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Uncovering functional lncRNAs by scRNA-
seq with ELATUS

Enrique Goñi 1,2,3, Aina Maria Mas 1,2,3, Jovanna Gonzalez1,2,3, Amaya Abad1,2,
Marta Santisteban 2,3,4, Puri Fortes 1,2,3,5, Maite Huarte 1,2,3 &
Mikel Hernaez 1,2,3,6

Long non-coding RNAs (lncRNAs) play fundamental roles in cellular processes
and pathologies, regulating gene expression at multiple levels. Despite being
highly cell type-specific, their study at single-cell (sc) level is challenging due to
their less accurate annotation and low expression compared to protein-coding
genes. Here, we systematically benchmark different preprocessing methods
and develop a computational framework, named ELATUS, based on the
combination of the pseudoaligner Kallisto with selective functional filtering.
ELATUS enhances the detection of functional lncRNAs from scRNA-seq data,
detecting their expression with higher concordance than standard methods
with the ATAC-seq profiles in single-cell multiome data. Interestingly, the
better results of ELATUS are due to its advanced performance with an inac-
curate reference annotation such as that of lncRNAs. We independently con-
firm the expression patterns of cell type-specific lncRNAs exclusively detected
with ELATUS and unveil biologically important lncRNAs, such as AL121895.1, a
previously undocumented cis-repressor lncRNA, whose role in breast cancer
progression is unnoticed by traditional methodologies. Our results emphasize
the necessity for an alternative scRNA-seq workflow tailored to lncRNAs that
sheds light on the multifaceted roles of lncRNAs.

Organismal functions are ultimately driven by the orchestration of the
transcriptional programs of each of the individual cells that compose
their tissues. The profound understanding of the cellular transcrip-
tional configurations allows uncovering the mechanisms underlying
pathological processes. While new technologies enable profiling of
transcriptomes at single-cell resolution, novel computationalmethods
are crucially needed for exploring transcriptional events at non-coding
regions.

Most gene expression studies at single-cell level are exclu-
sively focused on protein-coding genes while non-coding RNA
species are very poorly investigated1–4. A significant fraction of

non-coding RNAs are classified as long non-coding RNAs
(lncRNAs), RNA Pol II transcripts lacking protein-coding potential,
recently re-defined based on their length of more than 500
nucleotides5,6. LncRNAs are distinctively characterized by their
high tissue7 and cell type specificity8–10 compared to protein-
coding genes, which is linked to their regulatory functions. In line
with their roles in gene regulation, alterations in lncRNA expres-
sion are associated with multiple pathologies11,12. All these char-
acteristics evidence the potential benefits from their study at
single-cell resolution, which is needed to achieve an improved
and complete definition of cellular identity. However, limitations
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such as their low expression and low accuracy of their annotation
have greatly hindered their use in this type of studies. According
to the conservative and widely used GENCODE annotation, more
than 19,000 lncRNAs are present in the human genome13. In
contrast to the steady quantification of protein-coding genes, the
annotation of lncRNAs has been in continuous evolution and
growth over the last decade (Supplementary Fig. 1). Besides being
less stable, the weak conservation levels of lncRNAs during
evolution14 and their low expression values, complicates their
detection in bulk transcriptomic data and makes the mapping of
lncRNAs more challenging15–17, highlighting the need for appro-
priate computational methods.

Single-cell RNA-sequencing (scRNA-seq) has transformed tran-
scriptomics by enabling the investigation of gene expression in indi-
vidual cells, providing a comprehensive characterization of tissues18–20

and allowing the inspection of cell dynamics21. Particularly, scRNA-seq
droplet-based methods22,23, predominantly the 10x Genomics tech-
nology, have revolutionized the procedure by increasing the
throughput of cells and decreasing the sequencing costs24–26.

The computational pipeline of 10x Genomics scRNA-seq
experiments begins with a preprocessing step of the sequenced
samples to generate the unfiltered cell-by-gene count matrix27,
which precedes the downstream analysis28,29. This critical step
involves mapping the reads containing the sequenced cDNAs, as
well as correcting both cell and UMI barcodes, in order to identify
individual RNA molecules. Different programs based on the aligner
STAR30, that map reads to a reference genome, such as the widely
used Cell Ranger24 (developed by 10x Genomics) or STARsolo31,
perform the entire preprocessing step. In addition, the pseudoa-
ligners Kallisto and Salmon, which are based on matching read
k-mers to the transcriptome32,33, have also incorporated a suite of
tools to preprocess the scRNA-seq sequenced reads, named
Bustools34,35 and Alevin36, respectively. When first released, Kallisto
and Salmon were based on similar algorithms, but they have
diverged over time due to several modifications, such as the selec-
tive alignment strategy incorporated by Salmon37.

