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Reliable estimation of desired motion trajectories plays a crucial part in the

continuous control of lower extremity assistance devices such as prostheses

and orthoses. Moreover, reliable estimation methods are also required to

predict hard-to-measure biomechanical quantities (e.g., joint contact moment/

force) for use in sports injury science. Recognising that human locomotion is an

inherently time-sequential and limb-synergetic behaviour, this study investigates

models and learning algorithms for predicting themotionof a subject’s leg from the

motion of complementary limbs. The novel deep learning model architectures

proposed are based on the Long Short-Term Memory approach with the addition

of an attentionmechanism. A dataset comprising Inertial Measurement Unit signals

from 21 subjects traversing varied terrains was used, including stair ascent/descent,

ramp ascent/descent, stopped, level-ground walking and the transitions between

these conditions. Fourier Analysis is deployed to evaluate the model robustness, in

addition to assessing time-based prediction errors. The experiment on three

unseen test participants suggests that the branched neural network structure is

preferred to tackle the multioutput problem, and the inclusion of an attention

mechanismdemonstrates improved performance in terms of accuracy, robustness

and network size. An experimental comparison found that 57% of the model

parameters were not needed after adding attention layers meanwhile the

prediction error is lower than the LSTM model without attention mechanism.

The attention model has errors of 9.06% and 7.64% (normalised root mean square

error) for ankle and hip acceleration prediction respectively. Also, less high-

frequency noise is present in the attention model predictions. We conclude that

the internal structure of the proposed deep learning model is justified, principally

the benefit of using an attention mechanism. Experimental results for

biomechanical motion estimation are obtained, showing greater accuracy than

only with LSTM. The trained attention model can be used throughout despite

transitioning between terrain types. Such amodel will be useful in, for example, the

control of lower-limb prostheses, instead of the need to identify and switch

between different trajectory generators for different walking modes.
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1 Introduction

The prediction of biomechanical motion is required to

estimate gait cycle, assess joint malfunction, and generate

motion trajectories for wearable rehabilitation devices (Rai

et al., 2019; Giarmatzis et al., 2020; Lee et al., 2021). In the

field of powered and intelligent lower limb prostheses, deep

learning techniques are being introduced to restore the

ambulatory functionality of amputees by providing a human-

machine coordination method (Rai et al., 2019; Lee et al., 2021).

In earlier research efforts, the conventional phased-based gait

assistance approach only aims to produce some level of drive

power or a fixed position/torque reference for portable lower

limb protheses based on the appearance of distinctive gait events

or device states such as heel strike, toe-off or reaching a thigh

angle threshold (Tucker et al., 2015; Yu et al., 2016; Lee et al.,

2020). This pre-defined finite state action pattern is often

discrete, and a series of parameters and thresholds are

required to be tuned and fixed, from where the intra-subject,

inter-subject differences and unstructured terrains hinder the

adaptability and interactive ability of unintelligent prosthetic

devices (Au et al., 2008; Liu et al., 2014). Such a control

approach is often limited to a specific activity mode, is

difficult to personalise and may not fully exploit the capability

of the device actuators (Ferreira et al., 2014).

Using deep learning for biometric gait estimation, i.e., limb

trajectory estimation based on signals from other correlated limb

joints/segments, brings new insights into seamless and

personalised trajectory generation for the control of more

intelligent devices for a variety of users (Ferreira et al., 2014;

Tucker et al., 2015). In contrast to hand-crafted fixed trajectories,

this data-driven strategy manages to better trigger terrain-

appropriate and biomimetic response through learning the

movement pattern from a gait database. Also, the issues

involved in prosthetic device adjusting caused by inter-subject

and intra-subject difference will be relieved (Tucker et al., 2015).

One of pioneers of complementary limb motion estimation,

Vallery et al. (2008) proposed a linear predictor to explore the

inter-joint synchronisation in the case of level-walking scenario,

and then the staircase also was considered by Vallery et al. (2011).

