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In this study we present an image analysis methodology capable of quantifying morphological changes in
tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order
statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to
extract second-harmonic generation (SHG) image features that are associated with the structural and
biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters,
multi-group classification of SHG images was performed. With combined FOS and GLCM texture values,
we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with .90%
accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions
involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal
diseases affecting ligaments and cartilage.

A
variety of pathological conditions in humans directly or indirectly involve remodeling or regenerating the
collagenous framework in tissue. Some of these conditions are characterized by excessive collagen depos-
ition while others present altered collagen organization (e.g., cirrhosis, scleroderma, keloid, pulmonary

fibrosis, diabetes, etc.)1–5. Abnormal deposition of collagen may impair vital functions, and changes in the
architecture of the focal collagen network may also lead to disabling conditions6,7. The ability to accurately
characterize collagen morphology is therefore an essential component in the pursuit of ultimate understanding
of these pathologies.

Traditionally, tissue collagen organization is inspected using histochemistry, immunohistochemistry as well as
in situ hybridization. These standard methods require multiple steps of tissue processing and such sample
preparation can lead to un-desirable morphological alterations in the extracellular matrix. Several imaging
methods, such as MRI8–10, small angle X-rays11–13, and electron microscopy14 were tools developed in the past
for direct imaging of collagen without the need for tissue processing. However, these imaging modalities often
suffer from low chemical specificity and low spatial resolution. Special experimental conditions are often required
for some procedures that can damage tissue structure permanently.

Emerging over the last two decades, second-harmonic generation (SHG) microscopy has become a viable tool
for direct visualization of extracellular collagen in bulk tissue without invasive tissue staining15–19. It is a coherent,
elastic optical process where two excitation photons are effectively combined in an optically nonlinear medium, to
create a new energy-doubled photon at a wavelength exactly half of the excitation wavelength. Because of non-
zero second-order generation susceptibility, molecules possessing non-centrosymmetric structures are particu-
larly strong SHG emitters. SHG signal magnitude has a quadratic dependence on incident laser intensity thus
allowing for highly localized optical excitation. This results in high-axial and high-lateral resolution comparable
to confocal microscopy with added biochemical specificity. In biology, SHG has been extensively used for label-
free imaging of membranes and protein fibrils20–24. Collagen I fibril is one such structure and by far the most well-
documented source of tissue SHG25–27. For tissue imaging, unlike two-photon excited fluorescence (TPEF), SHG
does not suffer from phototoxicity nor photobleaching because there is no net energy deposition in the sample28.
Another advantage of using SHG for collagen imaging arises from the use of near-infrared (NIR) excitation.
Common NIR wavelengths used for SHG and TPEF imaging range between 780–900 nm leading to extended
imaging depths in weakly absorbing but highly-scattering tissue structures while at the same time minimizing
thermal effects on the sample.
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Despite the success of SHG in biomedical research, most published
work relied on SHG to describe collagen organization without using
quantitative measures. In most studies, collagen SHG images were
presented to describe empirical observations that were linked to a
particular pathological condition. While understanding these empir-
ical associations between collagen SHG images and pathology is
important, it is equally important to be able to track such correlation
using quantifiable measures for objective comparison. To date,
quantitative collagen analysis methods have largely relied on image
pixel-counting applied to histological images of tissue29,30. Others
have also used X-ray diffraction, MRI and electron microscopy
images for collagen quantification but with less success31,32. Despite
these efforts, none of these methods was able to reliably define dis-
tinct collagen patterns based on pre-defined quantitative parameters
and there are no reports in the literature to develop quantitative
collagen pattern classification. Quantitative SHG imaging has not
received much attention among researchers until recently. Several
SHG collagen studies have recently proposed new methodologies for
quantifying imagery features33–40. These studies however either used
simple image pixel intensity-based approaches33–37, or only analyzed
histological tissue sections, not intact bulk tissues38–40.

In this study we present a methodology capable of quantifying
changes in collagen networks caused by various pathological condi-
tions. The method described fills an existing gap in the literature
where empirical interpretation of nonlinear optical microscopy
(NLOM) images is used to classify tissue biochemical morphology.
We explore the use of texture analyses tools to extract SHG image
features that are related to the structural and biochemical changes
associated with collagen network pathologies in both sectioned and
intact tissues. We also performed multi-group classification of SHG
images based on these extracted quantitative parameters.

