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Eukaryotes are divided into two major compartments: the nucleus where RNA is
synthesized and processed, and the cytoplasm, where mRNA is translated into proteins.
Although many different RNAs are made, only a subset is allowed access to the
cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA).
In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs)
whose role in cell physiology has been a source of much investigation in the past few
years. In addition, it is likely that many non-functional RNAs, which arise by spurious
transcription and misprocessing of functional RNAs, are also retained in the nucleus and
degraded. In this review, the main sequence features that dictate whether any particular
mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm,
are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that
the spliceosome can help recruit export factors to the mature RNA, nuclear export does
not require splicing. Indeed, most stable unspliced transcripts are well exported and
associate with these same export factors in a splicing-independent manner. In contrast,
nuclear retention is promoted by specialized cis-elements found in certain RNAs. This
new understanding of the determinants of nuclear retention and cytoplasmic export
provides a deeper understanding of how information flow is regulated in eukaryotic
cells. Ultimately these processes promote the evolution of complexity in eukaryotes by
shaping the genomic content through constructive neutral evolution.

Keywords: TREX, lncRNAs, transposable elements, RNA modification, splicing, polyadenylation, constructive
neutral evolution

INTRODUCTION

The distinguishing feature of eukaryotic cells is that they are divided into two compartments: the
nucleus where pre-messenger RNAs (mRNAs) are made and processed, and the cytoplasm where
mature mRNAs are translated into proteins (Martin and Koonin, 2006; Palazzo and Gregory, 2014).
This is in contrast to prokaryotes, where mRNAs are made and translated at the same time in the
same compartment. In eukaryotes, the temporal and spatial separation of mRNA synthesis from
translation allows each newly made RNA to be subjected to extensive quality control before it ever
encounters a ribosome (Palazzo and Akef, 2012). This quality control involves the nuclear retention
and/or degradation of spurious transcripts, which are synthesized from intergenic DNA regions,
and misprocessed RNAs, which result from errors in splicing or 3′ cleavage. In the absence of this
quality control, spurious transcripts and misprocessed mRNAs would be exported to the cytoplasm
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and then translated into toxic proteins. Thus, the separation of
RNA synthesis in the nucleus and translation in the cytoplasm,
and the associated quality control mechanisms that go along
with this separation, reduces some of the harmful side-effects of
non-functional RNAs that are transcribed from non-functional
DNA. This is why both junk DNA and a low level of spurious
transcription are tolerated in most eukaryotes (Palazzo and
Gregory, 2014; Palazzo and Lee, 2015).

Importantly, non-functional RNAs, whose harmful effects are
reduced by eukaryotic quality control systems, are not effectively
eliminated by natural selection and some of these can eventually
evolve into functional long non-coding RNAs (lncRNAs). These
add to the repertoire of bio-active polymers that organisms can
use to regulate growth, homeostasis and development. Although
some lncRNAs function in the cytoplasm, most operate in the
nucleus (Djebali et al., 2012; Derrien et al., 2012; Tilgner et al.,
2012; Palazzo and Gregory, 2014; Kaewsapsak et al., 2017).
As a result, lncRNAs must be appropriately sorted to allow
for their proper retention in the nucleus or export to the
cytoplasm. This separation is critical as alterations in mRNA
nuclear retention and cytoplasmic export have been associated
with various diseases (Borden and Culkovic-Kraljacic, 2018;
Bovaird et al., 2018). Furthermore, many neuropathological states
are associated with the formation of RNA-protein liquid–liquid
phase separated structures that can disrupt proper nuclear-
cytoplasmic trafficking by soaking up nuclear transport factors
and components of the nuclear pore complex (Mahboubi et al.,
2013; Zhang et al., 2018).

So how does this all work? First, long and short RNAs are
generally treated very differently. In mammals, RNA length
appears to be evaluated by hnRNP C (McCloskey et al., 2012),
with transcripts that are shorter than 200 nucleotides (e.g.,
snRNAs, tRNAs, and miRNAs) being directed toward specialized
export pathways (Masuyama et al., 2004; Fuke and Ohno,
2008; McCloskey et al., 2012), while longer RNAs (mRNA and
lncRNAs) being shunted to a more generalized pathway that
require the major export complex, TREX, and its heterodimeric
nuclear transport receptor composed of Nxf1/TAP and Nxt1/p15
(Figure 1) (Katahira et al., 1999; Strässer et al., 2002). In
addition to these major export factors, other export-promoting
complexes exist. SR proteins, which promote splicing, also help
to recruit Nxf1/TAP to these RNAs (Huang et al., 2003; Müller-
McNicoll et al., 2016). TREX2, which is thought to localize to the
nucleoplasmic side of the nuclear pore, also plays a major role
in promoting export (Wickramasinghe et al., 2010, 2014; Umlauf
et al., 2013; Zhang et al., 2014b). Dbp5, Rae1/Gle1, and Gle2,
which associate with the cytoplasmic face of the nuclear pore,
may be involved in recycling nuclear export factors back into
the nucleoplasm (Blevins et al., 2003; Lund and Guthrie, 2005;
Alcázar-Román et al., 2006; Weirich et al., 2006), although this is
not quite understood. For reviews on these factors and complexes
see (Katahira, 2012; Palazzo and Akef, 2012; Heath et al., 2016;
Borden and Culkovic-Kraljacic, 2018). The mechanism that
dictates nuclear retention is less well understood. Some of the
factors involved are described in later sections of this review.

So how are exported RNAs, which mostly code for protein,
differentiated from nuclear retained RNAs, which are typically

non-coding? Ultimately these two types of RNAs must differ
in one or more ways. This can include cis-elements (i.e.,
particular RNA motifs) or general features such as splicing,
polyadenylation, and RNA modifications. These differences will
dictate what proteins are loaded onto the RNA, resulting in the
formation of a ribonucleoprotein (RNP) complex that determines
the ultimate fate of the transcript.

