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Abstract
Although stochasticity in oceanographic conditions is known to be an important driver of

temporal genetic change in many marine species, little is known about whether genetically

distinct plankton populations can persist in open ocean habitats. A prior study demonstrated

significant population genetic structure among oceanic gyres in the mesopelagic copepod

Haloptilus longicornis in both the Atlantic and Pacific Oceans, and we hypothesized that

populations within each gyre represent distinct gene pools that persist over time. We tested

this expectation through basin-scale sampling across the Atlantic Ocean in 2010 and 2012.

Using both mitochondrial (mtCOII) and microsatellite markers (7 loci), we show that the

genetic composition of populations was stable across two years in both the northern and

southern subtropical gyres. Genetic variation in this species was partitioned among ocean

gyres (FCT = 0.285, P < 0.0001 for mtCOII, FCT = 0.013, P < 0.0001 for microsatellites),

suggesting strong spatial population structure, but no significant partitioning was found

among sampling years. This temporal persistence of population structure across a large

geographic scale was coupled with chaotic genetic patchiness at smaller spatial scales, but

the magnitude of genetic differentiation was an order of magnitude lower at these smaller

scales. Our results demonstrate that genetically distinct plankton populations persist over

time in highly-dispersive open ocean habitats, and this is the first study to rigorously test for

temporal stability of large scale population structure in the plankton.

Introduction
Understanding the ecology and evolution of marine species requires knowledge of the extent to
which conspecific populations are genetically differentiated across space, and whether these
spatial patterns are stable through time. At large geographic scales, marine species with large
and stable population sizes, broad species ranges, long-lived planktonic larvae, and high fecun-
dity are expected to exhibit temporal stability in allele frequencies coupled with weak or no
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genetic structure among populations (e.g., [1]), due to the combined effects of low genetic drift
and high migration among sites. Although the expectation of weak population differentiation
in such ‘high gene flow’ species is commonly observed (e.g., [2–6]), temporal stability in allele
frequencies has been documented in very few cases [7,8]. In contrast, there is an extensive liter-
ature describing unexpectedly high levels of non-geographic differentiation among samples
(e.g., [9–11]), termed chaotic genetic patchiness [12,13], due to genetic variation at fine tempo-
ral and/or spatial scales. In benthic species with meroplanktonic larvae, this fine-scale pattern
appears to be largely driven by high variance in reproductive success, coupled with stochasticity
in larval survivorship and transport due to variation in oceanographic conditions (e.g., [14–
16]). Similar patterns also have been reported for pelagic marine fish. For example, in the Euro-
pean eel, results previously considered to represent spatial structuring among populations have
since been suggested to reflect temporal heterogeneity [17,18], with both isolation by spawning
cohorts as well as variance in reproductive success within cohorts contributing to differentia-
tion among samples.

Marine holozooplankton, ocean drifters during their entire lifecycle, arguably represent the
end of a continuum for marine animals: They are characterized by exceptionally large popula-
tion size and among the greatest dispersal potential of all marine species. Because of these char-
acteristics, we expect to observe little or no genetic differentiation among populations, and
high temporal stability in allele frequencies at large spatial scales. However, despite their very
high capacity for dispersal in the open sea, many holozooplankton species are strongly differ-
entiated among populations at ocean gyre and basin spatial scales [19]. For example, popula-
tions in the northern and southern subtropical gyres of the Atlantic, Pacific and Indian Oceans
exhibit strong genetic differentiation in the cosmopolitan copepods Eucalanus spinifer, Eucala-
nus hyalinus, and Pleuromamma xiphias [20,21], and the temperate-boreal North Atlantic
speciesMeganyctiphanes norwegica (euphausid) and Sagitta setosa (chaetognath) also have
genetically distinct populations across water masses and/or across European coastal seas [22–
25]. Yet virtually nothing is known regarding the stability of spatial genetic structure in marine
zooplankton, because temporally-replicated sampling remains very rare. Important exceptions
include work on two krill species [25,26] and a chaetognath [27], in which temporally-repli-
cated samples in certain areas showed that the genetic composition was stable over time. How-
ever, since sampling in these studies was not replicated over the entire spatial scale of study, it
has never been explicitly tested whether the pattern of spatial structuring was temporally
stable.