Two types of collagenous tissue, infarcted myocardium (heart
muscle) of rats and atherosclerotic arteries of rabbits, were used to
develop the methodology. In the infarcted myocardium, collagen re-
modeling occurs to repair the damage caused by myocardial infarc-
tion41. A recent study indicated that treatment of infarcted hearts
using adipose-derived stem cells (ASCs) influenced the collagen re-
modeling process by reducing collagen deposition in the infarcted
zone42. In this study, SHG images of collagen type I fibrils of tissue
sections from the stem cells-treated hearts and un-treated hearts
were compared using texture analysis. A binary classification based
on images acquired from ASCs-treated and un-treated hearts, was
subsequently performed. The second type of tissue that was investi-
gated was atherosclerotic plaque obtained from myocardial infarc-
tion (MI) prone Watanabe heritable hyperlipidemic (WHHL)
rabbits. Atherosclerotic plaques contain mostly collagen types I
and III43, with type I collagen comprising approximately two-thirds
of the total collagen44. Thick type I collagen deposits are particularly
abundant in the fibrous cap region of the plaque44–46, overlaying a
pool of lipid-rich structures. Type I collagen images collected from
bulk, un-sectioned atherosclerotic arteries were analyzed using
texture measurements. A multi-group classification was tested sub-
sequently to determine accuracy of the proposed method. The tex-
ture-analysis method reported in this study is not limited to the
conditions highlighted in this work. In fact, this method can be easily
applied to a wide range of conditions involving collagen re-model-
ing. While others have reported imaging of stem-cell treated
infracted rat hearts with TPEF and SHG microcopy47, our study is
the first to characterize focal collagen organizational features in an
infracted myocardium.

NLOM, such as SHG microscopy, holds great promises for disease
diagnosis because it can provide very specific tissue biochemistry
while bypassing conventional histopathological procedures48,49.
Such capability would eventually allow for in vivo pathology to be
realized in the near future. Although clinical NLOM may still be
years away from reality, recent technological advances have already

pushed for its miniaturization for endoscopic imaging50, and com-
mercialization (MPTflex, JenLab, Germany). In order to complement
ongoing hardware development, this study is aimed at developing a
set of standardized SHG collagen imaging descriptors based on tex-
ture parameters for objective analyses of collagen SHG images with
minimal subjective interpretation.

Results
Texture analysis of SHG images of collagen remodeling occurred
in infarcted rat hearts. A rat model of myocardial infarction was
originally developed to study therapeutic potential of adipose-
derived stem cells (ASCs) for treatment of heart failure42.
Histological and MRI studies have both confirmed that ASCs
reduced infarct size and improved cardiac contractile function of
the infarct rat hearts. In this study, we examined the utility of
texture analysis of nonlinear optical images (mainly SHG) for
quantitative tracking of the changes related to collagen fibril
remodeling in the ASCs-treated and un-treated infarcted rat hearts.

Representative SHG collagen images from un-treated, ASCs-
treated infracted rat hearts and non-infarcted heart are illustrated
in Figure 1a, 1b and 1c, respectively. Significant reduction of collagen
deposition in the ASCs-treated infracted heart is clearly seen while
the lack of collagen is also evident in non-infarcted heart. This obser-
vation is consistent with previous findings42 in which ASCs de-
monstrated therapeutic effect in improving cardiac function via
enhancement of cardiomyocyte regeneration and suppression of col-
lagen fibrillogenesis. The collagen density in images Fig 1a and 1b
was calculated using a simple threshold pixel counting method. The
result shows approximately a 50% drop in collagen density for the
ASCs-treated rat hearts compared to the un-treated hearts, which is
also consistent with previous data42. More importantly, the SHG
microscopic images reveal a highly–directional and organized col-
lagen fibril morphology in the ASCs-treated infarct myocardium
compared to a less-organized collagen structure characterized by
shorter but denser fibril bundles in the un-treated infarcted myocar-
dium. Additionally, representative images of histopathological sec-
tions obtained from ASCs-treated, un-treated and control heart are
illustrated in Fig. 1d–1f. Compared to un-treated infarcted heart,
ASCs-treated infarcted hearts contain a larger percentage of viable
myocardium in the infarct zone.

Changes in collagen fibril morphology such as fibril length, fibril
thickness, fibril alignment are tracked by texture analysis of SHG
images using first-order statistics (FOS) and second-order statistics
such as gray-level co-occurrence matrix (GLCM).