With increasing application of deep learning, many researchers

adopted the Long Short-Term Memory (LSTM) neural network

as it is well-suited to analysing time sequential physiological

movement. Rai et al. (2019) took daily activities into

consideration including flat-ground walking both with and

without random stops, and stair climbing using a self-decided

pace. They concluded that the LSTMmodel showed an improved

performance over linear regression and also Dense Neural

Networks (DNN) for an ankle angle prediction task. Zaroug

et al. (2021) investigated the applicability of LSTM for the

prediction of angular velocity and linear acceleration in the

sagittal plane of thigh, shank and foot segments. Inspired by

the Sequence to Sequence (Seq2Seq) model in the Natural

Language Process (NLP) field, they adopted a two stage

Encoder-Decoder LSTM model (Zaroug et al., 2020). Other

research has shown that Bidirectional LSTM (Bi-LSTM)

provides a modest accuracy increase for human gait cycle

judgement (Lee et al., 2021; Zaroug et al., 2021; Hong et al., 2022).

To better capture the time characteristics of highly periodic

gait signals, an attention mechanism can be used to evaluate the

importance of the timestep, or the input features involved in the

LSTM layer. For the temporal attention, more crucial time points

in the time sequence will be weighted by higher attention score

that can be calculated mathematically (Bahdanau et al., 2014),

although attentionmechanism also can be used to value the input

features rather than timesteps (Qin et al., 2017). Owing to the

rare application of the attention mechanism method in the

domain of gait kinematics estimation, many researchers cite

works from other fields such as NLP or stock price

forecasting. Rai et al. (2020) and Wang et al. (2021) adopted

an autoregressive attention model developed for NASDAQ

100 Index forecasting (Qin et al., 2017), whereby the

calculation of attention score is equivalent to the encoder-

decoder attention model used for machine translation in NLP.

Specifically, the current hidden state in the decoder queries the

hidden state sequence in the encoder and judges its importance

when the decoder is outputting a sequence of results (Bahdanau

et al., 2014). However, Rai et al. (2020) and Wang et al. (2021)

used the motion history of target limb as model inputs to make

future prediction for the same target limb, which is not applicable

for amputees. Li et al. (2021) and Zhu et al. (2021) weighted input

features through adding an attention layer at the beginning

before passing them into the LSTM layer, but do not provide

a detailed description of the implementation of their feature

attention mechanism.

The proposed methods in the literature constitute initial

studies into applying an attention mechanism to estimate

human motion data, nonetheless the functioning of the

attention mechanism needs to be investigated further and the

model architecture can be improved. This paper describes a

detailed investigation into applying deep learning with an

attention mechanism for a continuous biomechanical

kinematics estimation task.

2 Materials and methods

2.1 Data preparation

This study was conducted using a public human locomotion

dataset (Sherratt, 2020) collected by the authors’ group from

able-bodied participants, where six walking modes were

measured, comprising stair ascent/descent, ramp ascent/

descent, stopped, level-ground walking and transition between

modes were measured (Sherratt et al., 2021). Five 9-axis inertial

measurement unit (IMU) sensors consisted of accelerometer,
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gyroscope and magnetometer are placed in the body locations,

two on the legs at the ankles (ankle for short), two on the torso at

the hips (hip for short) and one on the chest. More detailed IMU

placement on the body can be viewed from previous work of

Sherratt et al. (2021). For each IMU sensor, the linear

acceleration, the angular velocity, the magnetic field in three

axes were measured, and the resultant acceleration of three linear

accelerations of triaxial accelerometer was computed by vector

sum. The gait database composed of twenty-one subjects was

used in our study. The sampling frequency was 100 Hz, and

1.25 million samples were used corresponding to 209 min of data

and 10,440 strides in total.

Mapping rules between the physical quantities measured by

the IMU signals will be determined using a deep learning model.