In this review we shall cover what is known about the RNA
features that impact the nuclear retention and cytoplasmic export
of mRNAs and lncRNAs. However, before we start, there are a
few points to keep in mind. First, although we speak of a given
RNA species as being retained in the nucleus or exported to the
cytoplasm, few RNAs are completely nuclear or cytoplasmic at
steady state. Instead, each RNA species exists at some point along
a spectrum between these two extremes. Second, the ultimate
steady state distribution of an RNA is dictated not only by the rate
of RNA export, but also by the rates of RNA synthesis and of RNA
decay in both the nucleus and the cytoplasm. Few studies have
taken all these various factors into account with some exceptions.
Having said that, it is clear that nuclear retention and cytoplasmic
export play critical roles in dictating the ultimate distribution
of any RNA species. Third, although it is generally true that
most mRNAs are well exported, many are not (Djebali et al.,
2012; Bahar Halpern et al., 2015; Bouvrette et al., 2018). Likewise,
although there is a general consensus that many lncRNAs are
nuclear, it is also clear that several are cytoplasmic, with some
studies suggesting that the number of cytoplasmic lncRNAs may
be higher than previously thought (Wilk et al., 2016; Bouvrette
et al., 2018).

WHAT IS THE DEFAULT PATHWAY?

Before addressing the question of what sequence determinants
impact nuclear export, it becomes necessary to determine
whether an RNA which lacks any distinguishing feature is a
substrate for nuclear export. In other words, what is the default
pathway – nuclear retention or cytoplasmic export? Three pieces
of evidence point to the fact that long RNAs do not require any
specialized cis-element for them to be exported from the nuclei of
mammalian tissue culture cells.

Reporter mRNAs
Whether the default pathway for any given long RNA was
nuclear retention or cytoplasmic export was up for debate
for a number of years, due largely to differences between
the nuclear/cytoplasmic distribution of mRNAs derived from
different reporter genes (Luo and Reed, 1999; Lu and Cullen,
2003; Masuyama et al., 2004; Nott et al., 2004; Palazzo et al.,
2007; Valencia et al., 2008; Lei et al., 2011, 2013; Takemura
et al., 2011; McCloskey et al., 2012). For example, it had
been observed that certain reporter mRNAs transcribed from
cDNAs were not exported, suggesting that in the absence of
splicing, mRNAs are nuclear retained (Valencia et al., 2008).
This confusion was largely due to the fact that it was unclear
whether any particular reporter is truly devoid of cis-elements
or other distinguishing features that may promote or inhibit
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FIGURE 1 | The mRNA nuclear export pathway. The TREX complex, which is composed of the Tho complex, the RNA helicase UAP56 (or its paralog URH49) and
Aly are loaded onto the mRNA co-transcriptionally or by processing events. At some point, the UAP56 hydrolyses ATP and then is replaced by the nuclear export
receptor composed of Nxf1 and Nxt1 (also known as TAP and p15) to form an export competent mRNP. The Nxf1-Nxt1 heterodimer physically interacts with the FG
repeats of Nups to ferry its cargo across the nuclear pore. GANP, which forms part o the TREX2 complex is also required for export, although its exact role is not
understood. After passing through the nuclear pore complex, the mRNP is furthered remodeled by cytoplasmic pore-associated proteins such as Gle1, Dbp5 and
Rae1/Gle2. It is though that these remodeling events remove certain nuclear associated exported factors, which are then recycled back into the nuclear pore. In
some cases these mRNP remodeling events render the mRNP more ‘translationally’ competent (Palazzo and Truong, 2016). Factors that are essential for mRNA
export are depicted in red, other export factors are depicted in yellow.

mRNA nuclear export. More recently, we have demonstrated
that two widely used reporters, a mini gene derived from the
Drosophila fushi tarazu gene (ftz), and the β-globin mRNA,
each have nuclear retention elements (Akef et al., 2015;

Lee et al., 2015). Importantly, when the newly identified nuclear
retention elements were removed, RNAs generated from these
reporters were well exported despite the fact that they are not
spliced.
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mRNAs With Random Sequences
In other experiments it was found that RNAs generated from
artificial genes, purported to have “random” sequences, were not
exported but were instead rapidly degraded (Dias et al., 2010).
One potential problem with completely random sequences is
that they contain elevated numbers of CG dinucleotides, which
are depleted in vertebrate genomes (Karlin and Mrázek, 1997).
In DNA, CG dinucleotides are often methylated, and when
these N5-methylcytosines undergo spontaneous deamination
they are converted to thymidine causing CG dinucleotides to
be mutated away in vertebrates (Lindahl, 1993). In contrast,
unmethylated cytosines deaminate to uracils, which are efficiently
removed by uracil-DNA glycosylase and reconverted back to
cytosines. Recently it was found that RNAs with significant
numbers of CG dinucleotide are substrates for decay, which
would effectively prevent their accumulation in the cytoplasm
(Takata et al., 2017). This process likely evolved to protect
cells against viral infection. Interestingly, the proteins involved
in this decay, ZAP/ZC3HAV1 and TRIM25, are primarily
cytoplasmic and are known to be involved in viral RNA
degradation.

In the study by Dias et al. (2010), the RNA reporters with
“random” sequence were in fact generated from the reverse
compliment sequences of intronless genes from the human
genome (IFNA1, IFNB1 and HSPB3). As expected, the three
constructs have relatively low CG-content (as is true for almost
all human-derived DNA); however, all three are predicted to have
either 5′ splice site motifs or 3′ splice site motifs [scoring ≥ 0.97
according to NNSPLICE 0.9 (Reese et al., 1997)]. These motifs
are known to inhibit nuclear export if they are not used for
splicing (see The 5′ Splice Site Motif – Other Intron-Associated
Motifs). It is also possible that these transcripts were spliced
and that the researchers were detecting the distribution of lariat
introns in their experiments. Additionally, it is conceivable that
these RNAs may have other nuclear retention elements. Again,
interpreting experiments with “random” RNAs is difficult, as
unidentified cis-elements may drastically alter the behaviors of
these transcripts.

lncRNAs
The last piece of evidence which suggests that nuclear export is
the default pathway is that when nuclear localized lncRNAs were
analyzed, it was observed that they contained nuclear retention
elements (Miyagawa et al., 2012; Zhang et al., 2014a; Lubelsky and
Ulitsky, 2018; Shukla et al., 2018). When these nuclear retention
elements were removed or mutated, the altered lncRNAs were
exported. In one extreme case the intronless MALAT1 lncRNA
was expressed as a series of small fragments (each ∼1 kb), with
the majority of the resulting RNAs being efficiently exported
(Miyagawa et al., 2012). This allowed researchers to identify
two regions that retain this lncRNA in the nucleus by targeting
it to nuclear speckles. Moreover, fusion of either of these
two nuclear retention fragments to reporters promotes their
nuclear retention (Lubelsky and Ulitsky, 2018; Shukla et al.,
2018). Thus, it is likely that lncRNAs like MALAT1 must be
actively retained in the nucleus, and in the absence of these

factors, the resulting RNAs are automatically exported to the
cytoplasm.