In this study, we examine the temporal stability of spatial population genetic structure
across oceanic habitats in the mesopelagic copepod Haloptilus longicornis. This common
upper-mesopelagic species has been shown in prior work to have genetically distinct popula-
tions within subtropical gyres of both the North and South Pacific and the North and South
Atlantic Oceans [28,29]. Spatial patterns of abundance in the Atlantic Ocean for this species
indicate that subtropical gyres are the preferred habitat, and that although the species is present
in equatorial waters, this region serves as a biophysical barrier to migration among gyre popu-
lations [30]. Previous analyses based on both mtDNA and nuclear microsatellite markers indi-
cate that the nominal species H. longicornis is composed of two morphologically cryptic species
[28]. Throughout the remainder of the paper we refer to these as H. longicornis species 1 and
H. longicornis species 2 (or sp. 1 & sp. 2). Both species are circumglobal in distribution, and
occur sympatrically across subtropical and tropical waters. This study focuses on understand-
ing temporal genetic patterns within H. longicornis species 1, the more abundant of the two
species.

Given prior observations of significant population structure in H. longicornis, this system
presents an opportunity to test whether genetically distinct populations of marine zooplankton
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persist in open ocean habitats. In this study, we addressed the questions: (1) Are populations of
H. longicornis species 1 sampled in the northern and southern subtropical gyres of the Atlantic
Ocean in 2010 genetically indistinguishable from populations found in these same ocean
regions in 2012? and (2) Is the spatial population structure observed across ocean gyres tempo-
rally stable, and present during both sampling years? To answer these questions, we used mate-
rial from repeat basin-scale transects in the Atlantic Ocean, and data from both mitochondrial
and microsatellite markers to assess population differentiation across time and space in this
system. This study is the first to rigorously test for temporal stability of population structure in
oceanic zooplankton.

Materials and Methods

Plankton collections and oceanographic data
Bulk plankton samples were collected on the Atlantic Meridional Transect (AMT) cruises in
2010 and 2012 (AMT20, AMT22; Fig 1, Table 1). Permits were not required for these collec-
tions, and the work did not involve endangered or protected species. On the 2010 cruise, plank-
ton collections were made by vertical casts of a 0.57-m diameter bongo net (200 μm, 200–0 m
depths). On the 2012 cruise, a 0.71-m diameter bongo net (200 μmmesh) was towed obliquely
between on average 336 m and the surface. This study includes material from 12 stations on
the 2010 cruise and 15 stations on the 2012 cruise (Fig 1, Table 1), with collection locations
and dates as listed in Table 1. Bulk plankton was preserved immediately in 100% ethyl alcohol,
alcohol was changed within 24 hours of collection, and samples were stored at -20°C. Adult
females of Haloptilus longicornis were identified to species following Bradford-Grieve [31].

Fig 1. Map of collection locations from the 2010 and 2012 Atlantic Meridional Transect (AMT) cruises
that were included in this study. Symbols for sites included in mtDNA and microsatellite analyses as shown
in the legend (and as listed in Table 1).

doi:10.1371/journal.pone.0136087.g001
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Note that H. longicornis species 1 and H. longicornis species 2 cannot yet be distinguished mor-
phologically, and both species were included in DNA sequencing and microsatellite genotyping
(Table 1). DNA was extracted from individual specimens using the DNeasy Blood & Tissue Kit
(QIAGEN), with modifications to the manufacturer’s protocol as described in Norton and
Goetze [29].

Table 1. Collection sites for specimens ofHaloptilus longicornis s.l. included in this study, from (A) the 2010 AMT cruise (AMT20), and (B) the 2012
AMT cruise (AMT22).