The resultant linear accelerations of left ankle and left hip were

used as the model target outputs, while the IMU signals from the

chest, right ankle and right hip as model inputs. Concretely, the

measured signals of triaxial accelerator, triaxial gyroscope,

triaxial magnetometer and the resultant linear accelerations

from three body locations are fed into the model (ten

quantities for each IMU and thirty inputs in total). Such a

model could be used to control a left leg prosthesis to emulate

fully able-bodied movement. Before the start of model training, it

is sensible to eliminate noise and outliers by smoothing the

measured target output, which is favorable to prevent the neural

network from learning inaccurate ground truth. A 5-point

Moving Average filter was utilized to smooth the target output.

The tabular data can be viewed as a sample matrix in

Figure1A, in which each row represents one timestep and

each column contains an input/output feature. To feed time

series data points into the standard deep learning pipeline, the

original input data should be reshaped as a three-dimensional

tensor/array depicted by the shape (No. of data points, No. of

timesteps, No. of input features). In the resampling process, a

sliding window with fixed length scans the list of samples starting

at the beginning of sample matrix, rolling by a step of one

timestep until the rolling time window hits the end of sample

matrix. For a single rolling window in Figure1B, the input

timestep x〈t〉 � (x〈t〉
1 , x〈t〉2 ,/, x〈t〉

30 ) represents thirty input

features at the timestep t. A group of shaped data points was

formed, by which one single data point contains several input

timesteps x � (x〈1〉, x〈2〉,/, x〈t〉) and two relevant target

features y � (y〈t+1〉
1 , y〈t+1〉

2 ) in the next timestep. The

sequence length in a sliding window is a hyperparameter that

needs to be tuned properly during training process.

As for the dataset split, the resampled time-varying history of

eighteen individuals were split into a training dataset (85% of the

samples) and a cross-validation dataset (15% of the samples), and

three unseen participants were left as the testing dataset. The

purpose of having a cross-validation dataset was to help adjust

hyperparameters, including learning rate and the number of

layers. The testing dataset only includes the participants who

have been left out of the training and cross-validation datasets.

Furthermore, the dataset includes gait data for activity transitions

to reproduce a more natural dynamic response (Li and Hsiao-

Wecksler, 2013). By ensuring a separate testing dataset the

generalization ability of model can be better evaluated, an

issue observed in some studies (Liu et al., 2017; Li et al., 2021;

Zhu et al., 2021) where the cross-validation dataset was used for

testing.

During training, the order of the constructed data points

from the sliding window within the training dataset is randomly

shuffled to increase robustness. Data normalization is also

employed to equally scale the different input features, which is

FIGURE 1
Sliding window illustration for data point resample. There are thirty input features and two output features in total. (A) Shows the window sliding
process in the sample matrix. Each row represents a timestep, each blue columnmeans an input feature, and each yellow column indicates a target
feature. (B)Demonstrates the previous t timesteps are formed as one data point to predict two target variables in the next timestep. Blocks coloured
grey are the abandoned values.
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conducive to a fast convergence. The mean value and standard

deviation calculated from the training dataset are used for

normalization of all the data, including the cross-validation

dataset and test dataset for the purpose of same transformation.

2.2 Long short-term memory neural
network

As an important extension of Recurrent Neural Networks

(RNN), LSTM stands out for its ability to reveal temporal

sequential dynamics. Time series data (x〈1〉, x〈2〉,/, x〈t〉) are
processed sequentially and the temporal dependency is

revealed through remembering previous informative inputs

and forgetting unhelpful ones (Rai et al., 2019). Within the

LSTM cell, three gates—the forget gate, update gate and

output gate—are introduced to control the internal

information flow as shown in Figure 2. In mathematical

term, every gate is a sigmoid function whose outputs range

from zero to one to decide the forgetting, updating, and output

ratio respectively. The hidden state h〈t〉 of the tth timestep

focused more attention on closer timesteps, which endangers

the information preservation of the initial timesteps. To

alleviate this problem, the memory cell c〈t〉 acts as a

conveyor belt to retain and deliver signals even if from

distant previous timesteps (Lee et al., 2021). From Figure 2,

only simple mathematical operations are performed to update

the memory cell in each LSTM cell. The LSTM layers can be

stacked to have the means for finely extracting intermediate

features and finding temporal patterns from low-level input

features (Zaroug et al., 2021).