Taking in all of these lines of evidence, it is likely that in the
absence of any active cis-element, a stable RNA that is capped and
polyadenylated is a substrate for nuclear export.

THE ROLE OF RNA PROCESSING IN
NUCLEAR RETENTION AND mRNA
EXPORT

In eukaryotes, most functional RNAs are extensively processed.
Although very strong processing signals are found in regions of
the genome that are used to produce functional RNA transcripts
(be they mRNAs or lncRNAs), weaker processing signals are
found throughout the genome. Even comparing mRNAs and
lncRNAs, the former are typically more efficiently spliced than
the latter (Tilgner et al., 2012; Melé et al., 2017; Mukherjee et al.,
2017; Deveson et al., 2018). Thus, robust processing is typically a
good indication that the RNA transcript in question is functional
and likely encoding a protein (Palazzo and Akef, 2012; Palazzo
and Lee, 2015). Moreover, many RNA processing machineries
directly interact with, and promote the recruitment of, RNA
nuclear export factors. This “coupling” between RNA processing
and RNA nuclear export has been extensively documented in
other reviews (Maniatis and Reed, 2002; Moore and Proudfoot,
2009; Palazzo and Akef, 2012).

Splicing
Splicing involves the removal of introns by the spliceosome,
which in turn can deposit factors onto the newly spliced RNA. By
comparing the localization of these spliced RNAs to transcripts
synthesized from cDNAs (which lack introns), it has been
observed that splicing in some scenarios enhances the extent
and the rate of nuclear export (Luo and Reed, 1999; Palazzo
et al., 2007; Valencia et al., 2008). The spliceosome directly
interacts with many key mRNA nuclear export factors, such as
the TREX component UAP56 (Fleckner et al., 1997; Strässer and
Hurt, 2001). Indeed, splicing is known to help recruit TREX
components to RNAs (Masuda et al., 2005; Dufu et al., 2010;
Chi et al., 2013). This phenomenon is, however, not universal.
Most cDNA-derived RNAs (which lack introns) are well exported
(Palazzo and Akef, 2012) and can recruit TREX and Nxf1/TAP
(Taniguchi and Ohno, 2008; Hautbergue et al., 2009; Akef et al.,
2013, 2015; Lee et al., 2015). Likely, where splicing matters most
is in transcripts that happen to have nuclear retention elements.
In some cases, splicing can override their activity (Akef et al.,
2015), while in other cases it cannot (Lee et al., 2015). The second
scenario is probably true for lncRNAs that are efficiently spliced
and yet still retained in the nucleus (Hacisuleyman et al., 2014).

5′ Capping
The 5′ RNA cap is an N7-methylguanine connected via a 5′
to 5′ triphosphate linkage to the beginning of RNAs which are
generated by RNA Polymerase II. This structure recruits the
nuclear cap binding complex (CBC), which consists of CBP20
and CBP80. It has been reported that CBP80 can recruit nuclear
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export factors, such as the TREX component Aly, to the 5′ end
of spliced (Cheng et al., 2006) and intronless (Nojima et al.,
2007) transcripts. More recently it was shown that a functional
paralog of CBP80, NCBP3, also interacts with components of
the TREX and exon junction complexes (Gebhardt et al., 2015).
Importantly, the co-depletion of CBP80 and NCBP3 inhibits
mRNA nuclear export (Gebhardt et al., 2015). As such it is
clear that the 5′ cap is a major contributor to the proper export
of mRNAs. Whether it is absolutely required is a bit unclear.
The incorporation of non-canonical caps (trimethyl-guanosine
[3mGpppG], adenosine [ApppG]) does not block the export of
certain microinjected intronless RNAs, but does block the export
of intron-containing mRNAs (Palazzo et al., 2007). Since the
5′cap is also required for splicing (Izaurralde et al., 1994), it
is possible that RNAs with cap analogs are inefficiently spliced
and are thus actively retained in the nucleus. As detailed below,
RNA motifs that are associated with introns are potent nuclear
retention signals. Lastly, it has been reported that the export of
circular RNAs requires UAP56 (Huang et al., 2018), a core factor
of the TREX complex that is required for the export of most
mRNAs (Luo et al., 2001; Strässer and Hurt, 2001; Kapadia et al.,
2006). This would suggest that TREX-mediated export does not
strictly require a 5′ cap to function.

3′ Cleavage and Polyadenylation
The 3′ end of an RNA Polymerase II-generated transcript is
recognized and processed by the cleavage and polyadenylation
complex (Chan et al., 2011). Members of this complex interact
with Aly (Johnson et al., 2009; Shi et al., 2017), the TREX
component THOC5 (Katahira et al., 2013; Tran et al., 2014) and
Nxf1/TAP (Ruepp et al., 2009). In line with these studies, the
RNAs produced from reporter genes with defective 3′ cleavage
signals are restricted to the nucleus (Dias et al., 2010). It
is, however, likely that these RNAs are never released from
RNA polymerase due to the lack of cleavage, complicating the
interpretation of this observation. In another set of experiments,
it was found that microinjected RNAs that lack a poly(A)-tail, but
are modified at their 3′end to protect the RNAs from degradation
are retained in the nucleus (Akef et al., 2013). Again, it is
possible that the modification itself, a dialdehyde formed by the
oxidation of the free 3′ end ribose by periodate, may trigger
nuclear retention. On the flip side, a GFP reporter that lacks a tail
and contains a 3′ terminal triple helix structure derived from the
MALAT1 lncRNA, which stabilizes unpolyadenylated transcripts,
is efficiently exported (Wilusz et al., 2012). This observation
suggests that either the poly(A)-tail is not strictly required for
mRNA export or that this triple helix motif promotes nuclear
export, although this element is derived from MALAT1, a nuclear
lncRNA. Another observation that suggests that the poly(A)-tail
is not absolutely required for export is that circular RNAs, which
lack a tail, are efficiently exported in a UAP56-dependent manner
(Huang et al., 2018). Finally, histone mRNAs, which do not have
a poly(A)-tail, are exported by Nxf1 and do not appear to have
any export-promoting cis-elements (Erkmann et al., 2005).