Pop Station mtDNA mtDNA mtDNA msat msat msat Latitude Longitude Collection

ID N sp. 1 sp. 2 N sp. 1 sp. 2 Date

(A) 2010 Cruise, Atlantic Meridional Transect Cruise 20

1 AMT 20–07 28 11 17 - - - 34°12.19'N 29°43.31'W 10/21/10

2 AMT 20–09 31 28 3 43 37 6 30°17.29'N 34°10.86'W 10/23/10

3 AMT 20–11 27 27 0 44 43 1 25°59.10'N 38°46.98'W 10/25/10

4 AMT 20–13 26 26 0 45 45 0 21°12.71'N 39°17.59'W 10/27/10

5 AMT 20–15 26 21 5 45 37 8 16°11.42'N 35°48.36'W 10/29/10

6 AMT 20–16 26 19 7 42 30 12 13°27.28'N 38°57.02'W 10/30/10

7 AMT 20–21 25 2 23 - - - 3°51.95'S 25°01.06'W 11/5/10

8 AMT 20–22 25 6 19 - - - 06°03.44'S 23°48.77'W 11/6/10

9 AMT 20–24 25 21 4 45 37 8 15°19.88'S 21°50.47'W 11/11/10

10 AMT 20–25 - - - 45 41 4 20°22.78'S 25°05.35'W 11/13/10

11 AMT 20–26 27 24 3 44 37 7 23°50.27'S 26°34.02'W 11/14/10

12 AMT 20–27 - - - 48 32 16 26°51.44'S 29°04.09'W 11/15/10

13 AMT 20–28 26 14 12 44 28 16 29°56.59'S 31°41.40'W 11/16/10

Total 292 199 91 445 367 78

(B) 2012 Cruise, Atlantic Meridional Transect Cruise 22

14 AMT22-11 27 5 22 - - - 36°40.36'N 24°26.83'W 10/17/12

15 AMT22-15 28 24 4 57 47 10 32°0.04'N 30°44.21'W 10/19/12

16 AMT22-21 28 24 4 63 60 3 25°28.57'N 39°0.01'W 10/22/12

17 AMT22-25 29 28 1 47 45 2 20°23.96'N 38°36.69'W 10/24/12

18 AMT22-29 26 21 4 68 50 18 15°3.38'N 34°28.45'W 10/26/12

19 AMT22-33 10 0 10 - - - 9°27.51'N 30°21.25'W 10/28/12

20 AMT22-43 7 0 7 - - - 4°37.29'S 25°1.39'W 11/2/12

21 AMT22-45 27 16 11 - - - 8°4.63'S 25°2.39'W 11/3/12

22 AMT22-47 29 18 10 - - - 11°36.92'S 25°2.74'W 11/4/12

23 AMT22-49 27 21 6 74 51 23 15°17.99'S 25°4.48'W 11/5/12

24 AMT22-51 27 25 2 49 40 9 18°29.57'S 25°6.03'W 11/6/12

25 AMT22-55 30 24 6 72 52 20 22°56.97'S 25°0.17'W 11/9/12

26 AMT22-57 26 23 3 52 40 12 25°43.65'S 24°59.94'W 11/10/12

27 AMT22-58 29 18 11 82 42 40 28°21.70'S 25°27.27'W 11/11/12

28 AMT22-60 27 26 1 49 46 3 30°10.46'S 27°54.36'W 11/12/12

Total 377 273 102 613 473 140

Pop ID = the population identifier referred to throughout the manuscript; Station = the cruise and station number of each sample; mtDNA N and msat N

are the number of adult females from which mtCOII DNA sequence and microsatellite genotypes were obtained. Total N for each marker type is also

separated into H. longicornis species 1 (mtDNA sp. 1, msat sp. 1) and H. longicornis species 2 (mtDNA sp. 2, msat sp. 2) at each site.

doi:10.1371/journal.pone.0136087.t001
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MtDNAmarker and sequence analysis
A 546 bp fragment of the mitochondrial gene cytochrome oxidase subunit II (mtCOII) was
amplified in polymerase chain reaction (PCR) using primers COII_F6 (5’–GTC TAC AGG
ATG CAA ACT CC – 3’) and COII_R9 (5’–AGA GCA TTG CCC AAA CCT GA – 3’; [29]).
Amplification conditions and preparation of PCR products for sequencing were as described in
Norton and Goetze [29], with Sanger sequencing of both forward and reverse strands. Forward
and reverse sequences were aligned (Geneious v5.5.3), checked for errors, and unique haplo-
types were identified using FaBox v1.41. MtCOII sequences were obtained from 292 and 377
animals collected in 2010 and 2012, respectively (Table 1). Of these, a total of 199 and 273 were
ofH. longicornis species 1 (Table 1). Animals were identified toH. longicornis species 1 based
on placement in mitochondrial lineage 1 or into Microsatellite Cluster 1 by Factorial Corre-
spondence Analysis (FCA, see below), with complete concordance observed between these
two approaches in the placement of animals to species (as described in [28]). All mtCOII
sequences from 2012 are first reported on here; data from 2010 were included in [29] and [28].
A sequence alignment was created including only individuals fromH. longicornis species 1
(using MUSCLE, within Geneious v7.1.7, [32]. A phylogenetic tree for all haplotypes was
inferred under maximum likelihood (ML) using MEGA v6.06 [33], and the Tamura and Nei
(+ G) substitution model. This ML tree was converted to a haplotype genealogy and plotted in
Haploviewer (http://www.cibiv.at/~greg/haploviewer).