FOS textures are directly related to the gray tone distribution of
pixels intensity and ignore inter-pixel correlations. In contrast, image
second-order statistics depend on the spatial arrangements of pixels
intensities present in the region of interest (ROI). It is a measure of
the probability of a pair of pixel values occurring at selected distances
apart in the image, providing textural information for that region.
This probability function is known as co-occurrence matrix. In other
words, FOS are parameters extracted directly from the original image
while second-order statistics are derived from a matrix (e.g. gray-
level co-occurrence matrix) that is built upon inter-pixel correlation
of the original image51.

Figure 2 shows the distribution of values extracted from 90 images
for each texture parameter selected from a set of FOS and GLCM
parameters. These texture parameters provide a means of capturing
and quantifying the morphological changes on these images. The
mathematical expression and the interpretation of each texture fea-
ture are summarized in a supplemental table (Table S1).

From Fig. 2, it is clear that little statistical difference exists in
the FOS parameters between the un-treated and ASCs-treated
infarcted rat hearts, according to the Kruskal-Wallis test. GLCM
parameters (i.e. IDM, entropy and inertia), on the other hand,
show distinction between these two groups. For example, the
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Figure 1 | Co-localized SHG (shown in white, un-labeled) and TPEF (shown in blue, labeled with DAPI) images visualize collagen fibril organization
and cardiac muscle cell nuclei, respectively, in the histological section of infarcted myocardium of (a) an untreated infarcted rat heart; (b) an ASCs-
treated infarcted rat heart; (c) an image obtained from a histological section of a non-MI rat heart. Images were acquired using 103 0.45NA dry

objective lens. Excitation wavelength is at 800 nm. Collagen SHG signal was collected using a 400 6 5 nm band-pass filter in the forward direction while

the DAPI -TPEF signal was collected in the backscattered (epi) direction through a 505 6 50 nm filter. Arrows are pointing to the epicardium region.

(d), (e) and (f) show representative short-axis histopathological sections of untreated, ASCs-treated infarct rat heart and non-MI heart, respectively.

Heart tissue sections were stained with Masson’s Trichrome to delineate the infarct region, and images were acquired using 53 objective lens.

LV: left-ventricle.

Figure 2 | FOS (mean, standard deviation, integrated density, skewness and kurtosis) and GLCM (energy, inertia, correlation, IDM and entropy)
texture parameters extracted from SHG images of the ASCs-treated and un-treated infarcted rat hearts. The top and bottom of each rectangular box

denote the 75th and 25th percentiles, respectively, with the median shown inside the boxes. Vertical bars extending from each box represent the 90th and

10th percentiles.

www.nature.com/scientificreports
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group of the ASCs-treated hearts has a statistically higher IDM,
lower entropy and lower inertia values compared to its non-
treated counterpart. The Shapiro-Wilk test was applied for check-
ing the normality of the data distribution.

Classification of images of the infarcted rat hearts: ASCs-treated
v.s. un-treated. Data classification is a supervised learning strategy
that is used to analyze the organization and categorization of data
into distinct classes. A widely used classifier, support vector machine
(SVM), was chosen to test the strength of using FOS and GLCM
parameters to differentiate between ASCs-treated from un-treated
infarcted rat hearts. SVM is a classification method commonly used
in bioinformatics and it is known for its ability to deal with high-
dimensional data and flexibility for modeling diverse sources of
data52–53. SVM performs classification by constructing an N-
dimensional hyperplane that optimally separates the data into
different categories. Using a nonlinear SVM classifier, we tested
the ability of the texture parameters to classify distinct groups of
collagen fibers, based on the first (FOS) and second (GLCM) order
features extracted from SHG images. Figure 3 shows the receiver
operating characteristic (ROC) curve obtained by combining all
texture features (both FOS and GLCM), and those obtained from
individual group of features (FOS or GLCM).

The accuracy of the classifier, as represented by the area under
the ROC curve was determined to be 0.95 when combined GLCM
and FOS parameters were used for classification. This value
dropped to, 0.86 and 0.72 when only the GLCM parameters or
only the FOS parameters were used, respectively, to classify the
infarcted tissue. These values suggest that classification based on
combined GLCM and FOS parameters has an improved predictive
power in differentiating ASCs-treated from un-treated rat hearts
compared using either GLCM or FOS alone.