In summary, it is likely that RNA processing helps to promote
export; however, results from a variety of case studies (cDNA
derived reporters, GFP mRNA with a 3′ terminal triple helix, and

circular RNAs) suggest that these processes are not absolutely
required. Again, as most RNAs exist on a spectrum between being
fully nuclear and being fully cytoplasmic, RNA processing events
may help to move the RNA closer to the cytoplasmic end of this
continuum.

THE ROLE OF RNA NUCLEOTIDE
MODIFICATIONS IN NUCLEAR
RETENTION AND mRNA EXPORT

It has been known for quite some time that RNA is extensively
modified; however, until recently the majority of these studies
focused on these modifications within tRNA and rRNA. More
recently it has been observed that mRNA and lncRNAs are also
modified. Furthermore, some of these modifications appear to
impact nuclear export.

Adenosine to Inosine Editing
Adenosine to inosine editing was the first RNA modification
known to affect nuclear export. Specifically, it was observed that
double stranded RNA (dsRNA) was a substrate for the RNA
specific adenosine deaminase (ADAR), which converts adenosine
to inosine (Polson et al., 1991). This reaction occurs specifically
in the nucleus and promotes the nuclear retention of these
RNAs (Zhang and Carmichael, 2001). Thus RNAs that are prone
to forming long dsRNA, including mRNAs with inverted Alu
repeats and viruses (Kumar and Carmichael, 1997; Athanasiadis
et al., 2004; Blow et al., 2004; Kim et al., 2004; Levanon et al.,
2004), are modified and retained in paraspeckles (Chen et al.,
2008). In certain cases nuclear retention of inosine-containing
mRNAs can also be used to regulate gene expression (Prasanth
et al., 2005). Interestingly, this nuclear retention pathway appears
to be less active in human embryonic stem cells due to the fact
that they do not express the lncRNA NEAT1, which is required
for paraspeckle formation (Chen and Carmichael, 2009).

Other RNA Modifications
In the last 6 years, it has become clear that other modifications,
which were known to occur in tRNA and rRNA, play significant
roles in mRNA biology. This includes N6-methyladenosine
(Dominissini et al., 2012; Meyer et al., 2012), which accumulates
near the stop codon, N5-methylcytosine (Squires et al., 2012) and
N1-methyladenosine (Dominissini et al., 2016; Li et al., 2016a),
which both accumulate near the start codon, and pseudouridine
(Carlile et al., 2014; Schwartz et al., 2014; Li et al., 2015), which
accumulates in the ORF and 3′UTR.

Recently, it has been reported that N6-methyladenosine
promotes the nuclear export of mRNAs (Roundtree et al., 2017)
through the action of the YTHDC1 protein, which directly
binds to the modified base and helps to recruit nuclear export
factors to the mRNA. This makes sense as depletion of the
N6-methyladenosine demethylase, ALKBH5, enhances overall
mRNA export (Zheng et al., 2013). Similarly, N5-methylcytosine
has also been reported to promote mRNA nuclear export by
recruiting Aly to the transcript (Yang et al., 2017). Although
N1-methyladenosine has not been directly linked to export,
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this modification is enriched in the 5′ terminal exon of a
particular class of mRNAs (Cenik et al., 2017). These mRNAs
have interesting 5′ terminal exons. Not only are they modified,
but they also tend to contain the start codon (in most human
genes the start codon is found in internal exons), and are
enriched in certain GC-rich motifs that are associated with exon
junction complexes (Singh et al., 2012). Typically, exon junction
complexes are deposited upstream of all newly formed exon-
exon splice sites; however, in a subset of genes the exon junction
complex also associates with these GC-rich motifs. Importantly,
this complex has also been found to bind to nuclear export factors
(Le Hir et al., 2001; Singh et al., 2012), although it is not strictly
required for export (Palazzo et al., 2007).

In conclusion, RNA modifications that have been reported to
promote export may enhance this process, especially if an RNA
has nuclear retention elements; however, it is likely that RNA
modifications are not absolutely required to promote export.

THE ROLE OF cis-ELEMENTS IN
NUCLEAR RETENTION AND mRNA
EXPORT

The 5′ Splice Site Motif
Some of the most studied RNA motifs that affect the distribution
and stability of mature mRNA are the 5′ and 3′ splice site motifs,
which specify the boundaries of introns. These are typically
removed by the act of splicing. Importantly, these motifs are
found in fully processed exported RNAs of many viruses, such
as HIV. In its normal life cycle, HIV produces both spliced and
unspliced RNAs from the same primary transcript, the latter
being used to make late-stage proteins and to generate the RNA-
based genome that will be incorporated into new viruses that are
assembled in the cytoplasm of the host cell. Importantly, these
unspliced RNAs are retained in the nucleus in early stages by the
presence of intronic sequences (Chang and Sharp, 1989; Lu et al.,
1990; Borg et al., 1997; Séguin et al., 1998). These retention signals
can be overcome in late stages by the virally encoded Rev protein,
which recognizes the Rev response element, an RNA structure
that is present in the late stage RNAs and the viral RNA genome
(Chang and Sharp, 1989; Emerman et al., 1989; Tan et al., 1996).
In the absence of Rev, the nuclear retention of these RNAs was
mediated in part by U1 snRNP, the component of the spliceosome
that recognizes the 5′ splice site motif (Lu et al., 1990) (Figure 2).
It should be noted that the Rev response element itself also
contributes to the nuclear retention of the late-stage viral mRNAs
and of the HIV genomic RNA when Rev protein is not present
(Brighty and Rosenberg, 1994; Nasioulas et al., 1994).

In other work, it was also demonstrated that when the 5′
splice site motif was present in the terminal exon of an mRNA,
it inhibited expression of the encoded protein. This was due in
part to the fact that this element suppresses 3′ polyadenylation,
which in turn targets the mRNA for degradation (Gunderson
et al., 1998) (Figure 2). This configuration is not only seen in
certain viral mRNAs, but also in human mRNAs. For example,
a mutation in the LAMTOR2 gene, which is associated with

congenital neutropenia, creates a novel 5′ splice site in the 3′
UTR that results in the inhibition of gene expression (Langemeier
et al., 2012). Importantly, this inhibition is likely due to the
recruitment of U1 snRNP to the mature mRNA (Langemeier
et al., 2012), through the direct hybridization of the U1 snRNA
with the 5′ splice site. Indeed, when the sequence of the U1
snRNA is altered so that it now base pairs to some other mRNA,
these newly targeted transcripts becomes silenced (Fortes et al.,
2003; Abad et al., 2008; Goraczniak et al., 2009; Blázquez and
Fortes, 2013). A protein component of the U1 snRNP, U1-70K, is
required for this inhibition by directly interacting and inhibiting
poly(A)-polymerase (Gunderson et al., 1998).