2.3 Branched deep learning model

As show in Figure 3A, an unbranched structure has no

separate hidden layers for a multi-output model, and only the

last layer specializes the neural network weights for different

output targets. In contrast, the proposed branched model

structure in Figure 3B allows information sharing in a few top

layers, and the bottom branches retain the specification and

characterization function for each individual output target. An

experiment was designed to verify if a distraction may occur in

the unbranched model topology, although more experiments are

required to verify this hypothesis in the future.

FIGURE 2
Unfolded LSTM layer showing internal operation for time series.

FIGURE 3
Stacked LSTM network followed by fully connected layers. (A)
Unbranched baseline model. (B) Branched baseline model. LSTM
layers and fully connected layers are colored by green and orange,
respectively.
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2.4 Attention model

The attention mechanism is better for processing long time

sequences than an LSTM layer alone as it weighs more important

timesteps (Rai et al., 2020). This study integrated a concise “feed-

forward” temporal attention mechanism that judges the

importance of each timestep by multiplying with a

corresponding attention score, which can better boost

temporal model performance than only using LSTM (Raffel

and Ellis, 2015). As a popular combination, the attention

model presented in this paper adopts bidirectional LSTM

layers. The proposed attention model is shown in Figure 4, in

which two similar but slightly different attention layers are

inserted downstream of the first and second Bi-LSTM layers.

For the first attention layer depicted by Figure 5A, each

timestep vector output by the first Bi-LSTM layer will be fed into

an additional learnable-function inherently multilayer

perceptron (MLP). Herein, the specific learnable network

weights each timestep based on their input vector features and

decides the corresponding attention score timestep by

timestep. Then, the learned score results of all timesteps will

pass through a SoftMax function to produce normalized the

calculated attention scores (α1, α2,/, αt) (Raffel and Ellis, 2015).

The value of each scaled attention score is between zero and one

and the summation of all scaled attention scores is one. The

second attention layer applies similar working principles as the

first attention layer when valuing each timestep from the second

Bi-LSTM output sequence. But these weighted timestep vectors

are summed up as a single synthetical context vector to properly

fit in the following fully connected layers as shown in Figure 5B.

2.5 Model training

The deep learning framework TensorFlow (version 2.7.0)

was used to train the proposed models, and a single NVIDIA

RTX 3060 GPU (8 GB) was deployed to accelerate the training

process. An Adaptive Moment Estimation (Adam) optimizer

based on gradient descent was used to update the model

parameters (Kingma and Ba, 2014). Several hyperparameters,

including network size, were determined by a sparse grid

search. The timestep length of input window was assigned as

15 and 25 for the unbranched/branched baseline models and

the attention model, respectively. The initial learning rate was

set as 0.001, and this value is reduced through the learning rate

FIGURE 4
Attention deep learning model with Bi-LSTM.

FIGURE 5
Attention mechanism illustration. (A) First attention layer. (B) Second attention layer. The attention score calculation for each timestep is
independent but using the same learnable function.
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decay technique when the performance improvement for the

cross-validation dataset becomes too small. Because training

with a larger learning rate is an advantage to quickly approach

the optimum solution at the beginning, and then a smaller

learning rate is preferred to avoid jumping over and oscillating

around the optimum point when the error is small. An early

stopping technique also was also used to prevent the occurrence

of the overfitting problem.

After a trial of different cost functions, the Mean Absolute

Percentage Error (MAPE) was selected as the model loss

function, and this metric is used to quantify the model error.