Texture analysis of collagen fibrils accumulated in atherosclerotic
plaques. In order to evaluate the strength and the limitations of the
proposed methodology to solve more complex problems, we

performed texture analysis on collagen SHG images acquired from
bulk atherosclerotic artery tissues. In previous studies, it has been
documented that nonlinear optical imaging microscopy employing
TPEF,SHG and coherent anti-Stokes Raman scattering (CARS)
could be used to visualize extracellular morphology characteristic
of atherosclerotic plaques54–60. Collagen remodeling throughout the
progression of atherosclerosis is dynamic, complex and multi-
factorial. The complexity of this process makes it a good candidate
model to assess the power of texture analysis in recognizing various
morphological features found in collagen networks.

The images used in this study were acquired directly from the
lumen of atherosclerotic arterial segments (un-sectioned bulk) har-
vested from WHHL rabbits. Figure 4 shows examples of several
collagen patterns captured with SHG images along the aorta affected
by atherosclerotic plaques. Different patterns in the collagen distri-
bution during plaque development are clearly evident.

A total of 414 SHG images acquired from 14 rabbits were used in
the analysis. The age of the rabbits ranged from 2 to 24 months. Based
on fibril characteristics such as shape, size and organization, the
images were first visually examined and then manually divided into
5 distinct groups by two individuals, independently. The origin of the
images was blind to the examiners during this manual classification
process. Only those images that received the same categorization
from both examiners were used for subsequent texture analysis.
Images were segregated into groups A,B,C,D and E, composed of
87, 72, 68, 79 and 108 images, respectively. Representative images
from each of the five groups are illustrated in Fig. 5.

Group A images are characterized by thinner, well-defined curled
fibrils with a certain degree of fibril orientation. Group B images
show a higher focal collagen density and more uniform fibril ori-
entation compared to group A. In contrast, group C and D images
both display a more randomly oriented network with shorter fibril
length. Group E images are marked by the presence of long, straight
and uniformly orientated fibrils. Some level of correlation between
distribution of the age groups and that of the 5 image groups were
observed. While group A images could be largely correlated with

Figure 3 | ROC curves for all three texture sets tested: FOS, GLCM and FOS 1 GLCM. Values suggest that the classification based on texture analysis has

a good predictive value, as the area under the ROC curve was 0.95 for all texture parameters (FOS 1 GLCM), 0.72 for FOS parameters and 0.86 for GLCM

parameters.

www.nature.com/scientificreports
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younger rabbits at an age between 0 and 4 months , collagen features
represented in group B–E images were mostly found in rabbits older
than 6 months. Furthermore, features shown in group B and C were
mainly associated with older rabbits at an age . 16 months.

Five FOS parameters (mean, standard deviation, integrated den-
sity, kurtosis, and skewness) were calculated for all 414 images. The
distributions of these FOS values corresponding to each group are
illustrated in Fig. 6. In 3 FOS parameters, mean, standard deviation,
and integrated density, images in group A receive low values com-
pared to the other 4 groups, as a result of the thin and sparse fibrillar
organization in this type of plaque. The distribution of skewness and
the kurtosis values of the gray level intensity histograms are also
illustrated in Figure 6. The skewness indicates the imbalance between

the extent of areas (or number of pixels) that are darker or brighter
than the mean. Images containing thicker fibrils, typically from older
plaques, present a more asymmetrical pattern left-tailed than that
captured in early plaque images (e.g. group A images). Therefore
group A images display higher skewness than the other groups.

While skewness is a measure of asymmetry of a distribution rela-
tive to the mean value, the kurtosis describes whether distribution of
gray tones is more spread-out (flat) or it is more concentrated around
the mean (peaked). In advanced plaques, most collagenous networks
are better developed, generally thicker and cover larger area therefore
generating stronger SHG signals. This usually leads to a more spread-
out distribution of pixel intensities, thus lower kurtosis values.
Complementary to the five FOS parameters, five second-order
GLCM parameters, inverse difference moment (IDM), energy, in-
ertia, entropy and correlation were extracted from the images as well.
Their values are presented in Fig. 7. IDM (also called local homo-
geneity) quantifies the local similarities inside the computational
window. It is expected to be higher for GLCMs with elements con-
centrated near the diagonal. These GLCMs correspond to textures of
organized and poorly contrasted features, with only a few gray levels
at the same distance d from one another. This parameter quantifies
the degree of homogeneity in the region of interest.