As we stated in the introduction, disentangling the
effects of mRNA stability and nuclear retention on the
final nuclear/cytoplasmic distribution of an mRNA can be
challenging. This is certainly the case with the 5′ splice site motif
which appears to promote both RNA degradation and RNA
nuclear retention. To tease these two forces apart, we monitored
the level and distribution of newly synthesized reporter mRNAs
that contained or lacked a 5′ splice site motif in its 3′UTR.
This was accomplished by microinjecting DNAs that were
transcribed into each mRNA species, then allowing transcription
to proceed for a short amount of time (15–20 min) before halting
transcription with α-amanitin, and then monitoring the newly
transcribed RNA by fluorescence in situ hybridization at various
timepoints after injection. Using this approach we found that
about half of newly synthesized reporter mRNAs that contained
a 5′ splice site motif are rapidly degraded, with the remaining
fraction being retained in the nucleus as polyadenylated RNAs
(Lee et al., 2015) (Figure 2). Interestingly, the nuclear retained
RNAs accumulate in nuclear speckles, subnuclear regions where
post-transcriptional splicing is thought to occur (Dias et al.,
2010; Vargas et al., 2011). Indeed, unspliced mRNAs which
are generated by the inhibition of the U2 or U4 snRNPs, also
accumulate in nuclear speckles (Kaida et al., 2007; Hett and
West, 2014). These unspliced RNAs and 5′ splice site bearing
RNAs are likely targeted to nuclear speckles by U1. Then, the
subsequent failure to complete the splicing reaction prevents
these RNAs from exiting the nuclear speckles. In agreement with
these results, the artificial tethering of U1-70K to a reporter RNA
prevents its nuclear export, although the authors did not test for
nuclear speckle targeting (Takemura et al., 2011). Surprisingly,
5′ splice site motif-containing mRNAs are still able to recruit
UAP56 and Nxf1/TAP (Lee et al., 2015), suggesting that if they
could reach the pore, these mRNAs could cross it; however,
access to the pore may be prevented by their sequestration into
speckles (Figure 2). This may explain why many poorly exported
mRNAs are also localized to nuclear speckles (Bahar Halpern
et al., 2015).

The presence of 5′ splice site motifs may also be critical for the
nuclear retention of many lncRNAs and may help to distinguish
them from mRNAs. According to annotated databases of human
genes, fully mature lncRNAs, unlike mature mRNAs, are not
depleted of 5′ splice site motifs in their terminal exons (Lee et al.,
2015). Even when comparing intronless RNAs, lncRNAs have
higher levels of 5′ splice site motifs than mRNAs (Lee et al.,
2015). These numbers may be an underestimate as lncRNAsare
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FIGURE 2 | The 5′ splice site motif promotes nuclear retention of RNAs. The presence of the 5′ splice site (5′SS) motif in the 3′ untranslated region (3′UTR)
promotes nuclear retention. U1 snRNP recognizes the motif and may recruit nuclear surveillance machinery (e.g., PAXT complex) through U1-70K. Interestingly,
although these RNAs are able to recruit UAP56 and Nxf1/Nxt1, they are not exported. Mtr4, a member of the PAXT complex and a co-activator/co-adaptor of the
nuclear exosome, competes with Aly for its association with the RNA and various 5′ cap binding proteins. Other work suggests that the 5′ splice site motif
suppresses premature cleavage and polyadenylation through the action of U1-70K.

not as efficiently spliced as mRNAs (Tilgner et al., 2012; Melé
et al., 2017; Mukherjee et al., 2017; Deveson et al., 2018), with
many isoforms containing retained introns due to the inefficient
recruitment of spliceosomal factors to 3′ splice sites (Melé et al.,
2017). Interestingly, the corresponding 5′ splice sites of these
inefficiently spliced introns still recruit U1 (Melé et al., 2017),
and thus likely promote nuclear retention. Indeed, lncRNA
splicing appears to be sloppier than mRNA splicing, with each
lncRNA gene producing a multitude of different isoforms with
altered splice junctions (Deveson et al., 2018), and this may
also cause the inclusion of 5′ splice site motifs into the mature
RNA.

The 5′ splice site motif also inhibits 3′ cleavage. When cells
were depleted of U1 snRNPs, prematurely truncated mRNAs
started to appear (Kaida et al., 2010; Berg et al., 2012; Almada
et al., 2013). This was due to a decrease of splicing which
led to the appearance of retained introns, which in turn
contained cryptic 3′ cleavage/polyadenylation sites that were
inappropriately used by the 3′ cleavage machinery. Importantly,
these truncated RNAs contain intact 5′ splice site upstream of
the new 3′ end. It was inferred that under normal circumstances
the binding of U1 inhibits 3′ cleavage from any sites in the
downstream intron (Figure 3). This finding is in agreement
with studies of Bovine Papilloma Virus and HIV RNAs where
the recruitment of U1 to a 5′ splice site inhibited proximal
3′ cleavage events (Furth et al., 1994; Ashe et al., 1995, 1997;
Vagner et al., 2000). Similar results were seen with the mutant
form of the LAMTOR2 mRNA (Langemeier et al., 2012). It
should be noted that in normal situations, suppression of
3′ cleavage by U1 snRNP helps to perform two tasks: first

it represses the misprocessing of mRNAs by preventing the
activity of cryptic 3′ cleavage/polyadenylation sites that are found
in introns; secondly, it enforces promoter directionality. In
particular, it was found that in bidirectional promoters which
generate an unstable short cryptic transcript in one direction
and a stable protein-coding mRNA in the other direction, that
3′ cleavage/polyadenylation consensus sites were enriched in the
former, and 5′ splice site motifs were enriched in the latter
(Almada et al., 2013) (Figure 3). Under normal conditions
the transcriptional elongation of these cryptic transcripts is
curtailed by the presence of these 3′ cleavage/polyadenylation
sites. Early 3′ cleavage promotes RNA degradation, although
the exact mechanism in vertebrates remains unclear (Proudfoot,
2016). In contrast, the 5′ splice site motif present on
the opposite transcriptional unit prevents the utilization of
any downstream cryptic 3′ cleavage/polyadenylation site and
thus promotes the transcriptional extension and stability of
functional RNAs. This arrangement of 5′ splice site motifs
and 3′ cleavage/polyadenylation sites is sometimes referred
to as the U1-PAS axis (PAS stands for polyadenylation
sites).

