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Abstract

The problem size effect is a well-established finding in arithmetic problem solving and is
characterized by worse performance in problems with larger compared to smaller operand
size. Solving small and large arithmetic problems has also been shown to involve different
cognitive processes and distinct electroencephalography (EEG) oscillations over the left
posterior parietal cortex (LPPC). In this study, we aimed to provide further evidence for
these dissociations by using transcranial direct current stimulation (tDCS). Participants un-
derwent anodal (30min, 1.5 mA, LPPC) and sham tDCS. After the stimulation, we recorded
their neural activity using EEG while the participants solved small and large arithmetic prob-
lems. We found that the tDCS effects on performance and oscillatory activity critically de-
pended on the problem size. While anodal tDCS improved response latencies in large
arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the
lower-alpha desynchronization in large problems increased, whereas the theta synchroni-
zation in small problems decreased. These findings reveal that the LPPC is differentially in-
volved in solving small and large arithmetic problems and demonstrate that the effects of
brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

Introduction

The development of mathematical competencies is a major goal of formal schooling and an im-
portant prerequisite for success in various areas of life [1]. An essential step in this
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development lies in the acquisition of arithmetic skills which has been in the focus of cognitive
and educational research for several decades (for a review see e.g. [2]). This research has pro-
duced much evidence showing that arithmetic problem solving relies on different (neuro-)cog-
nitive processes depending on the type of arithmetic problem.

The presumably most robust and well-established finding in this domain is the problem size
effect (PSE) [3,4]. It is reflected in longer response latencies and lower accuracies when solving
arithmetic problems with larger operands (i.e. sums > 10; large problems) compared to prob-
lems with smaller operands (i.e. sums < 10; small problems). To date, several explanations and
models on the cause of this effect have been put forward (see e.g. [5-9]). The application of dif-
ferent strategies in problems of different size is assumed to be a major contributing factor to
the PSE [10,11]. In particular, it has been shown that small arithmetic problems are primarily
solved by fast and efficient direct retrieval of the answers from long-term memory, whereas
larger problems are more often solved through time-consuming and error-prone non-retrieval
procedures such as counting and transformation (e.g. decomposition of an arithmetic problem
using known facts: 18 + 13 =18 + 2 + 11).

Functional neuroimaging studies have revealed that the PSE is associated with specific
neurophysiological activation patterns in the left posterior parietal cortex (LPPC). Specifically,
there is a large body of evidence that left-hemispheric perisylvian language regions such as the
supramarginal and angular gyrus were mainly activated in small arithmetic problems [12-14],
whereas the intraparietal sulcus showed greater activation in large problems [12,13,15,16].
Neural activation of the former areas have generally been assumed to reflect the retrieval of
arithmetic facts from long-term memory, while activation of the latter region was related to
quantity processing and manipulations during procedural calculation [17-19].

Different problem sizes are known to be accompanied by dissociable oscillatory patterns in
the electroencephalogram (EEG) [20-22]. For example, Grabner and De Smedt [21] performed
a study that was specifically designed to investigate the oscillatory correlates of problem size
and strategy use. They presented small and large addition and subtraction problems and gath-
ered trial-by-trial verbal strategy reports. The authors used event-related (de-)synchronization
(ERS/ERD) measures, which reflect the extent to which local synchrony in a specific frequency
band is gained (ERS) or lost (ERD) from a pre-stimulus reference interval to an activation in-
terval during task processing. Using this approach, Grabner and De Smedt [21] found a clear
dissociation of problem size or strategy and EEG frequency band: small problems were charac-
terized by an increased left-hemispheric theta ERS (3-6 Hz) and large problems were accompa-
nied by a widespread lower-alpha ERD (8-10 Hz). Interestingly, the same neural effects hold
true for retrieval problems (increased theta ERS) and procedurally solved problems (lower-
alpha ERD) (for similar results see also [20]). The finding of greater theta ERS at parietal areas
for small/retrieval problems was interpreted to reflect the retrieval of arithmetic facts mediated
by task-relevant areas such as the LPPC. This interpretation corresponds to findings associat-
ing theta ERS with memory performance in general [23-27] and with the retrieval of lexical-
semantic information from long-term memory in particular [25,26,28,29]. The stronger lower-
alpha desynchronization in large/procedural problems was seen as the consequence of the
more effortful nature of procedural calculation. This is in line with the common interpretation
of lower-alpha ERD as marker of basic attentional processes, with greater ERD values indicat-
ing increased brain activation and attentional involvement [30-34].