The energy feature is sometimes referred to as the second angular
moment or uniformity of the GLCM. The lowest value of energy is
attained when all the probability density functions Pd,h(i,j) are equal,
and there are no dominant gray levels. Most gray levels are equally
probable.

The inertia texture feature (also called second difference moment)
is very sensitive to large differences occurring inside the co-occur-
rence matrix. Highly contrasted regions will have a high inertia,
whereas more homogeneous regions will have a low inertia.

The correlation quantifies the dependence of gray levels between
two pixels separated by distance d. Low correlation means that the
gray levels are generally independent from one another, i.e., there is
no regular structure in the image. However, if correlation is high,
there is a high probability that one or several patterns repeat them-
selves inside the computational window.

The entropy measures the lack of spatial organization inside the
computational window. Entropy is high when all Pd,h(i,j) are equal,

Figure 4 | Epi-SHG images acquired from atherosclerotic plaques on the
aorta of WHHL rabbits, showing examples of different collagen fibril
morphology detected on atherosclerotic artery. SHG images were

acquired using 20 3 0.75 NA dry objective lens (Olympus) and 800 nm

laser excitation. A 23 digital zoom was used for imaging. Each image

shown has 512 3 512 pixels or approx. 200 3 200 mm. Scale bar: 50 mm.

Figure 5 | All collagen SHG images acquired from the arteriosclerotic aortic segments of the WHHL rabbits were classified into five groups A–E. Each

group of the images has its own characteristic morphological features such as the fibril’s shape, size and organization. Images are showing the fibrous cap,

accumulated closer to the intima layer. Representative images from each group (A–E) are shown. Scale bar: 50 mm.

www.nature.com/scientificreports
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which corresponds to a rough texture, and low when the texture is
more homogeneous or smoother.

Kruskal-Wallis test was performed to test for statistical differences
between any two groups and all p values are shown in the supple-
mental Table S2. These results indicate insufficient differentiating
power for most tested FOS and GLCM parameters in classifying
atherosclerotic collagen fibril development, when used individually.
One exception is with group A, which stands out as the only group
with distinct texture characteristics that can be easily differentiated
from the other groups using any of the GLCM parameters, or some of
the FOS parameters.

Multi-group classification of SHG images. A nonlinear SVM
classifier was trained and applied to classify collagen SHG images
of bulk atherosclerotic arterial tissues using FOS and GLCM texture
parameter descriptors of the images. This time, the performance of
SVM classifier was tested for a 5-group classification. Results are
shown in Table I.

The nonlinear SVM classifier has an overall accuracy of 90% when
10 combined FOS and GLCM parameters are included in the clas-
sification model. Accuracy drops to 84% and 87% (supplemental
Table S3) when only FOS or GLCM parameters were used, respect-
ively. Group A was distinguished from other groups as it shows the
highest accuracy, sensitivity and specificity, with little dependence
upon the selection of textural parameter (compare Table S2 and
Table S3 in the supplementary material). Classification of other

groups, however, is more sensitive to the selection of classification
parameters.

Additional tests were also performed to evaluate the effectiveness
of the proposed methodology for classification across data sets
(atherosclerosis v.s. infarcted heart). All images acquired from the
arteries (all five groups) and from infarcted hearts (ASCs-treated and
un-treated) were included for analysis. Collagen images collected
from artery could be confidently differentiated from those collected
from infarcted hearts with 99% accuracy when all texture parameters
(FOS 1 GLCM) were used for classification. Accuracy dropped to
81% when considering only FOS parameters, and 96% when con-
sidering only GLCM parameters. Figure S4 (supplemental material)
compares each texture parameters calculated for images acquired
from atherosclerotic arteries and infarcted myocardium. The
obtained ROC curve is presented in Fig. S5 (supplemental material)
for each test set.

Overall, classifiers using the full set of calculated texture para-
meters (combined FOS and GLCM) give the best classification accu-
racy. When comparing GLCM with FOS parameters, GLMC textures
typically give a more accurate classification than classifiers based on
FOS textures.