To date, scRNA-seq focused on lncRNAs have been mostly per-
formed using chips or plate-based technologies, such as the Fluidigm
C1 microfluidic platform8,38, or the SMART-seq or SMART-seq2
protocols2,39–41, respectively. However, these technologies have an
important limitation in the number of cells that can be jointly
sequenced26. More recently, the droplet-based 10x Chromium tech-
nology became the dominant protocol for scRNA-seq due to its high
yield42. Nevertheless, studies investigating lncRNAs via 10x Genomics
are still scarce, andhavebeen limited to apply the standardCell Ranger
preprocessing pipeline1,4,43,44, without testing other options. In this
context, previous comparative studies of scRNA-seq preprocessing
pipelines29,31,34,36,45–48, unfortunately, did not focus on the detection and
quantification of lncRNAs.

Here, after benchmarking the main scRNA-seq preprocessing
alternatives, including a computational validation and a comprehen-
sive characterization of their divergences, we observed that Kallisto
outperforms other methods in the detection and quantification of
lncRNAs, due to the latter having less accurate annotation. Expanding
on this exhaustive benchmarking, we have developed a specialized
workflow, termed ELATUS, to streamline the identification of func-
tionally relevant lncRNAs previously undetected in 10x scRNA-seq
experiments. Importantly, experimental validations identified the
lncRNA exclusively-detected by ELATUS, AL121895.1, as a cis-repressor
specific of triple negative breast cancer cells. These results underscore
ELATUS’s potential in uncovering expression patterns of cell type-
specific and biologically relevant lncRNAs typically overlooked by
standard scRNA-seq pipelines. Finally, the developed workflow, ELA-
TUS is openly available as an R package to facilitate its adoption by the
broader biomedical community.

Results
Preprocessing choices strongly affect lncRNA detection by
scRNA-seq
A significant number of the RNAs expressed in mammalian cells are
transcribed from lncRNA genes15,49. The annotation of lncRNAs is
constantly evolving6,15, rendering their quantificationmore challenging
compared to protein-coding genes (Supplementary Fig. 1). A tailored
scRNA-seq workflow could shed light on their contribution to indivi-
dual cell identity, which is largely understudied due to the technical
limitations of single-cell technologies in terms of quantification depth
and sparsity. We set to evaluate different steps of the scRNA-seq
computational pipeline to identity the most suitable analysis for the
detection of functional lncRNAs. Due to the more unprecise annota-
tion of lncRNAs,we hypothesized that the quantificationmodel choice
could have a strong effect on their detection at single-cell level, as
suggested by previous work of our group in bulk RNA-seq50.

We first conducted a comprehensive benchmarking of current
state-of-the-art scRNA-seq preprocessing pipelines, including both the
alignment-based methods Cell Ranger and STARsolo, and the
pseudoalignment-based methods Kallisto-Bustools and Salmon-Ale-
vin, to evaluate how they affect the detection and quantification of
lncRNAs (Fig. 1a). To this end, we first used widely characterized 10x
Genomics datasets: 1k brain cells from an E18mouse51, and 10k healthy
human peripheral blood mononuclear cells (PBMCs)52. These public
datasets have been already applied for comparing the distinct
pipelines29,34,45,47,48. In agreement with previous research47,48, Kallisto
produced a slightly higher mapping rate (Fig. 1b and Supplementary
Fig. 2a). Besides, the pseudoalignments-based methods presented the
shortest running times (Supplementary Fig. 2b and Supplementary
Fig. 3a) and were less memory-expensive (Supplementary Fig. 2c and
Supplementary Fig. 3b).