Taken together, distinct patterns of neural activation have been shown to emerge in the LPPC
depending on the problem size and the associated cognitive processes. A central restriction of the
aforementioned studies using neuroimaging methods lies in their correlational nature (see e.g.
[35]). Accordingly, it is unclear whether the previously observed activation patterns in the LPPC
are causally related to arithmetic performance. Non-invasive brain stimulation techniques,
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however, can be used to investigate the causative role of cortical areas for specific cognitive func-
tions. In recent years, especially transcranial direct current stimulation (tDCS) has gained in-
creasing popularity [36-39]. At a neurophysiological level, anodal tDCS has been shown to
increase the excitability of the neuronal tissue located beneath the stimulation location
[38,40,41]. At a cognitive level, anodal stimulation has typically been found to improve a wide va-
riety of cognitive functions such as working memory [42-44], language learning [45,46] or atten-
tion [47,48] as well as clinical disorders such as depression [49] or aphasia [50]. Recently,
however, there is a growing number of tDCS studies showing that anodal tDCS does not only
have beneficial effects, but can also impair cognitive performance in certain tasks [51-55].

In the mathematical domain, there have been high expectations that this method could in
future be used to support the treatment of learning disorders such as developmental dyscalcu-
lia, which is characterized by deficits in both basic number processing and arithmetic skills
[36,56]. Indeed, recent studies have provided first evidence of positive effects of tDCS on basic
number processing as well as arithmetic performance [51,57,58]. Most relevant to the current
study, Hauser et al. [58] have shown that anodal tDCS over the LPPC improved solution times
in large (procedural) subtraction problems. The effects of parietal tDCS on small (retrieval)
problems, however, have not been investigated so far. Furthermore, despite the popularity of
these techniques, relatively little is known about how the induced behavioral changes relate to
modulations in neural activity. However, there are increasing endeavors to investigate the neu-
rophysiologic effects of brain stimulation techniques by combining them with neuroimaging
methods such as EEG [35,44,59-61].

Against this background, the aim of the present study was to provide further evidence for
the neuro-cognitive dissociation in the LPPC between small and large arithmetic problems
and, thus, to further clarify the role of the LPPC in arithmetic problem solving. To this end,
participants underwent anodal and sham tDCS over the LPPC. Afterwards, neural activity was
recorded using EEG while the participants solved small and large arithmetic problems. We hy-
pothesized that anodal tDCS (compared to sham tDCS) changes oscillatory EEG activity in the
theta band while solving small problems and in the lower-alpha band while solving large prob-
lems. These modulations are expected to be accompanied by performance improvements in
both small and large arithmetic problems.

Method
Participants

Twenty-six healthy participants without any neurologic, psychiatric or mathematical (learning)
disorders were recruited among students of the University of Zurich. None of the participants
were taking any medication affecting the central nervous system at the time of participation.
All participants were consistent right-handers as determined by the Annett Handedness Inven-
tory [62]. One participant was excluded due to health issues unrelated to the experiment in one
session and two male subjects were excluded due to excessive movement- and muscle-related
EEG-artifacts from the overall analysis. The final sample was composed of 17 female and 6
male participants (age: M = 21.78y, SD = 2.66, range = 19-32). The study was approved by the
ethics commission of the ETH Zurich, Switzerland (EK 2011-N-52). All subjects were thor-
oughly informed about the study, gave written informed consent and received course credit as
compensation for their participation.

Procedure

The within-subjects experimental procedure is depicted in Fig. 1. The study consisted of two 2-
hour sessions with an intersession interval of one week to minimize training effects.
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Questionnaires (at home)
tDCS installation (5-10 min)

EEG installation (=15 min)

1 week

tDCS installation (5-10 min)
EEG installation (=15 min)

— —

Session 1

Session 2

Fig 1. Schematic depiction of the experimental procedure. The study consisted of two sessions one week apart. Participants underwent one session of
anodal and sham tDCS each (order counterbalanced). The arithmetic task was presented after stimulation.

doi:10.1371/journal.pone.0120665.g001

Participants underwent one session of anodal and sham tDCS each. Both conditions were
counterbalanced across subjects to control for order effects. In both sessions, tDCS electrodes
were fastened under an EEG cap and the subjects were seated in an electromagnetically
shielded room. During the DC stimulation, all EEG electrodes not directly located over the
tDCS electrodes were inserted into the EEG cap and participants had the chance to familiarize
themselves with the experimental task by means of six practice trials. The practice trials in-
volved 6 arithmetic problems with the same operand (i.e., 2+2 or 15+15). Upon termination of
the DC stimulation, the remaining EEG electrodes were mounted (duration about 15 min).
The experimental task and EEG recording was started directly afterwards (i.e., about 45 min-
utes after the beginning of DC stimulation). Thus, both the behavioral task and the EEG mea-
surement were performed “offline”, i.e., after the DC stimulation.