Discussion
In the binary classification of the ASCs-treated and un-treated
infarcted rat hearts, our results showed that GLCM parameters
were able to provide effective classification with very high accuracy,

Figure 6 | Comparison of texture parameters calculated for each group defined in the text. The top and bottom of each rectangular box denote the 75th

and 25th percentiles, respectively, with the median shown inside the box. Vertical bars extending from each box represent the 90th and 10th percentiles.

www.nature.com/scientificreports
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conveying both high sensitivity and specificity. From Fig. 2, it is very
clear that none of the FOS variables were able to reveal significant
differences between the ASCs-treated and un-treated infarcted
hearts, suggesting that the intensity-based image features were not
sensitive enough to capture the variability of properties of the col-
lagen deposited in infarcted myocardium. GLCM parameters, on the
other hand, consider every pixel and its neighborhood, thus generat-
ing a map that is able to account for more complex structures in the
images.

Three GLCM parameters, IDM, entropy and inertia, all exhibit
certain differentiating power. For IDM, a higher value can be assoc-
iated with a denser or thicker collagen fibril structure in the ASCs-
treated hearts. As for entropy, a lower value typically means that the

ASCs-treated hearts have a more homogeneous local collagen mor-
phology than the non-treated hearts. This interpretation is supported
by the presence of thicker and better defined fibers in the ASCs-
treated hearts (see Fig. 1). Inertia is another texture parameter that
quantifies the heterogeneous distribution of collagen in the un-
treated hearts. A higher inertia value is often associated with a greater
variability of gray levels inside a computational window. In other
words, structures and/or particles are distributed within a certain
area without a preferential alignment nor orientation, as one would
expect in the case of fibrils.

In contrast to data collected from infracted hearts, the interpreta-
tion for data collected from atherosclerotic plaques is not so straight-
forward due to the more complex and diverse nature of the collagen
networks. While it was still possible to link some variations in the
FOS parameters directly to certain visual differences between the
images, we found it much harder to do the same kind of comparison
with the GLCM parameters. As a result, we did not attempt to inter-
pret the direct correlation between the GLCM parameters and the
visual presentation of the original images.

Our results showed that GLCM-based classification provided an
accuracy at 87%. Classification accuracy was improved modestly to
90% when dimension of the feature space was expanded to include
FOS textures. Sensitivity and specificity were however statistically
unaffected. This indicates that FOS and GLCM measures are some-
what complimentary to each other in terms of tracking pattern dif-
ference in these SHG images.

Figure 7 | Values of GLCM texture parameters calculated from each group. The top and bottom of each rectangular box denote the 75th and 25th

percentiles, respectively, with the median shown inside the box. Vertical bars extending from each box represent the 90th and 10th percentiles.

Table I | Summary of the nonlinear SVM classification for collagen
SHG images acquired from atherosclerotic arteries based on a 5-
group model and combined FOS and GLCM parameters

Group Test Set Accuracy Sensitivity Specificity

A 6160 100% 100% 98%
B 6520 73% 79% 100%
C 6640 88% 65% 88%
D 6360 90% 86% 94%
E 4480 93% 95% 90%
Overall 30160 90% 91% 92%

www.nature.com/scientificreports
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Based on data presented in Table I, it is quite evident that group A
is the most distinct group and can be easily distinguished from the
other groups. The collagen textures detected in group A predo-
minately arise from younger rabbits exhibiting early stage athero-
sclerosis. The collagen fibers visualized in these images can be
characterized by curlier aspect and a sparse distribution without a
preferential direction. A closer look at table S2 (supplemental mater-
ial) also reveals that from a pattern-recognition point of view, group
A is the only group that can be separated from the other 4 groups
with high confidence. Based on these observations, we can conclude
that the collagen features presented in early stage atherosclerotic
plaques (rabbits younger than 4 months) are distinctly different from
those found in rabbits older than 6 months. This conclusion is con-
sistent with the observation that the progression of atherosclerosis in
this rabbit model proceeds faster in the younger animal and then
slowly levels off after a certain age.

As for groups B and C, they are mainly characterized by a lack of
collagen organization. Interestingly, GLCM textures could not
identify groups B as accurately as FOS textures (Table S3, supple-
mentary material). This was one of the reasons why 5-group clas-
sification was more accurate when both FOS and GLCM parameters
were included in the classification analysis. This demonstrated the
benefits of using complimentary texture parameters for evaluating
more complex collagen morphologies.

Overall, nonlinear SVM classification shows lower accuracy when
only FOS texture parameters are used (73%, 81%, and 92%). This
lower accuracy is not surprising given that FOS parameters are
directly related to individual pixel intensities and do not consider
neighboring values; therefore, different texture patterns can some-
times result in the same FOS value. GLCM parameters, on the other
hand, account for certain inter-pixel relationships.