We next conducted a quality-control step on each raw cell-by-
gene UMI countmatrix generated by all pipelines and filtered them for
empty droplets. In human PBMCs, themitochondrial content was very
similar in all tested pipelines (Supplementary Fig. 3c), while it was
higher with Salmon in the mouse brain dataset (Supplementary
Fig. 2d). We then removed cells with high mitochondrial composition
and potential multiplets to preserve high-quality cells28. We observed
that these cells had comparable expression levels among pipelines
(Fig. 1c and Supplementary Fig. 2e) and that themajority of themwere
commonly retained by all of them (Fig. 1d and Supplementary Fig. 2f).
Furthermore, the main cell types were distinguished by all tested
preprocessing options when using canonical markers (Fig. 1e, Sup-
plementary Fig. 2g, h, Supplementary Fig. 3d, Supplementary Data 1).

Interestingly, regarding gene detection, we observed important
differences across pipelines. While the distribution of detected
protein-coding genes per cell was more similar, the number of iden-
tified lncRNAs per cell by Kallisto was strikingly higher (Fig. 1f, g,
Supplementary Fig. 2i, j). To exclude the possibility that these differ-
ences were caused by poorly expressed genes with practically no
counts, we next retained only those that fulfilled minimal expression
thresholds (see “Methods”). While most highly-expressed protein-
coding genes were commonly detected by different pipelines (Fig. 1h,
Supplementary Fig. 2k), a very significant number of highly-expressed
lncRNAs were only recognized by Kallisto, both in human and mouse
datasets, whereas the remaining pipelines did not quantify them
(Fig. 1i, Supplementary Fig. 2i). Of note, the impact of the preproces-
sing choice remained when controlling for expression levels (Supple-
mentary Fig. 3e) as well as across an increasing set of expression
thresholds (Supplementary Fig. 3f, g), indicating that differences in
detection are not due to the lower expression of lncRNAs.

To further investigate whether the observed differences were
maintained across different models and tissues, we expanded the
benchmarking and analyzed a large and diverse set of public 10x
Genomics scRNA-seq datasets. Specifically, we used data from human
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healthy intestine53, healthy lung and pulmonary fibrotic samples54,55, as
well as PBMCs from mouse56 and human (5k cells)57 (Supplementary
Fig. 4). Due to the similarities between the results yielded by the gold-

standard pipeline Cell Ranger and the other preprocessing alter-
natives, with the exception of Kallisto, in what follows, we restricted
the assessment to these two preprocessing pipelines.
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Fig. 1 | Preprocessing choices strongly affect lncRNA detection in a scRNA-seq
dataset consisting of 10k human PBMCs from a healthy donor. a Benchmark
explanation. Fastq files were preprocessed with the aligner-based Cell Ranger and
STARsolo, and the pseudoaligners Kallisto and Salmon. Empty droplets, cells with
high mitochondrial content and potential multiplets were filtered, followed by
normalization. After dimensionality reduction, clustering and cell type annotation,
we compare cell type detection, identification of protein-coding genes and
lncRNAs depending on the preprocessing choice. bMapping rate by each pipeline.

c Number of UMIs per cell by each pipeline. d UpSet plot showing the overlap of
retained high-quality cells by each pipeline. e UMAP plots displaying the main cell
types identified across pipelines. f Number of detected protein-coding genes per
cell across pipelines. g Number of detected lncRNAs per cell across pipelines.
h UpSet plot displaying the overlap of highly-expressed protein-coding genes, (i)
lncRNAs per pipeline. Only considering genes with more than 250 counts and
present in more than 25 cells.
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The results on the extended benchmark verified that, after filter-
ing low-quality cells and multiplets, the expression per cell was prac-
tically identical across datasets between Cell Ranger and Kallisto
(Supplementary Fig. 4a) and most high-quality cells were commonly
retained (Supplementary Fig. 4b). With respect to gene detection,
while the distribution of protein-coding genes detected per cell was
very similar in both pipelines, we confirmed that Kallisto found a
remarkably higher number of lncRNAs in each cell (Supplementary
Fig. 4c, d). Further, using a gradient of thresholds on expression to
filter poorly expressed genes, we corroborated that most protein-
coding genes were commonly identified across distinct datasets,
whereas there was an important fraction of lncRNAs exclusively cap-
tured with Kallisto (Supplementary Fig. 4e, f).