Microsatellite markers and genotyping
Individuals were genotyped at 7 microsatellite markers that were developed for H. longicornis
[28,34]: HALOMS027, HALOMS032, HALOMS064, HALOMS066, HALOMS086,
HALOMS091, and HALOMS175. Primer sequences and PCR conditions were as reported in
[28]. Microsatellite loci were amplified in 10 μl multiplex PCRs containing 1X Type-it Multi-
plex PCRMaster Mix (Qiagen) and 2 μM of each primer. PCR products were genotyped using
an ABI3730 Genetic Analyzer, and scoring of microsatellite chromatograms was conducted
using GENEMAPPER v4.0. A total of 1058 individuals were genotyped (Table 1). Specimens
were assigned to H. longicornis species 1 or H. longicornis species 2 based on factorial corre-
spondence analysis (FCA) using GENETIX v4.05 [35], as described in [28]. A total of 840 indi-
viduals were assigned toH. longicornis species 1, and were included in all subsequent analyses
(Table 1). From 28 to 60 individuals of H. longicornis species 1 were genotyped from each site,
with medians of 37 and 47 individuals in 2010 and 2012, respectively. All data from 2012 are
first reported here; data from 2010 were included in [28].

Population genetic analyses
ForH. longicornis species 1, deviations from Hardy-Weinberg equilibrium (HWE) and linkage
disequilibrium were examined using ARLEQUIN v3.5.1.3 and GENEPOP v4.2 for all micro-
satellite loci [36–38]. We tested for the presence of null alleles in microsatellite data using
MICROCHECKER v2.2.3 [39], and estimated null allele frequencies and calculated population
pairwise FST values with correction for null alleles in FreeNA [40]. Microsatellite genetic
diversity indices of observed and expected heterozygosity, average alleles per locus, and allele
richness were calculated in GENETIX v4.05 and FSTAT [35,41]. Pairwise FST values were cal-
culated among all sample sites using both microsatellite and mtCOII data, as a measure of
population subdivision across samples (ARLEQUIN v3.5.1.3, [38]). Significance was assessed
following correction for multiple comparisons using the false discovery rate (FDR, [42,43]).
Pairwise FST values also were calculated for the mtCOII data. We identified the nucleotide
substitution model that best fit our mtCOII data using the Akaike Information Criterion, as
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implemented in jModelTest v2.1.4 [44], and the K81 or three-parameter model was selected as
the best model (TPM3uf+G). The Tamura and Nei substitution model, which was the closest
available model in Arlequin, was used to calculate pairwise and global FST values, and to esti-
mate genetic diversity at each site. Hierarchical Analyses of Molecular Variance (AMOVA)
based on FST were carried out to partition the genetic variance across both space (ocean gyres)
and time (sampling years), for both marker types. In these analyses, we tested for population
structure under the following groupings: with samples stratified by (1) northern and southern
subtropical gyres (2 gyres), and (2) across two sampling years (2010, 2012). Global FST values
were estimated using non-hierarchical AMOVAs among all samples, as well as among subsets
of the data across ocean gyres and sampling years. Significance was tested with 10,000 permu-
tations of genotypes or haplotypes among populations. Principal coordinate analysis (PCA)
plots of linearized pairwise FST values based on both mtCOII and microsatellite data were used
to visualize spatial and temporal genetic differentiation among samples. Population structure
was further examined using a Bayesian clustering method implemented in STRUCTURE
[45,46] for microsatellite loci. We used admixture and correlated allele frequency models, with
a burn-in of 105 steps followed by 106 steps, with and without using sampling location as a
prior. We ran these analyses for each of the 2010 and 2012 datasets using K = 1 to K = 10, and
for the dataset of combined years using K = 1 to K = 20. We ran three separate replicates for
each K to investigate consistency of Pr(X|K). The true K was evaluated by visual inspection of
barplots and comparing Pr(X|K) across K values.

Results

Genetic Diversity
A total of 58 mtCOII haplotypes occurred among the 472 H. longicornis sp. 1 animals
sequenced, with an average of 7 haplotypes observed at each sampling site (S1 Table). Average
nucleotide diversity across all samples was 0.00553, with a range from 0.00333–0.00774. No
difference was observed in the number of haplotypes, haplotype diversity, or nucleotide diver-
sity between samples collected in 2010 and 2012 (Mann-Whitney rank sum or t-tests, P>>

0.05 in all cases). However, there were significant differences between the northern and south-
ern subtropical gyres in the number of mtCOII haplotypes (Mann-Whitney rank sum,
P = 0.006), haplotype diversity (t-test, P< 0.001), and nucleotide diversity (Mann-Whitney
rank sum, P = 0.021), with higher diversity observed in the southern gyre.