Finally, the methodology was tested for its potential to classify
collagen fibril formations in atherosclerotic plaques against those
in myocardial infarct hearts, a test across data-sets. Although it
was cast as a binary classification problem, individual groups in this
test in fact contained much more diversity compared to those pre-
sented in the case of the infarcted hearts. With such high level of
image inhomogeneity, we were able to obtain a very high classifica-
tion accuracy at 99% or 96% using combined FOS/GLCM para-
meters, or GLCM alone, respectively. The FOS texture parameters
alone delivered a modest result, at only 81%. Once again we have
shown that our methodology is robust in distinguishing structural
variations present in collagen network, whether it is for intra- or
inter-data set comparison. Secondly, we also proved that this type
of collagen feature classification benefits from using a combined
FOS/GLCM model.

In summary, using two disease models we have demonstrated the
feasibility of performing classification of collagen fibril morphology
based on first-order and second-order texture statistical parameters
derived from SHG images. Using a nonlinear SMV classifier, it is
shown that in more complex cases, the classification accuracy can be
improved with combined FOS and GLCM texture variables, com-
pared to the case when either one is used. On the other hand, in a
binary classification of ASCs-treated and un-treated infarcted hearts,
one group of texture parameters was sufficient to generate classifica-
tion accuracy of better than 90%. However, when comparing col-
lagen morphology observed in two different data sets (artery v.s
heart), the combined FOS/GLCM model is superior to the model
that use individual group textures (FOS or GLCM). Although our
study is only a proof-of-concept with a limited sample size, its
implication is that non-subjective texture based classification of
SHG images could have practical clinical applications in distinguish-
ing collagen pathologies. In the clinical world where digital pathology
is becoming more popular, automatic classification could be a very
helpful tool for the pathologist to increase sample through-put and to
help minimize interpretation errors.

Methods
All animal experiments conformed to the guidelines set out by the Canadian Council
on Animal Care regarding the care and use of experimental animals and were
approved by the local Animal Care Committee of the National Research Council of
Canada.

Infarcted hearts: adipose derived stem cells treated and un-treated. Cryo-sections
of post-MI rat hearts were obtained from an earlier study which assessed the potential
therapeutic efficacy of adipose-derived stem cells (ASCs) on infarcted hearts42. In
short, myocardial infarction was induced in inbred female Lewis rats by occlusion of
the left anterior descending artery (LAD). One week after LAD occlusion, the rats
were divided into three groups and subjected to transplantation of ASCs or
transplantation of cell culture medium (CCM) or remained untreated. At the end of
the 4-wk recovery period, the animals were euthanized and the hearts were excised.
ASC-treated, CCM-treated, and untreated hearts were transversely cryosectioned
into 6-mm thick slices from the apex to the base. Cell nuclei were stained with 4’,6-
diamidino-2-phenylindole (DAPI; Sigma). Technical details on the animal model,
cryo-sectioning and histological protocols can be found elsewhere42.

Arterial samples. The myocardial infarction prone Watanabe heritable
hyperlipidemic (WHHL-MI) rabbits spontaneously develop atherosclerotic plaques
due to a hereditary defect in LDL (low-density lipoprotein) processing61,62. This
animal model was used previously to study plaque development with nonlinear
optical imaging microscopy58. The excised aorta was dissected from the ascending
aorta to the external iliac artery and then rinsed in heparinized saline. The exterior
aorta was subdivided into ,60–80 mm sections that were cut open longitudinally
exposing the luminal surface. The samples were placed in petri dishes with the
luminal surface facing up on a moist surface and hydration was maintained
throughout the measurements by applying PBS solution periodically. Regions of
interest were identified prior to SHG imaging measurements. More procedural details
can be found in previous work58,59.