One important complex which may promote nuclear retention
and degradation of RNAs that contain 5′ splice site motifs
is the PAXT complex, which consists of the RNA helicase,
Mtr4, the zinc finger-containing protein, ZFC3H1, and the
nuclear poly(A) binding protein, PABPN1 (Meola et al., 2016)
(Figure 2). Depletion of Mtr4 or ZFC3H1 resulted in the
cytoplasmic accumulation of truncated mRNAs that utilized
cryptic 3′ cleavage sites from intronic regions (Ogami et al.,
2017). Mtr4 may promote nuclear retention of these transcripts
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FIGURE 3 | The 5′ splice site motif suppresses premature cleavage and polyadenylation. Almada et al. (2013) found that in bidirectional promoters that produce one
stable transcript, 5′SS motif are enriched in the sense direction (stable RNA) while 3′ cleavage sites are enriched in the anti-sense direction (unstable RNA). Under
normal circumstances these cryptic unstable RNAs are cleaved and degraded. In the sense direction, the 5′ splice site motif suppresses the use of downstream
cryptic 3′ cleavage sites, allowing RNA PolII to synthesize the RNA transcript without the recruitment of the 3′ end processing machinery. These cryptic 3′ cleavage
sites are typically present in introns and are removed during splicing.

by competing with the RNA export adaptor Aly for binding of
the 5′ cap (Fan et al., 2017). Furthermore, Mtr4 is also a co-
activator of the nuclear exosome (Schilders et al., 2007), the
major RNA degradation machinery in the nucleus, suggesting
that PAXT may also target these RNAs for degradation. It is
currently unclear how the PAXT complex would recognize its
substrates, although one possibility is that it interacts with U1 that
is bound to misprocessed mRNAs.

In budding yeast, mRNAs with unspliced introns are also
nuclear retained and degraded, and this likely requires an intact
5′ splice site (Legrain and Rosbash, 1989). This retention activity
requires the Mlp1/2 proteins (Galy et al., 2004; Vinciguerra
et al., 2005), which form the nuclear basket, a structure that
sits on the nucleoplasmic face of the nuclear pore complex. In
vertebrates, the nuclear basket protein TPR, which shares some
homology with Mlp1/2, is also required for the nuclear retention
of intron-bearing mRNAs (Coyle et al., 2011; Rajanala and
Nandicoori, 2012). Interestingly, TPR is also required for mRNA
export (Shibata et al., 2002; Umlauf et al., 2013; Wickramasinghe
et al., 2014), likely by associating with the TREX2 factor GANP
(Figure 1), which is essential for the nuclear export of most
mRNAs (Wickramasinghe et al., 2010; Zhang et al., 2014b).

Finally, it should be pointed out that the nuclear retention of
mRNAs harboring retained introns may also be used to regulate
gene expression. It has been found that certain regulated mRNAs
contain “detained” introns that are poorly spliced, leading to
the retention of the transcripts into the nucleus (Boutz et al.,
2015; Mauger et al., 2016; Naro et al., 2017). These are typically
the last introns in the pre-mRNA, and it is likely that the
primary signal for nuclear retention is the presence of a 5′ splice
site motif in these terminal exons. These retained mRNAs are
stable and not subject to degradation. However, in response
to some signal, these introns are post-transcriptionally spliced,
releasing the mRNAs from the nucleus and triggering protein
production.

Other Intron-Associated Motifs
Besides the 5′ splice site motif, it has been reported that
other sequences that are normally associated with introns also
potentiate nuclear retention. Typically, the 3′ end of an intron
is defined by a polypyrimidine track which can be recognized
by the polypyrimidine track binding protein (PTB). Association
of PTB with mature RNAs is known to inhibit splicing and
nuclear export (Yap et al., 2012; Roy et al., 2013). In addition,
the 3′ end of the intron also recruits the splicing factor U2AF65,
whose association with a mature RNA also promotes nuclear
retention (Takemura et al., 2011). Finally, it also appears that the
presence of an intact branch-point sequence in the mature mRNA
also promotes nuclear retention in budding yeast (Legrain and
Rosbash, 1989; Rain and Legrain, 1997). Thus, it is likely that
several different intron-associated elements may help to promote
the nuclear retention and decay of RNA.

Transposable Element Associated Motifs
The majority of the human genome is composed of dead
transposable elements, constituting half to two-thirds of all
DNA (Gregory, 2005; de Koning et al., 2011). Although they
are numerous, they are rarely found in mature mRNAs and
found at moderate levels in lncRNAs (Kelley and Rinn, 2012).
When they are present, they usually inhibit nuclear export and
promote RNA decay. As described above, if a pair of transposable
elements are found in the sense and anti-sense orientation in
a single transcript, they can hybridize to form double stranded
RNAs. These regions either become substrates for the ADAR
enzyme and thus acquire inosine modifications (Chen et al.,
2008; Chen and Carmichael, 2008), or are recognized by the
RNA binding protein Staufen, which targets these RNAs for
decay (Gong and Maquat, 2011; Elbarbary et al., 2013; Park and
Maquat, 2013; Lucas et al., 2018). In addition, double stranded
RNAs activate the kinase PKR, which then phosphorylates
the translation initiation factor eIF2α and thus shuts down
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global translation (Clemens and Elia, 1997). Typically, PKR
is activated by double stranded viruses, however, it is also
known to regulate the processing of certain host mRNAs (Ilan
et al., 2017). It remains unclear if PKR activity impacts nuclear
export.