In the experimental task, the participants were presented with addition and subtraction
problems of small and large problem size. Both operations were presented in two separate
blocks to avoid operation switching effects. The blocks had a length of about 7 minutes and
were separated by a short break. The sequence of the operation blocks over both sessions was
counterbalanced across participants (i.e., either addition / subtraction or subtraction / addition
in both sessions). Small and large problems within a block were intermixed and presented in a
fixed pseudorandomized order to prevent that problems with the same result are
presented consecutively.

Participants were instructed to solve the problems as accurately and fast as possible and to
speak the answer into a microphone as soon as they had found the solution. A single trial (see
Fig. 2) consisted of the presentation of a fixation point for 2000 ms, followed by the arithmetic
problem that disappeared as soon as an oral response was registered. The problem was auto-
matically faded out if no response was recorded within 10000 ms. Subsequently, an inter-trial
interval with a length of 2500 ms was presented. E-Prime 2.0 software (Psychology Software
Tools, Pittsburgh, PA) was used for stimulus delivery. Response latencies represented the time
from problem onset to voice onset as registered by a voice key. Throughout the task, the experi-
menter recorded the correctness of each oral response and additionally noted rare problems
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small problem

3+4

large problem

37-19

Fixation (2000ms) Problem Intertrial interval (2500ms)
(until oral response)

Fig 2. Schematic depiction of a trial of the arithmetic task used in the present study. 72 small (sums <
10) and 72 large problems (sums > 10, with carry) were presented in a fixed pseudorandomized order.

doi:10.1371/journal.pone.0120665.9002

arising with the collection of the vocal latencies (e.g. too late registration). The EEG cap was re-
moved upon completion of the arithmetic task. At the end of the experiment, all participants
were debriefed and received course credit.

Stimulus material

In each session, participants solved 72 small and 72 large problems, composed of 36 addition
and 36 subtraction problems each. The subtraction problems were created by mirroring the ad-
dition problems (e.g. 3 + 5= 8 to 8-5 = 3).

Small problems were defined as one-digit/one-digit problems with addends between 2 and
8. Problems with 0 or 1 as operands and tie problems were excluded. These small problems
have been reported to be predominantly solved by means of memory retrieval (about 90%;
[10,21,63]). Since a maximum of 24 small problems can be generated under these constraints,
12 problems were randomly chosen and repeated once in one session, whereas the remaining
12 problems were used in the other session.

For the large problems, 36 problems from a pool of every possible two-digit/two-digit carry
problem with addends ranging from 12 to 29 were randomly selected [10]. Only one of each
commutative pair was chosen (e.g. 12 + 19 or 19 + 12). This definition of large problems has
been shown to result in a large proportion of self-reported procedure use (about 76%; [21]).
Notably, the administered large problems are comparable in difficulty to the problems used by
a recent tDCS study on procedural calculation [58].
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Transcranial direct current stimulation

A battery-driven electrical DC stimulator (NeuroConn GmbH, Ilmenau, Germany) was used to
modulate cortical excitability of the LPPC. The direct current was applied through a pair of con-
ductive rubber electrodes placed in saline-soaked sponges. Both electrodes were fastened under
an EEG cap and were, if necessary, further fixated using elastic rubber bands. Anodal tDCS was
applied for 30 min at 1.5 mA intensity, while sham tDCS was applied for 30 s at the same inten-
sity, similarly to the procedure reported by Hauser et al. (2013). In both conditions, additional
fade-in or fade-out periods of 10 s were employed during which current intensity was linearly
in- or decreased. Using this procedure, active and sham stimulation are known not to be distin-
guishable [64], because most subjects experience the common tingling sensation only at the be-
ginning of the DC stimulation due to a rapid habituation to the sensation [38,65]. In the
present study, we asked the participants at the end of both sessions to rate the strength of the
sensation induced by the stimulation on a five-point Likert scale. The subjects were not able to
consciously distinguish anodal from sham stimulation (Wilcoxon signed rank test: V'=77.5,
p>0.1).