MAPE is defined as:

MAPE � 1
n
∑n
j�1

∣∣∣∣∣∣∣∣∣
yj − ŷj

yj

∣∣∣∣∣∣∣∣∣
where yj is the ground truth of jth data point, ŷj is the prediction

value of jth data point, and n is the total number of data points.

MAPE is a strict measurement method, and the error will be

amplified, and its characteristic may contribute to the training

process to a certain degree. One classical counterpart is that

Glorot and Bengio (2010) adopted the Cross-Entropy loss

function instead of Mean Square Error to handle a

classification problem, and the amplified loss yielded larger

loss function gradients so as to approach the minimum point

faster. Two other metrics, Mean Absolute Error (MAE) and

Normalized Root Mean Square Error (NRMSE), are also used to

assess the results. The NRMSE value, which has been receiving

widespread attention recently, quantifies the model error in

normalized form (Ardestani et al., 2014; Giarmatzis et al.,

2020; Zaroug et al., 2021). NRMSE is defined as:

NRMSE �
�������������
1
n∑n

j�1(yj − ŷj)2
√
max(y) −min (y)

where y is the ground truth of entire dataset. MAE is defined as:

MAE � 1
n
∑n
j�1

∣∣∣∣∣yj − ŷj

∣∣∣∣∣
For the branched model structure, each output (ankle/hip)

has its own loss function. But unbranched layout only has one

overall loss function that simply takes the average of the loss of

each output. Moreover, the previously mentioned MLP learnable

function in the attention mechanism is a part of the whole

attention model, therefore no extra cost function is required

for this additional component.

3 Results

3.1 Bi-LSTM for attention model

As previously stated, Bi-LSTM layers instead of LSTM layers

were selected for the attention model in this study. The justification

for this choice is shown inTable 1, where Bi-LSTMoutweighs LSTM

for ankle and hip prediction in all three metrics. For the branched

baseline model, neither LSTM nor Bi-LSTM showed a significant

advantage. Thesemodels were all well-trained initially using both the

training dataset and cross-validation dataset. The results presented

are the errors in resultant acceleration predictions at ankle and hip

for the testing dataset.

TABLE 1 The Comparison of Model Performance with LSTM/Bi-LSTM
using testing data set.

Metric Architecture Ankle Hip

NRMSE Branched Baseline with LSTM 10.44% 7.93%

Branched Baseline with Bi-LSTM 9.97% 8.04%

Branched Attention with LSTM 10.48% 7.98%

Branched Attention with Bi-LSTM 9.06% 7.64%

MAE (m/s2) Branched Baseline with LSTM 3.47 1.51

Branched Baseline with Bi-LSTM 3.53 1.49

Branched Attention with LSTM 3.63 1.53

Branched Attention with Bi-LSTM 3.20 1.43

MAPE Branched Baseline with LSTM 23.82% 14.01%

Branched Baseline with Bi-LSTM 24.85% 13.66%

Branched Attention with LSTM 23.91% 13.86%

Branched Attention with Bi-LSTM 21.99% 13.37%

The selected models are bold.

TABLE 2 Model evaluation on the testing dataset (error in resultant
acceleration predictions).

Metric Architecture Ankle Hip

NRMSE Unbranched Smaller Baseline 10.54% 7.69%

Unbranched Larger Baseline 11.83% 7.84%

Branched Baseline 10.44% 7.93%

Branched Attention 9.06% 7.64%

MAE (m/s2) Unbranched Smaller Baseline 3.69 1.47

Unbranched Larger Baseline 3.95 1.48

Branched Baseline 3.47 1.51

Branched Attention 3.20 1.43

MAPE Unbranched Smaller Baseline 25.19% 14.12%

Unbranched Larger Baseline 25.83% 13.83%

Branched Baseline 23.82% 14.01%

Branched Attention 21.99% 13.37%

Values in bold represent the best result on the testing dataset for each metric.
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3.2 Estimation error and plots

The four models chosen, i.e., the unbranched smaller/larger

baseline models and the branched baseline/attention models,

were all well-trained on both of training dataset and cross-

validation dataset. They were then evaluated on the testing

dataset regarding two aspects, the metric error and model

robustness. The three metrics, NRMSE, MAE, and MAPE,

were used to assess model accuracy.