It is likely that other features associated with transposable
elements are recognized by nuclear retention machinery. It was
recently found that the reverse complement of the Alu SINE, a
primate-specific transposable element, contains a 42 nucleotide
long element, named SIRLOIN, that mediates nuclear retention
by recruiting the RNA binding protein, hnRNP K (Lubelsky
and Ulitsky, 2018). A similar C-rich motif that contributed
to nuclear retention was found in a large analysis of human
lncRNAs (Shukla et al., 2018). Since Alu elements are not
found outside of primates, lncRNAs must use other elements,
especially in non-primates. In addition, it appears that many
transposable elements are recognized by particular C2H2 zinc
finger proteins (Emerson and Thomas, 2009; Rowe and Trono,
2011; Schmitges et al., 2016), many of which contain not only
the capability to bind DNA, but also RNA (Burdach et al.,
2012). It has been speculated that when a new transposable
element invades a genome, it catalyzes the evolution of novel
zinc finger proteins that protects the host. These zinc finger
proteins likely repress transposable element activity primarily
through transcriptional silencing, although it is also possible
that these proteins may help target RNAs for decay or nuclear
retention.

Other cis-Elements That Promote
Nuclear Retention
A few other cis-elements that promote nuclear retention have
been characterized in the literature. As mentioned above, the
Rev responsive element promotes nuclear retention (Brighty
and Rosenberg, 1994; Nasioulas et al., 1994). Another example
is the AGCCC motif which promotes the nuclear retention
of the BORG lncRNA (Zhang et al., 2014a). Although the
authors of this study show that the presence of this motif
correlated with the nuclear/cytoplasmic distribution of a few
lncRNAs and mRNAs, such a sequence would be predicted
to be depleted from mRNAs in general; however, in a large
genome-wide analysis, we have failed to detect such a depletion
(A. F. Palazzo, unpublished observations). This is unlike the
5′ splice site motif, which is depleted from intronless mRNAs
and the 3′ terminal exons of human mRNAs (Lee et al.,
2015).

In many cases, recruitment of certain proteins to the RNA
has been linked to nuclear retention, however, it remains
unclear whether the simple presence of their RNA-binding motifs
promotes retention more broadly throughout the transcriptome.
This is true of the Firre lncRNA, whose nuclear retention
requires the recruitment of hnRNP U protein (Hacisuleyman
et al., 2014). Similarly, it has been reported that the recruitment
of hnRNP A2 inhibits nuclear export (Lévesque et al., 2006).
Again, a more global analysis of how these factors affect
the nuclear/cytoplasmic distribution of all RNAs would be
useful in determining whether other nuclear retention elements
exist.

Other global analyses have tried to identify nuclear
retention/export motifs by sequencing RNA derived from
nuclear and cytoplasmic compartments (Bahar Halpern et al.,
2015; Bouvrette et al., 2018). Interestingly, both studies found
a reasonable number of mRNAs that were poorly exported.
Although the distribution of mRNAs with either the nuclear
or cytosolic compartment correlated with the association
of certain RNA binding proteins, no obvious patterns were
discovered. This is in contrast to lncRNAs where the presence
of motifs that are either associated with transposable elements
(Lubelsky and Ulitsky, 2018; Shukla et al., 2018) or unused
splicing signals (Lee et al., 2015; Melé et al., 2017) likely
promote widespread nuclear retention. Why would lncRNAs
and mRNAs have different mechanisms for their nuclear
distribution? One difference may be that nuclear lncRNAs are
actively retained while nuclear mRNAs are simply exported
to the cytoplasm at a very low rate. This would allow these
particular mRNAs to accumulate in the nucleus at high levels.
It has been hypothesized that since these large pools of nuclear
mRNAs would slowly exit the nucleus, they would supply the
cytoplasm with a steady level of mRNA over long periods
of time and this could help to buffer the protein translation
machinery in the cytoplasm from any wide fluctuations in
mRNA production in the nucleus (Bahar Halpern et al., 2015).
This may be especially important for genes that experience
transcriptional bursts, the sporadic production of many
mRNAs in a short interval, followed by periods of inactivity
(Larson, 2011). Without this buffering, mRNA levels in the
cytoplasm would stochastically increase and decrease over
short intervals of time, especially if the mRNA has a short
half-life.

A few studies have uncovered large RNA elements that have
nuclear retention activity but remain ill-defined. Two of the best
examples are the intronless β-globin mRNA and the MALAT1
lncRNA. In the case of β-globin, the nuclear retention activity
maps to the last 210 nucleotides of the open reading frame (Akef
et al., 2015). This nuclear retention activity can be overcome
by either extending the length of the transcript (Akef et al.,
2015), including an intron to promote splicing (Valencia et al.,
2008; Akef et al., 2015), or by inserting certain export-promoting
viral RNA elements (Guang and Mertz, 2005; Chi et al., 2014).
Deleting the first or the second half of this 210 nucleotide region
does not disrupt nuclear retention, suggesting that there may be
multiple sequences that account for this activity. Despite this,
the two halves do not share any obvious motif or structure. In
the case of MALAT1, its two nuclear speckle targeting regions
(termed regions “E” and “M”) are also ill-defined (Miyagawa
et al., 2012). In the case of region E which is about 1KB in length,
elimination of the first or last half disrupts its activity. For region
M, its activity maps to 600 nucleotides, but it is disrupted if it is
truncated any further. It is likely that the XIST, NEAT1 and TUG1
lncRNAs also have large nuclear retention elements (Lubelsky
and Ulitsky, 2018; Shukla et al., 2018). Ultimately, it remains
possible that these pieces of RNA contain one or more discrete
motifs or structures that have weak nuclear retention activity
(Shukla et al., 2018), and that further in-depth studies would be
needed in order to better define these elements.
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Cis-Elements That Promote Nuclear
Export
Many viral elements are known to promote nuclear export;
however, a number of these act to overcome nuclear retention
elements such as the presence of unspliced introns. Besides the
Rev responsive element (described above), the most well studied
is the constitutive transport element (CTE) of type D retroviruses
(Bray et al., 1994). This large-structured RNA directly recruits
Nxf1/TAP to the transcript (Grüter et al., 1998). Interestingly, the
Nxf1 mRNA contains a CTE-like element that can also recruit
Nxf1/TAP (Li et al., 2006; Wang et al., 2015). These elements
appear to modulate the export of Nxf1 mRNA isoforms that
contain a retained intron (and hence a 5′ splice site). The mRNA
is then translated into a short isoform of Nxf1 that may play a role
in mRNA trafficking (Li et al., 2016b).