The active electrode (7x5 cm) was centered over positions P5 and CP5 of the extended 10-
20 system for scalp electrodes. Several studies using different methodologies have shown that
the cortical projections of these locations lie over the LPPC [66-68]. The reference electrode
(10x10 cm) was placed over the right supraorbital area, which can be considered as a standard
reference area [38,39]. The combination “parietal lobe—contralateral supraorbital area” has
been successfully used in other studies (see e.g. [58,69]).

EEG recording and preprocessing

Continuous EEG was recorded using a BioSemi ActiveTwo system (BioSemi, Amsterdam, The
Netherlands) with 64 active electrodes mounted in elastic Biosemi headcaps with electrode po-
sitions according to the extended 10-20 system. Three additional active electrodes were used to
record vertical and horizontal electrooculograms (EOG). Two electrodes were placed horizon-
tally at the outer canthi of both eyes and one was placed above the nasion between the inner
canthi of both eyes. In BioSemi systems, instead of a recording reference electrode, a feedback
loop consisting of the Common Mode Sense active electrode and the Driven Right Leg passive
electrode is used. EEG and EOG signals were sampled at 256 Hz.

EEG data were preprocessed in EEGLAB 10.2.5.7b [70]. A high-pass finite impulse response
(FIR) filter with a lower edge of 0.5 Hz (transition bandwidth: 0.2 Hz, order: 6.0) and a notch
FIR filter between 45 and 55 Hz (transition bandwidth: 1 Hz, order: 12.0) was applied to elimi-
nate direct current shifts and power-line noise. Gross artifacts and bad channels in continuous
data were rejected by visual inspection to achieve a clean independent component analysis. On
the pruned data, ICA was performed and the EEGLAB plugin ADJUST was used to assist in
identifying and rejecting independent components reflecting stereotypical artifacts such as eye
blinks and eye movements [71]. The data were re-referenced to average reference and exported
to the software g.BSanalyze 3.10.00 (g.tec medical engineering GmbH, Schiedlberg, Austria).
Within g.BSanalyze, trials of 10000 ms length (3000 ms before and 7000 ms after problem
onset) were extracted from the continuous data. All trials were again visually inspected for re-
maining artifacts. Trials with large artifacts or with less than 500 ms of artifact-free data within
the reference or activation interval (see below) were discarded (about 18% of the trials).

ERS/ERD values for the theta (4-7 Hz) and lower-alpha (8-10 Hz) frequency bands were
calculated, since these frequency bands have been shown to be particularly sensitive to arithme-
tic problem solving and strategy use [20-22]. For each epoch, power values in these frequency
bands were obtained by digitally bandpass filtering using a Fast Fourier Transformation (FFT),
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then squaring and averaging over consecutive data points according to a backwards-oriented
moving window of 500 ms length. The reference interval (R) was defined as the time period
from 2000 ms to 500 ms before problem onset, whereas the activation interval (A) was defined
as the interval from problem onset up to 125 ms before the oral response. The last 125 ms were
discarded to diminish motor- and speech-related artifacts possibly affecting the activation in-
terval. Therefore, the activation interval differed in length between individuals and trials,
which has the advantage—in contrast to a fixed activation interval—that all and only task-
specific cognitive processes are included in the analysis (for a similar procedure see [20,21]).
Afterwards, the median value of all power values within the reference or activation interval was
calculated for each trial (horizontal averaging). These values were then averaged over all trials,
separately for both stimulation conditions (anodal, sham) and problem sizes (small, large; ver-
tical averaging). ERS/ERD was calculated as %ERS/ERD = (A-R)/R x 100. ERS/ERD values at
channels CP5 and P5, which directly underlay the active tDCS electrode, were averaged to
form the region of interest.

Statistical analysis

All further statistical analyses were carried out in statistics software R 2.15.2 [72]. For the analy-
sis of response latencies, only correctly solved trials were used. Moreover, trials with response
latencies faster or slower than 3 standard deviations from each subject’s mean (separately for
each problem size; 2.02% of the residual trials) and trials marked by the experimenter as unreli-
able (0.86% of the residual trials) were discarded (cf. [73]). Analysis of the PSE were conducted
on data collapsed across stimulation conditions. Due to the short-lasting effects of tDCS on
EEG (see [44]), we conducted our EEG analysis only on the first block of each session.