All four models have achieved similar errors on the training

dataset and cross-validation dataset, providing confidence that

no overfitting has occurred during training stage. The NRMSE

training errors for resultant ankle and hip acceleration prediction

are around 2.6% and 2.2% respectively, and the cross-validation

errors are about 3.1% and 2.7% respectively. Table 2 compares

the model performance for the three test subjects who are

excluded from the model training process; their gait data have

not been included in either the training data used to update

model parameters, or the cross-validation data used to tune

model hyperparameters. By comparing the smaller/larger

unbranched baseline model, simply increasing the network

size cannot improve model testing performance. A slight

improvement can be seen after switching the model structure

to the branched baseline model. The attention model broke

through a bottleneck and produced consistently superior

testing results than the three baseline models with regard to

all metrics and this phenomenon is more significant for the ankle

motion.

FIGURE 6
Model prediction on testing data across varied activities. The activity transitions are marked by purple vertical lines. (A) and (B) depict the
transition fromwalking uphill to downhill for ankle and hip, respectively. (C) and (D) first present the transition fromwalking upstairs to downstairs and
then show the switch from stair descent to level-walking for ankle and hip, respectively. (E) and (F) show the transition from level-walking to stopped
for ankle and hip, respectively.
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This research also visually compared the estimation

outcomes from the branched baseline model and the

branched attention model on the testing dataset. The plots in

Figure 6 examine the activity transition 1) from uphill to

downhill, 2) from stair ascent to stair descent then to level-

walking and 3) from level-walking to stopped. From Figures

6A–D, the generated acceleration trajectories during the

transition period between two activities were considered as

acceptable for both ankle and hip, which reflects the concept

of seamless control. It also appears the attention model can

capture the trend change more precisely than the branched

baseline model. The prediction error mainly comes from the

imperfect forecast of amplitude in peaks and the time shift

between ground truth signals and corresponding predictions.

However, the branched baseline model failed to accommodate a

transition from level-walking to stopped, and a few wrongly

predicted peaks can be observed in Figures 6E,F.

3.3 Model robustness and size analysis

The predictions from the branched baseline model

sometimes exhibited much more fluctuation than the

attention model, for instance in Figure 7. The dynamic

characteristics of the error cannot be shown by error

metric values, so the branched attention model and its

counterpart branched baseline model are compared in the

frequency domain.

After conducting a Fast Fourier Transform (FFT) on the

ankle and hip acceleration prediction results and the ground

truth for the test subjects, the difference of power distribution

over a range of frequencies for the two paired models is depicted

in Figure 8. Compared to the branched baseline model, the

attention model prediction was found to slightly exhibit more

power in the low-frequency range. In contrast, the baseline model

prediction has more power in the high-frequency range than the

attention model. The boundary between these ranges is around

6 Hz for both ankle and hip. Commonly for this application, it is

agreed that most discriminative components are contained in the

frequency range below 6 Hz (Mäkela et al., 2021). For that reason,

many researchers now focus on the 0—6 Hz frequency range

when pre-processing biomechanical gait data (Luo et al., 2020;

Renani et al., 2021). The results indicate that the attention model

creates less high frequency variation (or noise) above the

frequency range of interest than the baseline model. However,

the amplitudes of baseline and attention models are both lower

than the ground truth in the low frequency range, and their

power do not decay as fast as the ground truth after 15 Hz.

FIGURE 7
Model prediction for the ankle acceleration on the testing
data from up-stairs.