Some mRNAs have been described to have cis-elements that
promote nuclear export. mRNAs that encode proteins required
for the cell cycle, contain an export promoting element in their
3′UTR which consists of a stem loop structure that recruits the
eIF4E protein (Culjkovic et al., 2005, 2006). Intriguingly, the
export of these transcripts requires UAP56, but not Nxf1/TAP
(Topisirovic et al., 2009). Instead they use the CRM1 nuclear
transport receptor, which promotes the export of proteins.
The recruitment of HuR to mRNAs and lncRNAs has also
been reported to promote their nuclear export (Fan and Steitz,
1998; Noh et al., 2016). Finally, it has been reported that
naturally intronless transcripts contain specialized cytoplasmic
accumulation region elements (CAR-E), which recruit specific
complexes to the RNA (Lei et al., 2011, 2013). Some of the
interpretations of these experiments are complicated by the
fact that CAR-Es were fused to reporters harboring nuclear
retention elements whose activity can be overcome by simply
extending the length of the transcript (see Discussion in Akef
et al., 2015). Notably, the export of these mRNAs require the
TREX component UAP56, which appears to be recruited to
reporter RNAs that do not contain any known nuclear export
elements (Taniguchi and Ohno, 2008; Akef et al., 2015; Lee et al.,
2015). Thus, the functional relevance of these purported export-
promoting elements seems unclear at this time. It is likely that
bone fide export-promoting elements, such as the CTE, function
by overcoming the activity of nuclear retention elements, such as
the ones present in mRNAs with retained introns.

NUCLEAR RETENTION AND EXPORT OF
RNAS, A FORCE FOR CONSTRUCTIVE
NEUTRAL EVOLUTION?

The Conversion of Junk RNA to lncRNA
The nuclear/cytoplasmic distribution of RNAs plays an
important role in shaping the genomic content of eukaryotes by
evolution. In particular, the nuclear retention and degradation
of spurious transcripts eliminates much of the harm caused by
junk RNA and hence reduces the deleteriousness of cryptic TSSs
and intergenic DNA regions that harbor such sites (Palazzo and
Akef, 2012; Palazzo and Gregory, 2014; Palazzo and Lee, 2015).

As a result, junk DNA and its associated junk RNA are not
effectively eliminated by natural selection. It is likely that these
non-functional transcripts act as the raw substrates for natural
selection and some are converted into novel functional lncRNAs.
Thus, in a sense, junk RNA and functional lncRNAs come
as a package. The idea that neutral mutations (i.e., intergenic
insertions, and the serendipitous creation of cryptic TSSs) create
novel entities (i.e., junk RNA) that are subsequently shaped
by natural selection to create novel genes (i.e., lncRNAs) is an
example of a general process called constructive neutral evolution
(Stoltzfus, 1999, 2012; Gray et al., 2010; Lukeš et al., 2011). A key
component in this process is the role of the nuclear/cytoplasmic
division (and its associated quality control mechanisms) in
reducing the deleteriousness of spurious transcription.

So how exactly would junk RNA be converted to lncRNA?
Likely, this is a step by step process where new entities are
created by non-adaptive processes and then acquire functions
which can be selected for by natural selection. One example
is presented in Figure 4. First, random mutations create and
destroy cryptic TSSs. These sites are engaged by RNA polymerase
II which not only generates unstable ncRNAs, but also recruits
histone modification enzymes that alter chromatin packaging
downstream from the TSS (van Werven et al., 2012; Castelnuovo
et al., 2013; Kim et al., 2016; Woo et al., 2017). If the resulting
altered histone modifications impart some benefit by regulating
nearby genes in a way that improves the fitness of the organism,
then the transcriptional event and its cryptic TSS will be
selectively retained. Eventually the ncRNA generated from these
loci, which is initially a by-product, may act as a platform to help
assemble chromatin remodeling complexes in the vicinity of their
target genes. In this way, the ncRNA acquires a novel function
over time and is thus converted into a lncRNA (Figure 4).

This conversion process may frequently occur in tissues
that have a high amount of spurious transcription, such as in
developing spermatids (Kaessmann, 2010; Jandura and Krause,
2017). During sperm development, DNA is unpackaged from
histones and then repackaged into protamines. This transiently
exposed DNA can act as a non-specific substrate for RNA
polymerases causing high levels of spurious transcription. Once
a ncRNAs acquires some associated function in the testes, it can
subsequently be expressed in other tissues. This is known as the
“out of the testes” hypothesis (Kaessmann, 2010; Jandura and
Krause, 2017).

The Conversion of Misprocessing to
Alternative Processing
The nuclear/cytoplasmic distribution and degradation of RNA
also facilitates the evolution of alternative splicing. In particular,
by retaining and degrading misprocessed mRNAs, they are not
efficiently translated into proteins and do not cause much harm
to the organism. This reduces the deleteriousness of splicing
and polyadenylation errors and prevents their elimination by
natural selection. This may explain why splicing appears to
be inherently sloppy in mammalian cells. In support of this
idea, it has been widely noted that although most genes
are alternatively spliced, they typically give rise to only one
polypeptide (Tress et al., 2017), suggesting that many spliced
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FIGURE 4 | The evolution of lncRNAs from junk RNAs.

isoforms are not translated due to their degradation and/or
nuclear retention. As such, nuclear/cytoplasmic distribution
and degradation of RNA prevents the elimination of cryptic

splice site motifs and any other splicing-regulating elements
that may appear by random mutation in the genome. These
elements then act as the raw substrates necessary for the
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evolution of functional alternative splicing events. This is another
example of constructive neutral evolution in action. In this case
the newly created entities are splice sites and/or elements that
regulate splicing, which are rendered effectively neutral by the
RNA nuclear retention and degradation machinery, and these
provide the raw substrates for the evolution of alternatively
spliced isoforms. A similar process can be invoked for the
evolution of 3′ cleavage/polyadenylation sites.

CONCLUSION

Results from ENCODE point to a wide diversity of
nuclear/cytoplasmic distribution for many different types of RNA
molecules (Djebali et al., 2012; Palazzo and Gregory, 2014). Over
the past few years, we have gained a fuller picture of the rules
that dictate RNA distribution to these two compartments. We
have established that any stable long RNA is a substrate for
nuclear export unless it contains a nuclear retention element.
Undoubtably, splicing and other RNA processing events further
enhance nuclear export. In addition, RNA modifications also play
an important role in this process. Although our understanding of

the major components that drive export are well known, we still
must identify nuclear retention complexes and determine their
mode of action to obtain a full picture of how the nuclear and
cytoplasmic transcriptomes are achieved.
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