Our seven microsatellite markers were moderately polymorphic, with the average number of
alleles per locus ranging from 4.9 to 6.9 across all samples (S2 Table). The average observed and
expected heterozygosities across all loci ranged across 0.28–0.51 and 0.44–0.58, respectively.
Only one of 148 locus-by-population comparisons showed deviation from HWE after Bonferroni
correction. MICROCHECKER found 4 of 7 microsatellite markers exhibiting null alleles, with
null allele frequency at these markers ranging from 0.12 to 0.34. However, as noted by Andrews
et al. [28] for these same microsatellite markers, when pairwise and global FST values are calcu-
lated both with and without correction for null alleles, higher values are observed in the corrected
FST values. For this reason, we consider it conservative to present these values as uncorrected for
null alleles, as this is least likely to identify spurious, elevated structure among populations.

Population structure
There was significant genetic differentiation among samples at both mtCOII (global FST =
0.175, P< 0.0001, global FST = 0.048, P = 0.0001) and microsatellite markers (global FST =
0.01, P< 0.0001, Table 2). The dominant pattern in the data was strong spatial differentiation
among populations in the northern and southern subtropical gyres. In hierarchical AMOVA
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analyses, significant amounts of genetic variation were partitioned among the two ocean gyres
(FCT = 0.285, P< 0.0001 for mtCOII, FCT = 0.013, P< 0.0001 for microsatellites), while no sig-
nificant results were found among the two sampling years (Table 2). These results held for
analyses including all samples, as well as for analyses with samples collected only in either 2010
or 2012 and for samples collected only within each gyre across both years. Results of non-hier-
archical AMOVA analyses of both mtCOII and microsatellite data also were significant when
they included samples distributed across both ocean gyres, either including both years (global
mtCOII FST = 0.175, P< 0.0001, global msat FST = 0.010, P< 0.0001), 2012 only (global msat
FST = 0.013, P< 0.0001, global mtCOII FST = 0.163, P< 0.0001), or 2010 only for the mtCOII
data (global mtCOII FST = 0.201, P< 0.0001; Table 2). All among-gyre pairwise FST values
based on mtCOII were highly significant, irrespective of sampling year (P< 0.0001; S3 Table),
with values ranging up to 0.407. The majority of among-gyre pairwise FST comparisons also
were significant, although pairwise FST values were lower than FST values for the same sample
comparisons (S3 Table). Among-gyre values also were more often significant in microsatellite
pairwise FST (46 of 99 comparisons), than were within-gyre comparisons (5 of 91 comparisons
significant; S4 Table). Haplotype genealogies illustrated broad mtCOII haplotype sharing
among years (Fig 2A), but with spatial separation among northern and southern gyres (Fig
2B). However, there was no deep phylogenetic division between gyres, with several haplotypes
that were restricted to the North Atlantic only one or a few mutational steps away from

Table 2. Results of hierarchical and non-hierarchical AMOVA analyses forHaloptilus longicornis species 1.