FIGURE 8
Fast Fourier analysis for the ground truth and the prediction results of models. (A) and (B) are about left ankle and hip resultant acceleration,
respectively. The branched attention model and the branched baseline model are used.
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Usually, very few signals above 15 Hz are beneficial to describe

human movement (Rai et al., 2020).

Compared to the branched baseline model, the network size

of the attention model was scaled down by 57% in term of model

parameters (308362 versus 132292 parameters). We created a

new model in accordance with the branched attention model

architecture but removing the two attention layers. With this

model, NRMSE training errors less than 8.15% and 7.88% for

ankle and hip respectively could not be achieved, and testing

errors were 14.81% and 12.09% respectively. The outcome

without attention layers became much worse than the model

with attention mechanism (9.06% and 7.64% testing error for

ankle and hip respectively).

Additionally, the influence of filtered inputs has been

investigated based on the proposed attention model

architecture. The MAPE errors are 22.09% (ankle) and 12.98%

(hip) for the filtered inputs by the 5-point Moving Averaging

filter; the MAPE errors are 22.99% (ankle) and 12.36% (hip) for a

2nd order Butterworth filter with 6 Hz cut-off frequency. With

our 100 Hz sampling frequency, the Moving Average filter is less

aggressive, which means that it is less likely to remove useful

parts of the signals although more noise will remain. The

Butterworth filter gives a small advantage for the hip

prediction but makes the ankle prediction worse in this case.

4 Discussion

4.1 Main findings

From the comparison of the unbranched smaller/larger

baseline models it appears that purely increasing the size of

unbranched model does not offer benefits in term of error

reduction. The unbranched larger baseline model nearly

doubled the smaller model in total number of model

parameters. This issue is due to the limited potential of the

model structure, and simply increasing network size cannot bring

extra benefits in such an already large enough neural network

(He et al., 2016). To tackle this challenge, the branched model

architecture was adopted to better specialize the regression

prediction for the multioutput biomechanics problem notably

for joints/segments with a larger range of movement (e.g., ankle),

and revealed modest improvement in MAE and MAPE metrics

but not NRMSE. A great deal of effort has been expended to

search for the optimum hyperparameters (including network

size) to gain a clear advantage for the branched baseline model,

and more datasets and tests are necessary to confirm

architectural validity in the future. The attention model

leveraged the prediction performance further and possessed a

distinct advantage particularly for ankle kinematic trajectory

generation, and less time was consumed to find out a feasible

solution for hyperparameters and model size. Aside from error

reduction, the attention mechanism significantly decreased the

neural network size as more attention is devoted to more crucial

timesteps in the time series. Rai et al. (2020) and Bahdanau et al.

(2014) have illustrated and visualized the mechanism of

allocating attention. In our work, an experiment was

conducted to demonstrate that the attention mechanism has

potential to reduce model size while improving model

performance. The evidence indicates that a small model

without attention is inclined to be underfitted thus barely

extracting enough information from the training data. The

FFT analysis results confirmed that the attention mechanism

focused the model fit to the meaningful low frequency range of

the signal spectrum.

Many intelligent prosthesis and exoskeleton research

practitioners (Liu et al., 2017; Lee et al., 2021; Zaroug et al.,

2021) concentrated on simple movement scenarios such as

walking on a treadmill or level-ground and often at constant

speeds. In contrast, our study included slopes and stairs and

random transitions between two consecutive walking activities.

Although some high-intensity activities (e.g., stair ascent

navigation) are a challenge to estimate, the experiments

proved that the presented mode-free trajectory generator has

potential to adapt to an unstructured environment and varied

legged locomotion tasks. Due to the shortage of relevant theories

in the field of biomechanical parameter prediction, some

researchers (Rai et al., 2020; Wang et al., 2021) were

compelled to mechanically apply an existing attention model

(Qin et al., 2017). The downside is that their models took in the

historical gait data of the target leg from previous timesteps to

predict the future trajectory for the same leg. Clearly, it is not

possible to acquire an amputee’s historical gait data from the

missing target limb as model inputs in practice. For a subject with

locomotive impairments, the orchestrated movement profile

should be inferred from his/her remaining healthy limbs

instead of the affected limb itself.