Results
Behavioral measures

Confirming the well-established PSE, we found that large problems took longer to solve

(M =2899 ms, SD = 751) than small problems (M = 997 ms, SD = 119; #(22) = 13.2, p < 0.01,
Cohen’s d = 2.76). Furthermore, solving large problems (M = 88.32%, SD = 5.26) was charac-
terized by lower solution rates than solving small problems (M = 98.31%, SD = 0.94;

£(22) =9.26,p < 0.01,d = 1.93).

In large problems, we found an improvement in response latencies after anodal (M = 2809 ms,
SD =707) compared to sham stimulation (M = 2989 ms, SD = 842; #(22) = 2.14, p = 0.04,

d = 0.45; Fig. 3 left panel). Solution rates in large problems remained unaffected by stimulation
(t(22) = 0.50, p = 0.62, d = 0.10; Fig. 4 left panel).

In small problems, the response latencies after anodal (M = 990 ms, SD = 135) and sham
stimulation (M = 1004 ms, SD = 132; #(22) = 0.56, p = 0.58, d = 0.12; Fig. 3 right panel) did not
differ. However, solution rates were significantly reduced after anodal (M = 97.82%, SD = 1.31)
compared to sham stimulation (M = 98.78%, SD = 1.35; #(22) = 2.44, p = 0.02,d = 0.51; Fig. 4
right panel).

Thus, anodal stimulation enhanced performance in large problems (in terms of response la-
tencies) but decreased performance in small problems (in terms of solution rates).

Event-related (de-)synchronization (ERS/ERD)

In line with previous EEG studies investigating the PSE, large problems (M = -14.00,
SD = 16.64) were accompanied by greater lower-alpha ERD than small problems (M = 3.11,
SD =24.69; t(22) = 4.1, p < 0.01, d = 0.86). In contrast, small problems (M = 24.24,
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Response latency [ms]

1250 1750 2250 2750 3250

750

Stimulation

small

Problem Size

Fig 3. Mean response latency after anodal and sham stimulation for small and large problems. Response latency in large problems was decreased
after anodal compared to sham stimulation. Error bars indicate standard errors (SE). *p < 0.05, **p < 0.01.

doi:10.1371/journal.pone.0120665.g003

SD = 20.14) were characterized by significantly greater theta ERS than large problems
(M =9.60, SD = 14.23; 1(22) = 3.23, p < 0.01, d = 0.67).

Analysis of the stimulation effects revealed that in large problems, lower-alpha ERD was in-
creased after anodal (M = -21.14, SD = 18.24) compared to sham stimulation (M = -6.86,

SD =20.98; (22) = 3.43, p < 0.01, d = 0.72; Fig. 5 left panel). Theta ERS/ERD in large problems,
in contrast, was unaffected by tDCS (#(22) = 0.49, p = 0.63, d = 0.10; Fig. 6 left panel).

In small problems, theta ERS was reduced after anodal stimulation (M = 17.75, SD = 24.70)
compared to sham stimulation (M = 30.72, SD = 23.98; #(22) = 2.27, p = 0.03, d = 0.47; Fig. 6
right panel). However, lower-alpha ERD in small problems was not affected by stimulation
(t(22) = 1.06, p = 0.30, d = 0.22; Fig. 5 right panel).

To ensure that stimulation effects are due to changes in oscillatory EEG activity during task
performance and not during rest, we performed the same analysis as above with power during
the reference interval as the dependent measure. In this analysis, no effect reached significance.
This suggests that the effects of stimulation are indeed related to task performance and not re-
lated to modulations in resting EEG power per se.

Taken together, the stimulation effects on task-related EEG activity dissociated between fre-
quency bands depending on the problem size. TDCS increased lower-alpha ERD in large prob-
lems and decreased theta ERS in small problems.