Multiphoton microscopy. An in-house, custom-built multiphoton microscope was
used for tissue imaging and was previously described58. A Ti:Sapphire oscillator
(Spectra-Physics, Tsunami) with a center wavelength at 800 nm and a pulse width of
100 fs was used as the laser source for generating SHG and TPEF signals. The laser
pulses were first passed through a Faraday isolator (Newport) and pre-compressed
using a pair of chirped mirrors (Layertec GmbH, Germany) to compensate for the
positive pulse chirping introduced by the microscopy optics. After passing through
the various lenses and polarizing optics, the pulses were sent into the microscope
assembly where a non-descanned modular type PMT (photomultiplier tube) detector
(Hamamatsu) was used for signal detection in either the epi- or the forward direction.
The laser pulses were focused onto a sample through a 203, 0.75 NA infinity
corrected air objective lens (Olympus) with the SHG signal being collected through
the same objective lens. Typically 25 mW of pump and 8 mW of Stokes (measured
after the 203 air objective lens) were used for imaging. ScanImage software (Cold
Spring Harbour Laboratory, NY) was used for laser scanning control and image
acquisition.

Image processing and data analysis. Ten texture parameters were determined using
the histogram and the gray level co-occurrence matrix (GLCM) of the image. The co-
occurrence matrix represents the probability of occurrence of a pixel pair, with a given
gray-tone difference, separated by predefined distance taken in a predefined
direction, while the image histogram is the frequency of occurrence of a gray tone in
an investigated region.

Co-occurrence matrices describe the second-order statistics of the images. In this
case statistics depend on the spatial arrangement of the gray levels present in the
region of interest and provide textural information for that region. This method is
based on the estimation of the second-order joint conditional probability density
functions Pd,h(i,j). Each Pd,h(i,j) is the probability of going from a gray level i to a gray
level j in a given direction h at a given intersample spacing d.

The co-occurrence matrix Pd,h(i,j) is a representation of the estimated values. It is a
square matrix of dimension Ng (Ng is the number of gray levels in the image). Based
on a co-occurrence matrix, a number of texture features can be defined. A set of 14
features, defined by Haralick et al63, were studied for their value in relating SHG
images to collagen morphology. These were the angular second moment, inertia,
correlation, variance, inverse difference moment (IDM), sum average, sum variance,
difference variance, sum entropy, entropy, difference entropy, information measures
of correlation one, information measures of correlation two and maximum prob-
ability. However, after performing a feature selection test based on Fisher score64, only
five FOS and five GLCM features were found to be useful in the context of defining
structures in collagen fibers from SHG images65. Others did not show the ability to
distinguish between the various collagen morphologies detected using SHG imaging.
The results derived from the energy, inertia, correlation, IDM and entropy texture
features are reported.

The co-occurrence matrix was calculated in four orientations: horizontal, vertical
and the two diagonals (directions defined by four angles: 0u, 45u, 90u and 135u), and
an average value was obtained for characterization purposes. A computational win-
dow size of 8 pixels was adopted to extract features from 16 bit images.

Post image processing was performed in ImageJ software. Image background
correction, intensity normalization and calculation of various image texture para-
meters were carried out using Matlab7.5, according to the procedure outlined
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previously59,66. A custom-built texture analysis toolkit based on some of the texture
analysis functions available in the MATLAB image processing toolbox was used to
calculate GLCM parameters. FOS parameters were calculated using ImageJ’s his-
togram analysis toolbox67.

Statistical analysis. After all texture features were extracted, the Shapiro-Wilk test
was performed to examine the normality of the data distribution. Shapiro-Wilk is one
of the most widely used tests for its ability to work with a broad range of data sets. It is
also the most powerful normality test available for detecting small variations from
normality. The Kruskal-Wallis test was applied to evaluate statistical differences
between different groups of data (e.g. ASCs-treated and un-treated hearts). We chose
the Kruskal-Wallis test because it is a non-parametric test, not making assumptions
about normality and can be applied to examine groups of unequal size.

Nonlinear support vector machine (SVM) classifier. Support Vector Machine
(SVM)52,53 methods have been shown to be powerful tools for supervised
classification. A nonlinear classification SVM (ksvm in the R package kernlab)68 was
used to classify SHG images obtained from arteries and hearts. Using the built-in
rbfdot kernel function in the package, a training set and a validation set were
randomly created from the set of SHG images. The training set consisted of 2/3 of the
whole data set, while the test set consisted of the 1/3 of the remaining images. The
SVM nonlinear classifier was trained and validated using k-fold cross-validation. For
experiments involving heart images, k was equal to 3 and for arterial images the used k
was 5. A grid search was performed aiming to best define the cost and gamma
parameters. The grid search was done on k-fold cross-validation of the training set,
and after reaching the maximum possibly accuracy, these parameters were then
applied to classify the test set. The procedure of defining the cost and gamma
parameters was independently repeated for each data set (arteries and hearts).
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