exactly on the interface plane of the Σ3 11�2ð Þ
TB are plotted in Fig. 4a, showing less bimodal characteristics
comparing to the LDOS of a Ta atom far away from the interface.

The fixed-lattice solute–defect interaction energies Efix
int

� �
are

also calculated correspondingly when Ta atoms are substituted by
the Hf and Os solutes. Linear regressions based on Eq. (1) are
performed to model the DFT-calculated Efix

int. Parity plots of the
regression results are shown in Fig 4b, c for Ta–Hf and Ta–Os
systems, respectively. The regression coefficient and parameters
are listed in Table 1. As shown by both Fig. 4 and Table 1, the
proposed linear regression model (Eq. (1)) can be generally
applied to quantitatively describe the solute–defect interactions in
Ta-based alloys as well.

Improving the accuracy of the linear correlation. As shown in
Figs. 3 and 4, a few of outliers still appear in the predictions of the
linear regression model, which have apparent discrepancies from
the DFT results. Interestingly, we found that these outliers usually
repeatedly appear at particular defect sites in multiple alloying
systems. Scrutinizing the local electronic structures of the matrix
atom at these outlier sites, it is found that there are some addi-
tional local features in their LDOSs. These features could affect
the solute–defect energetics but are not sufficiently described by
the Δdip and xsp parameters, resulting in large prediction errors.
More detailed explanation can be found in Supplementary Note 8.

The above finding suggests that the remaining residuals of the
linear regression model can be reduced if the model includes
some other descriptors of the electronic bands in addition to Δdip
and xsp. As indicated in the recent DFT calculations, the energetic
properties of the transition metal alloys could connect closely
with many band features, including the transition between eg and
t2g orbital sets25, eg/t2g population ratio17, band occupation
fraction14,22,23, and upper band edge26. Therefore, we propose an
additional regression function, which is added on the basis of
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Fig. 3 Comparison between the Efixint from DFT calculations and predicted from Eq. (1) in the W binary alloys. a W–Ta system; b W–Re system; c W–Pt
system. The data of the point, line, and planar defects are marked in circle, triangle, and square symbols, respectively. The DFT-calculated Efixint refers to the
solute–defect interaction energies calculated based on fixed atomistic structures that are already fully relaxed in pure W. In the legend, Dumb refers to the
abbreviation of the dumbbell defects, S-Dis refers to the abbreviation of the 1

2 111h i screw dislocation, TB refers to twin boundaries, GB refers to grain
boundaries, and GSF refers to generalized stacking faults. The values of the Δdip and xsp of each defect site used for the linear regression are listed in
Supplementary Table 2. The regression parameters for each matrix–solute element pair are summarized in Table 1
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Eq. (1) to further correct the remaining residuals from the linear
regression. Accordingly, the solute–defect interaction energy
Efix
int

� �
is now proposed to be approximated as,

Efix
int � a1Δdipþ a2xsp þ fr�c Di;Dj; ¼

� �
ð4Þ

where the first two parts of the equation are the linear model
described by Eq. (1) with the same a1/a2 from Table 1. fr–c(Di, Dj,…)
is the residual-correction function established by regressing the
residuals Δlinear (Δlinear≡ Efix

int − (a1Δdip+ α2xsp)) of the linear
model based on a boarder set of 23 potential electronic descriptors
(Di, Dj,…). These descriptors include Δdip andxsp; they also
contain the band center and root-mean-square width of the whole
d-orbital, eg and t2g orbital sets, and the sp-orbitals. In addition, these
descriptors include the individual bimodalities of the eg and t2g
orbital sets. All of these 23 descriptors are available from the DFT
calculations of the defects relaxed in pure metals of matrix elements.
A detailed description of the descriptor construction is included in
Supplementary Note 9.

In the present work, the residual-correction function, fr–c(Di,
Dj,…), is developed based on a sophisticated local regression
model, as implemented in the Locfit package43–46. The model
performs a series of kernel-weighted local linear regressions
within a moving window across the descriptor space, which gives
the largest weight to observations close to the center of the

window and produces a smooth curve that runs through the
middle of the observations44–46. The local regression is performed
with only 4 of the 23 potential electronic descriptors at a time to
mitigate the risk of overfitting. Within a cross-validation
framework, we select five sets of descriptors (each set containing
four descriptors) that provide the best regression accuracy on
average in all the five solute–matrix systems studied in the present
work, and all of these five descriptor sets have two or three
descriptors in common. We then establish the residual-correction
function by averaging the corresponding local regression models
of these five sets of descriptors. More details on the algorithms
and calculation procedures of this statistical model can be found
in Supplementary Note 9.