Discussion

The LPPC has been shown to constitute a key structure for arithmetic problem solving [18],
with distinct activation patterns in the alpha and theta band while solving large and small
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Fig 4. Mean solution rate after anodal and stimulation for small and large problems. Solution rate in small problems was decreased after anodal
compared to sham stimulation. Error bars indicate standard errors (SE). *p < 0.05, **p < 0.01.

doi:10.1371/journal.pone.0120665.9g004

problems [20-22]. In addition, anodal tDCS over this region has been successfully applied to
improve performance in solving large arithmetic problems [58]. The aim of the present study
was to combine and extend both research lines. Specifically, we investigated behavioral and
electrophysiological effects of tDCS over the LPPC in arithmetic problems of small and large
size, which can be assumed to be solved by retrieval or procedural strategies, respectively.
Our findings regarding the PSE are in line with previous studies. Solving large problems
was clearly more error-prone and slower than solving small problems [10,11]. Moreover,
large problems were accompanied by greater lower-alpha ERD, while small problems were
characterized by greater theta ERS [20-22]. More important, however, are the findings re-

garding the effects of brain stimulation on large and small problems, which warrant a more
detailed discussion.

tDCS effects in large problems

Replicating the results of Hauser et al. 58], anodal stimulation of the LPPC compared to sham
tDCS resulted in significant improvements in response latencies while solving large arithmetic
problems. We extended these findings by demonstrating that these performance enhancements
are accompanied by increases in lower-alpha ERD.

Generally, the finding of tDCS-induced changes in alpha activity is in line with previous re-
search [74-78]. Based on the assumption that the amount of alpha ERD is a marker of cortical
activation (see e.g. [34]), the present findings suggests that anodal tDCS during a complex
arithmetic task increases cortical activation. With specific regard to findings relating lower-
alpha ERD to basic attention and arousal [30-32,79], the observed effect might indicate modu-
lations in basic attentional processes or resources. Considering another line of research
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Fig 5. Mean %Event-related (de-)synchronization (% ERS/ERD) of the lower-alpha band (8-10 Hz) after anodal and sham stimulation for small and
large problems at electrodes CP5/P5. Lower-alpha ERD in large problems was increased after anodal compared to sham stimulation. Error bars indicate
standard errors (SE). *p < 0.05, **p < 0.01.

doi:10.1371/journal.pone.0120665.g005

showing that good cognitive performance is related to increased (lower) alpha ERD [32,79-
81], it can be assumed that the increased lower-alpha ERD reflects elevated attention during
complex problem solving, eventually resulting in improvements in response latency. This inter-
pretation also corresponds to evidence showing improvements of attentional skills after anodal
stimulation of the LPPC [82,83]. However, it must be noted that no effect was present for the
solution rates. This might be due to the fact that response latencies might constitute a more
sensitive measure for multi-step problems such as the large arithmetic problems used in the
present study (i.e., problems in which several calculation steps are needed to arrive at the final
solution). While solution rates mainly reflect correctness of the final solution, response laten-
cies are more sensitive to the whole calculation process (e.g., number of steps, number of inter-
mediate errors and speed of execution).

tDCS effects in small problems

Anodal compared to sham stimulation resulted in significantly reduced solution rates in small
problems while response latencies were unaffected. This finding contributes to the increasing
evidence that anodal stimulation can not only have positive but—depending on task character-
istics—also negative effects on cognitive performance [51-55]. For example, while several stud-
ies reported faster lexical retrieval and unaffected accuracy after anodal tDCS to the LPPC
[84,85], Pisoni and Papagno [52] found retrieval impairments after the application of anodal
tDCS to the left superior temporal gyrus. Specifically, the latter authors used a paradigm that
required the subjects to overtly name a series of pictures presented either in semantically ho-
mogenous or in semantically mixed lists and found that anodal tDCS slowed down reaction
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doi:10.1371/journal.pone.0120665.g006

times in semantically related lists. This was interpreted to reflect an increase of retrieval inter-
ference among semantically related stimuli. A similar mechanism may also account for the
present findings. This interpretation is also supported by the concurring decrease in theta ERS
we found in the present study. First, synchronous theta activity has been linked to various
memory-related processes in general and to verbal and arithmetic fact retrieval in particular
[20-22,25,86]. Second, EEG oscillations have been assumed to provide a mechanism for effec-
tive neural communication and information processing [87,88]. Consequently, it can be argued
that decreased theta synchronization after anodal tDCS disturbs this information transfer by
introducing more noise into the system [54], which then might lead to increased retrieval inter-
ference and probability to retrieve an erroneous answer to a particular arithmetic problem
[6,7]. Although the specifics of this interpretation need to be examined, on the most basic level
the data provide further support for the essential role of synchronous theta activity for (arith-
metic) fact retrieval.