(A) Samples (grouping) marker N samples N indiv. FCT P-value

all samples (2 gyres) msat 20 840 0.0130 < 0.0001

all samples (2 years) msat 20 840 -0.0007 0.6896

North gyre (2 years) msat 9 394 0.0009 0.3491

South gyre (2 years) msat 11 446 -0.0003 0.5462

2010 samples (2 gyres) msat 10 367 0.0100 0.0076

2012 samples (2 gyres) msat 10 473 0.0150 0.0051

all samples (2 gyres) mtCOII 15 363 0.2850 < 0.0001

all samples (2 years) mtCOII 15 363 -0.0060 0.4014

North gyre (2 years) mtCOII 8 199 -0.0030 0.7992

South gyre (2 years) mtCOII 7 164 0.0110 0.1414

2010 samples (2 gyres) mtCOII 6 147 0.3440 0.0652

2012 samples (2 gyres) mtCOII 9 216 0.2550 0.0063

(B) Samples marker N samples N indiv. Global FST P-value

all samples msat 20 840 0.010 < 0.0001

North gyre (2 years) msat 9 394 0.002 0.6761

South gyre (2 years) msat 11 446 0.004 0.2638

2010 samples (10 locations) msat 10 367 0.007 0.1158

2012 samples (10 locations) msat 10 473 0.013 < 0.0001

all samples mtCOII 15 363 0.175 < 0.0001

North gyre (2 years) mtCOII 8 199 -0.015 0.9277

South gyre (2 years) mtCOII 7 164 0.012 0.1371

2010 samples (6 locations) mtCOII 6 147 0.201 < 0.0001

2012 samples (9 locations) mtCOII 9 216 0.163 < 0.0001

(A) Hierarchical AMOVA with partitioning of genetic variance between gyres (North, South) and across sampling years (2010, 2012). (B) Global FST values
(and p-values) for non-hierarchical AMOVA analyses. Results for both microsatellite (msat) and mitochondrial (mtCOII) datasets are reported. Bold

indicates significance at P < 0.01. See Table 1 for a detailed listing of all samples, and the text for description of the groupings in A.

doi:10.1371/journal.pone.0136087.t002
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haplotypes that were unique to or shared with the South Atlantic. The dominant mtCOII hap-
lotypes differed between the northern and southern subtropical gyres, with haplotype 3 (blue,
Fig 3A) dominant in the northern gyre and haplotype 6 (white) dominant in the southern gyre
(across both years; Fig 3A). Haplotype dominance within each gyre was stable across the two
sampling years. Principal coordinate analysis (PCA) of linearized pairwise FST values among all
samples separated populations primarily along an axis defined by space rather than time, with
94.8% (mtCOII) and 55.3% (msat) of the variation explained by the first principal coordinate
(PCo1; Fig 4). For both mtCOII and microsatellite marker types, there was no notable separa-
tion of samples by sampling year (2010, 2012). Bayesian clustering analyses using microsatel-
lites indicated K = 1 for all datasets (2010, 2012, and both years combined); however, this type
of analysis lacks power for levels of divergence comparable to our microsatellite dataset [46]. In
sum, at large spatial scales, population structure among northern and southern subtropical
gyres is the dominant genetic pattern.

At the within-gyre scale, a small number of sample comparisons also were significant, suggest-
ing chaotic genetic patchiness at fine geographic scales. One pairwiseFST value based on mtCOII
sequence data was significant in a within-gyre comparison (corrected for multiple comparisons,
S3 Table). Pairwise FST values based on microsatellite data were significant at within-gyre scales
in three cases, with two cases involving a comparison between years and one case involving a
comparison among sites, both of which were sampled in 2012 (S4 Table). Sample sizes were high
at these sites, with between 37 and 60 animals genotyped from these locations.

Fig 2. Haplotype genealogy of 58 mitochondrial cytochrome oxidase subunit II (mtCOII) haplotypes
sampled in Haloptilus longicornis species 1.Genealogies are plotted to illustrate the extent of haplotype
sharing across (A) sampling years 2010, 2012, and (B) ocean gyres (northern and southern subtropical
gyres).

doi:10.1371/journal.pone.0136087.g002
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Discussion
Although stochastic processes are well known to underlie temporal genetic change in many
marine species [1,47,48], very few studies have examined temporal variation in the marine
holoplankton. Because holoplanktonic species are similar to many other marine species in
being characterized by large population size, high dispersal capability, and broad geographic
range, we might also expect them to exhibit temporal stability in allele frequencies and weak
population genetic structure due to the combined effects of low genetic drift and high migra-
tion among sites. However, given that the pelagic habitat and the planktonic animals it contains
are in constant motion, there also is uncertainty regarding whether the genetic composition of
plankton in any given ocean region would be stable over time. Results reported here are the
first to document that genetically distinct populations of planktonic species persist over time
within subtropical gyres, even though these populations are continuously undergoing

Fig 3. Temporal stability in the cytochrome oxidase II (mtCOII) haplotype composition of Haloptilus
longicornis species 1 across ocean gyres in two years (2010, 2012). (A) mtCOII haplotype frequencies
within each subtropical gyre, sampled in 2010 (top) and 2012 (bottom). Each pie represents a population
sample, with PopID as listed in Table 1 and shown in Fig 1 (number inside the pie). Each color is a unique
haplotype; black indicates all haplotypes occurring only once in the sample. Population samples with N > 20
were included. (B) Biogeographic provinces across the Atlantic Ocean shown in section plots of (top)
Chlorophyll a, and (bottom) seawater temperature (0–300 m), from the 2012 AMT22 cruise.

doi:10.1371/journal.pone.0136087.g003
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advection and diffusion in the open ocean. Our results are particularly interesting because they
appear counter-intuitive given the highly dispersive nature of the pelagic habitat.