The regression results of the improved model based on Eq. (4)
(referred as the linear+ fr-c model in the following) are plotted
against the original DFT data in Fig. 5a, b for the W–Re and
Ta–Hf systems, respectively. The regression results from the
linear model solely based on Δdip and xsp (Eq.(1)) are also
included for comparison. As shown in both figures, the developed
linear+ fr-c model indeed yields better agreements with the
original DFT results. The parity plots of the W–Ta, W–Pt, and
Ta–Os systems are shown in Supplementary Fig. 17, where the
improvement of the regression accuracy is also clearly observed.

Prediction of solute segregation in complex GB structures.
Since all the descriptors used in the present linear correlation
model and the regression model are available from the LDOSs of
atoms at/near the relaxed defect structures in pure metals, one
could possibly apply the model to efficiently predict the
solute–defect interaction energy of any atomic sites in the defects
of interest, especially those with complex geometries. Here we
show some examples in both Ta and W matrix in terms of two
complex GBs, namely the Σ13 (230) and Σ27 (552) GBs. These
two GB structures both have high index GB planes and complex
geometries, which require large supercells to accommodate
(Supplementary Fig. 4). Particularly, the input geometry of the
Σ27 (552)-GB is implemented from a ground state structure in W
predicted by a state-of-art evolutionary structure search
algorithm47,48. The prediction results of the linear (Eq. (1)) and
the linear+ fr-c (Eq. (4)) model based on electronic descriptors
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Fig. 4 d-band bimodality and solute–defect interaction energies in bcc Ta. a Projected LDOSs of d orbitals of a Ta atom on the interface of the Σ3 11�2
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(dashed line) and in bulk lattice (solid line), respectively. b, c DFT-calculated Efixint in comparison with the predictions from the linear regression model in the
cases of the Ta–Hf and Ta–Os systems, respectively. The DFT-calculated Efixint refers to the solute–defect interaction energies calculated based on fixed
atomistic structures that are already fully relaxed in pure Ta. In the legend, Dumb refers to the abbreviation of the dumbbell defects, S-Dis refers to the
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2 111h i screw dislocation, TB refers to twin boundaries, and GB refers to grain boundaries. The values of Δdip and xsp of each defect site
used for the linear regression are listed in Supplementary Table 3. The regression parameters for each matrix–solute element pair are summarized in
Table 1

Table 1 Coefficients and accuracies of the linear
regression model

Alloy system Coefficient Adjusted R2 RMSE

a1 a2
W-Ta –7.20 1.78 0.9260 0.043
W-Re 15.97 –1.29 0.9614 0.038
W-Pt 61.58 –1.02 0.9415 0.174
Ta-Hf 6.70 2.09 0.9351 0.042
Ta-Os –6.48 –4.08 0.8840 0.106

The model is based on Eq. (1) with coefficients a1 and a2 for different matrix–solute element
pairs. The accuracy of the model is evaluated by its adjusted R2, which represents the proportion
of the variance in the regression response that is predictable from the regression variables, and
the root-mean-square-error (RMSE). The units of a1, a2, and RMSE are all eV
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from DFT calculations of the unalloyed GBs are shown as parity
plots in Fig 5c, d for the W–Re and Ta–Hf systems, respectively,
in comparison with the DFT-computed Efix

int. As shown by the
blue symbols, the predictions solely from the two-descriptor
linear model have already reached fairly good agreements with
the DFT results for both GBs in both systems, indicating that the
major energy contributions to Efix

int can be well captured by the
linear model alone. Moreover, by adding the residual-correction
function (fr-c), the linear+ fr-c model (orange symbols) yields
even better agreements, especially for the sites where the pre-
dictions of the linear model have large deviations. Similar vali-
dation results are also observed for the W–Ta, W–Pt, and Ta–Os
systems, as shown in Supplementary Fig. 17.