It must be noted that we found decreased solution rates after anodal tDCS, which is di-
verging from Pisoni et al.’s [52] finding of decreased response times. This difference might be
related to the stimulus material used (verbal in the experiment by Pisoni et al. vs. numeric in
the present study), the degree of training participants had with the material (trained in the
experiment vs. overlearned arithmetic facts, respectively) or measurement time point
(directly after stimulation vs. 15 minutes later, respectively). Furthermore, although signifi-
cant, the solution rates were only reduced by about 1% after anodal compared so sham
stimulation. We believe that this effect is worth reporting due to several reasons: First, it is
line with recent evidence that cognitive enhancement in one cognitive function can occur at
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the expense of another one [51]. Second, the performance reduction in small problems

after anodal compared to sham stimulation is very robust and consistent across individuals:
It occurred in 15 out of 23 participants (in 3 participants, there were no performance
changes, and in 5 participants, performance improved). Third, a modulation of performance
in highly overlearned arithmetic problems can be expected to be rather small. Finally, from
a statistical perspective, the effect is of medium size according to the suggestions by

Cohen [89].

Limitations

The first limitation of the present study is that we did not have an active control condition (i.e.,
vary the location of the active electrode), thereby introducing uncertainty about whether stimu-
lation per se or stimulation of the LPPC specifically led to the observed effects. However, we
are nonetheless confident that our findings arise predominantly due to stimulation of the
LPPC due to several reasons: First, Hauser et al. [58] found that response latencies to solve
large arithmetic problems were only decreased after anodal stimulation of the LPPC (as in the
present study), while bilateral anodal or bilateral cathodal stimulation of the posterior parietal
cortex did not affect arithmetic performance. Second, we found activation differences in the
EEG at the stimulated areas in the frequency bands suggested by previous literature. Third,
studies modeling the distribution of current flow by tDCS indicate that current densities—even
though the overall induced electrical field is clearly non-focal—are largest under the active elec-
trode [90]. Nonetheless, an active control condition should be included in future studies to fur-
ther strengthen our conclusions.

Moreover, the relatively large, albeit conventional, size of the tDCS electrodes introduces
uncertainty about how subregions of the LPPC, which have been differentially associated with
the PSE (i.e., angular gyrus, intraparietal sulcus), were affected by the stimulation. For example,
it could be that simultaneous activation of both areas resulted in interference effects. Future
studies may use smaller electrodes to stimulate both areas more selectively to specifically test
this hypothesis. Additionally, modelling of the current flow using realistic head models and the
application of fMRI due to its advantageous spatial resolution could help to increase the spatial
resolution of the stimulation. Furthermore, another concern is the relatively long stimulation
duration (i.e., 30 min) used in the present study. It has been shown that the effects of tDCS do
not always increase with longer stimulation durations, and in some cases might even reverse
(e.g., decrease of excitability after anodal stimulation; see [91]). Thus, it is crucial to either use
tested stimulation protocols or check the effects of DC stimulation with additional neurophysi-
ological methods (e.g., EEG, fMRI).

Finally, in the present study, both blocks were analyzed for the behavioral data but only the
first block was analyzed for the EEG data, because we expected different time-courses of the ef-
fects. On the one hand, since it is known that behavioral effects are rather long-lasting [92,93],
we examined both blocks together to increase reliability. On the other hand, because it has
been shown that tDCS effects on EEG oscillations diminish rather quickly and last only up to
15 minutes after stimulation [44], we intended to only investigate the first block. This, however,
raises questions about the comparability between the behavioral and EEG data in the present
study. Still, we believe that the evidence of previous studies relating theta synchronization to
fact retrieval and alpha desynchronization to procedural calculation are robust enough to un-
derline our interpretation. Nonetheless, to overcome this limitation, it will be crucial for future
studies to decrease the time lag between stimulation and begin of EEG measurement, or to
measure online- rather than after-effects of tDCS on arithmetic performance and EEG oscilla-
tions (see [35]).
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Conclusion

In sum, these findings demonstrate that the effects of brain stimulation are moderated by prob-
lem size and thus, provide further evidence that the LPPC is differentially involved in solving
small and large arithmetic problems. These findings also add to the increasing evidence that
the effects of brain stimulation on mathematical skills in general seem to strongly depend on
the task characteristics and the involved neuro-cognitive processes [51]. This knowledge will
be crucial in future applications of tDCS to support the remediation of mathematical learning
disorders such as developmental dyscalculia [36].
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