The concept of end-to-end deep learning was illustrated in

this study as the raw input features were not filtered or

deliberately selected, and all of them were fed into the

training process directly to verify if the neural network can

extract principal signals from original lower-level IMU data

samples. Nonetheless, the abnormal outliers and high

frequency noise existing in the target signals on the dataset

should be eliminated by a filter before using them to update

model parameters, as these imperfect characteristics of the

original target features are not expected to be learned by the

model. The selection of input features also is a time-consuming

process, and some components of the IMU signals might be

found to make little contribution to the prediction precision

(Renani et al., 2021). Before the rise of deep learning, some

feature engineering methods such as Principal Component

Analysis (PCA) remain popular to pre-processing gait data,

and then the transformed data were inputted into a regressor/

classifier based on a traditional machine learning algorithm such

as a Support Vector Machine (SVM) or Decision Tree (DT) (Boe
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et al., 2021; Lotfi and Kedir-Talha, 2022). However, all

measurable IMU physical quantities were directly fed into the

neural networkmodels in this work, and we rely on the automatic

extraction of beneficial intermediate features and abandonment

of useless components.

4.2 Limitations

Regardless of model topology, flaws in data quality also

diminished the maximum effectiveness of the model

architecture, since the data samples of each subject collected

by Sherratt et al. (2021) are moderately uneven in terms of

activity type and duration time. All the participants were

permitted to perform their behaviors in a voluntary way with

a self-selected pace and without a fixed routine, leading to

unbalanced sample problems between subjects and between

activities. Besides, their dataset does not collect the motion of

knees. Traditional theoretical research into machine learning

pays attention to the model-centric method based on standard

datasets, but a practical industrial application should give higher

priority to data-centric methods whereby the quality of data

should be valued more (Strickland and Ng, 2022; Zhong et al.,

2022). For the purpose of designing a novel model architecture

rather than devising a commercial product, the accelerations of

body parts are selected as model outputs, more commonly-used

control signals such as limb joint angles should be investigated to

further validate the generalizability and effectiveness of our

proposed model.

5 Conclusion

State-of-the-art deep learning topologies were investigated

for estimating walking gait movements, and an attention

mechanism was shown to improve the performance of a

recurrent neural network to give better prediction accuracy

and smaller network size. The movement predictor receives as

inputs complementary limb motion. It can handle slopes and

stairs and achieve seamless prediction during transition between

varied walking activities. Consequently, this allows continuous

control without the need to separately identify each activity and

delineate each phase event during a gait cycle. This contrasts with

the discontinuous finite-state machine approach that demands

high technical expertise to set up hand-crafted rules and pre-

defined fixed trajectory references. Although the flexible

trajectory planning with deep learning techniques for

biomechatronic prostheses is becoming a much-researched

topic, it might be more practical to implement this concept in

more tractable and safer rehabilitation devices such as

exoskeletons. Furthermore, the deep learning-driven modelling

approach also promises to allow estimation of the hard-to-

measure joint kinematic parameters (e.g., joint contact force/

moment), as an alternative to building up complex

musculoskeletal models to allow estimation from simulations

driven by motion capture data.

Normally, a data-driven model needs to consume a large and

high-quality dataset to make certain of personalization and

generalization. Additional datasets should be identified or

collected to validate the proposed models further. Considering

the high expense of collecting locomotion datasets in terms of

time, funds and personal privacy, future work will place great

expectations on the data augmentation techniques such as

Generate Adversarial Networks (GAN) in order to better train

machine learning models with fewer available data. Other

attention mechanisms such as self-attention also are worth

being investigated. The proposed attention model structure is

not only confined to this study but can provide a useful reference

for other types of multi-input and multi-output estimation tasks.
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