With the predicted solute–defect interaction energies at each
defect site, one can use the White–Coghlan site occupation
model49,50 to estimate the GB solute concentration isotherms
under an assumption of non-interacting solutes,

cGB ¼ 1
N

XN

i¼1

1

1þ 1�cbulk
cbulk

exp � EX;i
int

kBT

� � ð5Þ

where EX;i
int is the interaction energy of solute, X, when it occupies

the ith of N sites at GB, T is temperature, and cbulk is the solute
concentration in the bulk matrix (fixed as 2 at.% here). The solute
concentration isotherms calculated using the EX;i

int predicted by
both the linear and linear+ fr-c model are compared with those
calculated using DFT-computed EX;i

int . As shown in Fig. 6a, b, for
both of the GBs and all the five studied solute–matrix systems, the
interaction energies predicted by the linear+ fr-c model give

concentration isotherms that are very close to the DFT reference
curves across a wide temperature range. The largest deviation is
seen for the case of Pt in W (552)-GB at high temperature range
at about 6 at.%. In fact, the curves calculated using the interaction
energies solely predicted by the linear model are already in fairly
good agreement with the DFT references, except for the case of Pt
in W (552)-GB at low temperature.

These results suggest that, with the present model, one can
estimate the interaction energies in complex defect structures
with reasonably small uncertainty for the prediction of solute
segregation isotherms. Instead of running many case-by-case
calculations for substitutional solutes at different atomic sites
surrounding a specific defect, only one DFT calculation for this
defect in pure matrix metal is needed for obtaining the local
electronic descriptors. Here it has to be emphasized that, although
the root-mean-squared errors are 0.03–0.1 eV for defect–solute
interaction energies (varying from ~−1.0 eV to ~+3.0 eV) for
individual defect sites in these five matrix–solute pairs, we still
obtain the reasonably good accuracy in the prediction of
solute segregation because the concentration values depend on
the defect–solute binding energies of multiple sites at/near the
defects. There could be risk having large errors if the current
linear or linear+ fr-c model is applied to predict solute effects on
defect properties that are sensitive to the solute interaction with a
particular defect site.

Discussion
There are two major aspects that require further investigations to
understand and improve our proposed numerical model for
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solute–defect interactions and defect properties in more general
cases. For the first aspect, fundamental and quantitative physical
mechanisms are needed to interpret the most effective descriptors
and corresponding coefficients. As the linear correlation model is
inspired by the moment analysis of DOS based on tight-binding
theory27–30, it would deepen our understanding of solute–defect
interactions if we can also provide physical interpretation of
the fitting coefficients.

The fitting coefficients (a1 and a2) in Table 1 indeed show
strong dependence on the number of d electrons of the solute
element. In W alloys, the Δdip term yields a positive contribution
(a1 > 0) to Efix

int for the solute with more d electrons than W (e.g.,
Re and Pt), while it yields a negative contribution (a1 < 0) for the
solute with fewer d electrons (e.g., Ta), which is consistent with
our analysis in Fig. 1b–d. In Ta alloys, this contribution becomes
positive (negative) for the solute with fewer (more) d electrons
than Ta, e.g., Hf vs. Os. This is because the relative position of EF
on the LDOS of the d-band is intrinsically different between Ta
and W when they serve as the matrix element. As shown in
Fig. 4a, EF of the Ta matrix is located on the lower energy side of
the bcc pseudo-band gap, unlike the position of EF in the W
matrix shown in Fig. 1b. Therefore, when alloying Ta and solutes
with fewer (more) d electrons, such as Hf (Os), the position of EF
on the local d-band of the solute atom would further shift away
from (toward) the pseudo-band gap compared to that of Ta
matrix atom, leading to a positive (negative) contribution to Efix

int
in terms of the Δdip parameter. Moreover, by alloying Ta with the
solute element having even more d electrons (e.g., Au), EF should
continuously move across the pseudo-band gap to the right edge
of d-band to generate a positive contribution to Efix

int. Conse-
quently, the energy contributions of the Δdip term in the alloys of
group V elements should have an overall parabolic relationship
with the number of d electrons of solute, which may be reflected
in some cases of the solute–defect interactions (e.g., Supple-
mentary Fig. 18. and ref. 51,52). In addition, in both Ta- and W-
based alloys, the coefficient of the xsp term (a2) always has a
positive sign if the solute element has less d electrons than the
matrix element (e.g., W–Ta and Ta–Hf), while yields a negative
sign if the difference in the number of d electrons is reversed. This
correlation can be understood in terms of the difference in the
spatial extent of d-orbital between the solute and matrix elements.
Details are provided in Supplementary Note 10. These qualitative

results provide the foundations for further investigations of
physical mechanisms of solute–defect interactions in a quantita-
tive manner in refractory metals and beyond.