Our results suggest that temporal genetic change in zooplankton populations is heavily
influenced by the spatial scale of study. At large spatial scales, we observed temporal stability in
the common mesopelagic copepod Haloptilus longicornis species 1. The strongest signal in our
data is of genetic differentiation between northern and southern subtropical gyres, irrespective
of sampling year. The significant and strong spatial sub-structuring observed among northern
and southern gyres in this species in 2010 was also present in 2012, with the same haplotypes

Fig 4. Spatial structure amongHaloptilus longicornis sp. 1 subtropical gyre populations shown in
principal coordinate analysis plots, based on linearized pairwise FST values among sampling sites. (A)
Results frommtCOII sequence data, shown for 15 sampling sites in 2010 and 2012. (B) Results from 7
microsatellite loci, for 20 sampling sites in 2010 and 2012. In both plots, red indicates north gyre and black
indicates south gyre sampling sites, and the circle and square symbols are from 2010 and the diamond and
triangle symbols are from 2012. Note the absence of separation in temporal samples within each gyre.

doi:10.1371/journal.pone.0136087.g004
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and alleles dominant in each gyre across the two years. Samples collected in 2012 were not con-
sistently differentiated from those collected in the same ocean gyre in 2010, and there was no
significant partitioning of genetic variation among years in this species (hierarchical AMOVA,
Table 2). The two-year time span between samples likely corresponds to on the order of 25–30
generations for this species [49], given the seawater temperature in their core subtropical distri-
bution, which should be sufficient to detect stochastic variation in the genetic composition of
cohorts or generations. Similar results of an absence of differentiation among samples were
found in two other studies examining the temporal component of population structure in
marine zooplankton [25–27]. In contrast toH. longicornis, these species have temperate-boreal
(Meganyctiphanes norvegica, Sagitta setosa) or circum-antarctic (Euphausia superba) distribu-
tion patterns and temporal stability was only examined for a subset of geographic samples. The
shared observation of genetically distinct populations that persist through time in the open sea
suggests that temporal stability in large-scale population structure may not be uncommon for
holozooplankton in a variety of habitats. Our results support our initial expectations that
plankton populations within subtropical gyres represent distinct gene pools that persist over
time.

Our results, along with previous studies, also indicate that temporal stability of population
genetic structure at large spatial scales is coupled with chaotic genetic patchiness, or weak and
ephemeral genetic differentiation, at fine spatial scales. Marine zooplankton have highly patchy
abundance and distribution at the submesoscale (1–10 km; [50,51]), and chaotic genetic patch-
iness may occur on spatial scales of meters to kilometers, or temporal scales of days to months.
Statistical heterogeneity in the genetic composition of zooplankton samples on the mesoscale
and submesoscale has been observed in a number of prior studies, although the interpretation
of this pattern has been varied. Bortolotto et al. [26] included temporal replicates of krill sam-
ples from the Ross Sea (5 years) and South Georgia (2 years) and concluded that although
there was a single panmictic population of krill on a large geographic scale (Southern Ocean),
there was also evidence for subtle, though not statistically significant, spatial and temporal het-
erogeneity. Other examples include spatial genetic patchiness in the copepodMetridia pacifica
populations across mesoscale coastal upwelling filaments and eddies in the California Current
[52,53], as well as outlier samples that show high pairwise FST values unrelated to geographic
distance or ocean habitat among sites in several other studies (Eucalanus hyalinus, Pleuro-
mamma xiphias, [20,21]). A number of other studies report unexplained genetic heterogeneity
at various spatial or temporal scales in zooplankton species (e.g., [54–59]); however, in some
cases, these observations were confounded by sampling artifacts and low sample size (spurious,
significant FST). Genetic patchiness also can be seen in the data reported here for Haloptilus
longicornis. There are population samples within both the northern and southern gyres that
show weak but significant differentiation relative to other samples within the same gyre (both
marker types, S3 & S4 Tables). As in other marine species, this patchiness can include either a
temporal or spatial component (or both; S3 & S4 Tables). There is little understanding of the
mechanisms that underlie this small-scale genetic patchiness in marine zooplankton, but in
addition to variance in reproductive success (and clonal reproduction; [60]), they may include
biological or bio-physical aggregation of animals (e.g., swarms, thin-layers, vertical migration;
[61,62]), and selective mortality across the life history. In sum, at smaller spatial scales, zoo-
plankton may exhibit genetic patchiness in either temporal or spatial domains, as is well-
described in many other highly-dispersing marine species (e.g., [10,17,18,63–65]).