For the second aspect, although the linear model could be
robust for general solute–defect interactions since it is based on
physics-inspired mechanisms, the residual-correction model
should be further improved for more accurate and efficient pre-
diction ability. As shown in Figs. 5 and 6, our current methods
are reasonably accurate to predict the defect properties that
depend on average effects of defect–solute interactions. However,
improvements are still needed for predicting the individual
defect–solute interaction at a specific defect site in the weak limit
(|Efix

int| < ~0.05 eV). Since the residual-correction functions were
developed based on local regression method from the limited
amount of data due to the large computational cost (351
regression data points for 5 matrix–solute element pairs), the
natural strategy to improve the accuracy and transferability of our
method is to include more solute–defect interactions data and
apply more advanced regression methods.

Furthermore, more representative and deterministic descriptors
of electronic and atomistic structures can further improve the
accuracy of our method. The discussions in Supplementary Note 8
show that Δdip has limitations to describe the characteristics of d-
band LDOS in specific situations. These problems are overcome by
including other effective descriptors, such as the center of the d-
band, the center of the sp-band, and Δdip of the eg orbitals, in the
residual-correction model, but they may not be the final solutions.
Moreover, the accuracy could be further increased if we apply
certain descriptors from deterministic methods instead of Δdip,
which have tiny fluctuations due to its statistical method associated
with the random number generator. The fluctuations can cause
prediction uncertainties on the level of ~0.001 eV. In addition,
descriptors for atomistic structures can be included to consider the
elastic contributions in the weak limit of interactions13,53,54.

In summary, our findings establish a general and quantitative
correlation between electronic structure descriptors and energetic
stabilities of crystalline defects containing substitutional solute
atoms in bcc refractory alloys. It is inspired by the classical the-
ories of bulk phase stability based on electronic structures and
applied to explain the energetic stabilities of local structural units
at the atomistic level24. This correlation can potentially serve as a
quantitative guideline for the transition metal alloy design with
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targeted properties by controlling the effects of solute–defect
interactions on defect stability and mobility. From a broader
perspective, this study provides a robust example and a key step
to construct advanced theories to describe the quantitative con-
nections between the chemical bonding characteristics at the
electronic level and the macroscopic materials’ properties55–57. In
addition, the observed electronic descriptors have potentials to be
applied in data-centric materials’ innovation based on machine
learning techniques58–60.

Methods
First-principles calculations. First-principles calculations in the present work
were carried out using the projector augmented wave (PAW)61 method and the
exchange-correlation functional depicted by the general gradient approximation
from Perdew, Burke, and Ernzerhof62, as implemented in the Vienna ab initio
simulation package (VASP)63. The energy cutoff of the plane-wave basis was
400 eV. Brillouin zone integration was performed using a first-order
Methfessel–Paxton smearing of 0.2 eV64. The grid of the k-point mesh in the first
Brillouin zone is set according to the size and geometry of the simulation supercells
(see Supplementary Method for details). The convergence criterion of the elec-
tronic self-consistent loop was set as 10–7 eV for the structure relaxation and
10–8 eV for the static calculations. The electronic configurations of the pseudo-
potentials used for the present first-principles calculations are summarized in
Supplementary Table 1. As shown in Supplementary Table 1, the semi-core 5p
electrons are treated as valence electrons for the calculations of Hf, Ta, and W.
However, it is found that the LDOS of the 5p-band localizes at very low energy
states far away from the Fermi level and has a very large energy gap with the 5d-,
6s-, and 6p-bands. We thus assume that the 5p electrons are basically inner-core
electrons that have very limited contributions to electronic bonding. Therefore, the
LDOS of the 5p-band is not included in the band analysis based on Eq. (3).

First-principles calculations are performed in three steps to model the local
electronic descriptors of the crystalline defects in bcc Ta and W and their interactions
with substitutional solute atoms. In the first step, relaxation calculations are
performed to obtain the optimized atomistic structures of crystalline defects in the
pure metal matrix. In each relaxation calculation, the atoms and geometry of the
simulation supercells are fully relaxed according to the Hellmann–Feynman forces,
except calculations for the 1

2 111h i screw dislocation and the GSF defects due to their
unique atomistic geometries. The relaxation of the 1

2 111h i screw dislocation is
performed using the flexible boundary condition method65,66. The relaxation scheme
consists of two steps: (1) the conjugate gradient relaxation of atoms near the
dislocation core based on DFT calculations, and (2) the atomic structures outside the
core region are relaxed based on the lattice Green function4,6,65,66. The two steps are
repeatedly iterated until the maximum Hellmann–Feynman forces are <5meV/Å4,6.
In the calculations of the GSF defects, the atoms are only allowed to relax along the
direction perpendicular to the fault plane. In the second step, static calculations are
performed based on the relaxed defect structures to obtain the projected LDOS on
each atom in the supercells. Then the local electronic descriptors of each atomic site of
interest are obtained from the DFT-calculated LDOSs and atomistic structures. In the
third step, solute atoms are introduced to substitute the individual solvent atoms with
different separation distances to the defect center to investigate the solute–defect
interactions. The relaxed defect structures in pure metals are used for solute
substitution. After substitution, the interaction energies are then calculated under two
different conditions: fixing and relaxing atomic positions during the total energy
calculations of the solute-doped defect structures. The difference between the relaxed
Erelax
int

� �
and fixed-lattice interaction energies Efix

int

� �
gives the energy change due to the

relaxation of the defect lattice upon the solute substitution. The fixed-lattice
interaction energies are calculated for all solute–defect interactions considered in the
present work, while the relaxed interaction energies are only calculated for a few
defect sites in order to evaluate whether the lattice relaxation has a significant
contribution to the solute–defect interaction energies. A detailed comparison between
the calculated Efix

int and Erelax
int is described in Supplementary Note 3.

Hartigan’s dip test. The Hartigan’s dip test is a statistical method proposed by
Hartigan and Hartigan34, which measures the deviation of the cumulative dis-
tribution function of an empirical distribution from that of unimodal distributions.
The test takes a sample from the distribution density as inputs and transfers it into
its unique corresponding cumulative distribution function, F(x). Since the dis-
tribution is empirical, the corresponding F(x) is a step function that jumps at each
interval xif gni¼1, where n equals to the number of total intervals. In the test, there
are three major steps. First, based on all the possible intervals [xi, xj] of F(x), where
1 ≤ i ≤ j ≤ n, we generated a set of unimodal cumulative distributions function,

HijðxÞ
n o

1�i�j�n
, that are all close to F(x). It means each of Hij(x) have to satisfy

that: (i) the mode of Hij(x) is located in the interval [xi, xj]; (ii) Hij(x) is a straight
line connecting (xi, F(xi)) and (xj, F(xj)); (iii) Hij(x) is the greatest one among all the
convex functions that have smaller values than F(x) in the range (–∞,xi); and (iv)
Hij(x) is the smallest one among all the convex functions that have larger values

than F(x) in the range (xj,+∞). Second, each of Hij(x) is vertically shifted upward
and downward with a same distance, dij, to form a band. The shifting is stopped
until F(x) is within the band in all range, (–∞,+∞). Then, this shifting distance, dij,
is defined as the distance between F(x) and Hij(x). Third, the smallest dij among all
the tested Hij(x) is defined as the dip test statistic, which is returned by the test.
Therefore, the unimodal distribution corresponds to a statistic of 0, while a more
significant bimodal distribution is evidenced by a larger statistic.

In the present work, to perform the Hartigan’s dip test, the LDOS from first-
principles calculations was normalized with respect to its total number of DOS and
treated as an empirical distribution. The default settings in VASP was used to
determine the minimum/maximum energy boundaries of the LDOS, so the interval
of each individual LDOS calculation is slightly varied, ranging from 0.151 to
0.155 eV. Default setting was used for the NBANDS tag in the W-based
calculations, which gave an average number of bands about 7.2 per atom. To keep
the consistency, The NBANDS tag in the DFT calculations of the Ta system was set
to the same value as those used in the W-based calculations. The sample for the dip
test was then drawn randomly from the normalized LDOS with a size of 500 data
points (Each LDOS in the present work was set to have 301 energy intervals in
first-principles calculations.). We have drawn 8000 samples for each LDOS, and the
dip test statistic of each LDOS being used for comparison is taken as the average of
the statistics from the 8000 samples. All the Hartigan’s dip tests of bimodality of
LDOS were performed using a MATLAB code by Mechler67. In addition, the
sensitivities of the Δdip measurements to the LDOS-related DFT parameters (i.e.,
the number of bins, k-point density, cutoff energy, and width of smearing) were
tested, which is described in Supplementary Note 1. In addition, the performance
of Eq. (1) on predicting the Efix

int calculated from the four-supercell method68,69 are
discussed in Supplementary Note 7.

Data availability
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(https://doi.org/10.24435/materialscloud:2019.0047/v1) and (2) materials commons
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