Operationally, our results suggest that the broad-scale genetic patterns of population struc-
ture within holozooplankton species can be captured with limited temporal sampling given suf-
ficient sampling intensity (sample size). This result is reassuring, as the majority of prior
studies have used samples from a wide range of sampling dates, and interpreted the patterns
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observed exclusively in a spatial context (e.g., [20,21,28,30,66–71]). Given spatially extensive,
in many cases circumglobal, range distributions for marine zooplankton, this approach has
been necessary to collecting material across the distributional range of the species. However, it
has always been recognized that the lack of temporally-stratified sampling resulted in poor
understanding of the extent to which our interpretation of population structure in marine
holoplankton was confounded by genetic variation across both space and time (e.g., [25–
27,72]). Results reported here are therefore important in documenting that genetic structure
occurring over large spatial scales is temporally persistent (Table 2). If this is true for other spe-
cies, then combining temporally-stratified samples to examine spatial structure is unlikely to
impede interpretation of the larger-scale population structure in these species.

In summary, this study is the first to demonstrate that both the genetic composition of
plankton populations within oceanic gyres and the spatial patterns of population sub-structure
across ocean gyres are persistent through time. This large-scale pattern of significant and tem-
porally-stable genetic structure for marine zooplankton is coupled with chaotic genetic patchi-
ness at finer spatial scales (in this case, within subtropical gyres). Our results demonstrate
temporal stability in the genetic structure of a ‘high dispersal’marine species, and are particu-
larly important given the dispersive nature of the pelagic habitat and very high vagility of
planktonic species. Additional work is needed to understand the extent and underlying causes
of fine-scale genetic patchiness in the plankton, as well as to interpret its biological impact on
species. Confirmation of the observations of temporally stable genetic structure over large spa-
tial scales from other zooplankton species also would lend greater support to the conclusion
that these patterns are the norm for the holozooplankton.

Supporting Information
S1 File. Microsatellite genotypes for all specimens, with sample ID and cruise and station
as listed for each specimen. Please contact the corresponding author regarding subsequent use
of these data (egoetze@hawaii.edu).
(CSV)

S1 Table. Mitochondrial cytochrome oxidase subunit II (mtCOII) summary statistics and
diversity indices for population samples, including only specimens ofHaloptilus longicor-
nis species 1. Collection sites for plankton samples included in this study, from (A) the 2010
AMT cruise (AMT20), and (B) the 2012 AMT cruise (AMT22). Pop ID = the population iden-
tifier referred to throughout the manuscript; Station = the cruise and station number of each
sample; N = the number of adult females included; H = the number of haplotypes; h = haplo-
type diversity; π = nucleotide diversity.
(PDF)

S2 Table. Microsatellite diversity indices for population samples, including only specimens
ofHaloptilus longicornis species 1. Collection sites for plankton samples included in this
study, from (A) the 2010 AMT cruise (AMT20), and (B) the 2012 AMT cruise (AMT22). Pop
ID = the population identifier referred to throughout the manuscript; Station = the cruise and
station number of each sample; N = the number of adult females included. Ho andHe are the
observed and expected heterozygosity averaged across all microsatellite loci for each popula-
tion. k = average number of alleles per locus.
(PDF)

S3 Table. Pairwise FST (below diagonal) and FST (above diagonal) values between sample
sites in the Atlantic Ocean forHaloptilus longicornis sp 1, based on mtCOII data. Samples
are grouped by ocean gyres, with sample site numbers as in Tables 1 & 2. Material from both
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AMT20 (2010) and AMT22 (2012) are included. Significant values (P< 0.05) are shaded grey,
bold indicates significance following correction for multiple comparisons (FDR).
(PDF)

S4 Table. Pairwise FST values between sample sites in the Atlantic Ocean forHaloptilus
longicornis sp 1, based on microsatellite data. Samples are grouped by ocean gyres, with sam-
ple site numbers as in Tables 1 & 2. Material from both AMT20 (2010) and AMT22 (2012) are
included. Significant values (P< 0.05) are shaded grey, bold indicates significance following
correction for multiple comparisons (FDR).
(PDF)
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