Altogether, these results indicate that, while the detection of
mRNAs is not affected, the identification of lncRNAs in scRNA-seq data
is severely influenced by the preprocessing choice. In particular, the
Kallisto preprocessing pipeline stands out in the detection and quan-
tification of lncRNAs in an expanded and diverse set of scRNA-seq
datasets.

scATAC-seq multiome indicates an optimized preprocessing
alternative for lncRNA quantification
To assess the biological plausibility of the lncRNAs exclusively quan-
tified by Kallisto, we employed single-cell multiome data. This dataset
allows for simultaneous measurement of gene expression via RNA-seq
andmapping of open-chromatin using with ATAC-seq within the same
cell. We reasoned that scATAC-seq would mirror the expression of
lncRNAs identified by scRNA-seq without encountering the same
technical biases. Specifically, we selected a public 10x Genomics mul-
tiome dataset containing 3k PBMCs from a healthy donor58 and we
tested whether there was more consistency between scATAC-seq
profiles and scRNA-seq measurements when the latter was pre-
processed with Cell Ranger or Kallisto.

We started by applying general scATAC-seq quality control
thresholds (ATAC counts, TSS enrichment and nucleosome signal) to
filter low-quality nuclei (Supplementary Fig. 5a–c). Next, we removed
nuclei with high mitochondrial content (Supplementary Fig. 5d) and
empty droplets (see “Methods”). The expression per nuclei was very
similar, although slightly higher with Kallisto (Fig. 2a). Using estab-
lished markers, we were able to distinguish the main cell types with
both scRNA-seq pipelines (Fig. 2b, Supplementary Fig. 5e, Supple-
mentary Data 1). Of note, due to the pre-mRNA reference used in
snRNA-seq, Cell Ranger detectedmore highly-expressed lncRNAs than
Kallisto, as well asmore lncRNAs per cell (Supplementary Fig. 5f–h). To
test the concordance between the scATAC-seq signal and the scRNA-
seq gene expression, we constructed a gene activity matrix by count-
ing the scATAC-seq fragments that fall in the gene body and promoter
regions. Then, for every high-quality nucleus, we checked which RNA-
seq quantification pipeline, Cell Ranger or Kallisto, yieldedmore genes
having coincident ATAC-seq signal and RNA-seq expression (Fig. 2c,
see “Methods”). To contemplate diverse scenarios, a gradient of
thresholds on both ATAC-seq and RNA-seq was used to classify a gene
as simultaneously activated (see “Methods”). Interestingly, for the
majority of thresholds, we observed that when scRNA-seq was ana-
lyzed by Kallisto, scATAC-seq detected a significant increase in the
number of genes simultaneously activated in each nucleus, compared
to scATAC-seq coupled to scRNA-seq analyzed by Cell Ranger (Fig. 2d,
p-value < 0.0001).

Moreover, the number of nuclei that hadmore genes coincidently
activated according to RNA-Seq and ATAC-Seq was, in general,
remarkably higher for Kallisto than Cell Ranger across all thresholds
(Fig. 2e, Supplementary Fig. 5f). The improved association between
scATAC-seq and scRNA-seq was illustrated in the protein-coding gene
CYP2F1 and the lncRNA AC242960.3, where their ATAC-seq profiles

across distinct cell types only corresponded to theRNA-seq expression
when processed with Kallisto (Fig. 2f).

Together, these results demonstrate that the lncRNAsdetectedby
Kallisto correspond better to the scATAC-seq measurements on the
same cells, associated with open and transcriptionally active chroma-
tin, confirming that this is an optimized alternative to improve the
quantification of lncRNAs.

Exclusive and commonly identified lncRNAs share similar
characteristics
In order to build up a tailored workflow for lncRNA quantification in
scRNA-seq, we first needed to delve into the extra-detected lncRNAs to
determine whether they could be potential bona fide lncRNAs. To that
end, we investigated distinct properties of genes both exclusively and
commonly identified by Kallisto (for simplicity termed “exclusive” and
“common” genes, respectively), focusing on their expression profiles
and sequence composition. In particular, we inspected their absolute
expression and length, as well as their repeat content, k-mer dis-
tribution, and cell type specificity levels. This was conducted in each
scRNA-seq dataset previously included in this work, in which we
applied a gradient of thresholds on expression to filter poorly-
expressed genes.

We observed that both exclusive lncRNAs and protein-coding
genes were significantly less expressed than the commonones (Fig. 3a,
Supplementary Fig. 6a). Regarding their length, we noted interesting
discrepancies between lncRNAs and protein-coding genes. While
exclusive protein-coding genes were significantly longer for every
dataset, length differences between exclusive and common lncRNAs
were not significantly different for most datasets and under varied
thresholds on expression (Fig. 3b, Supplementary Fig. 6b).

Given that the number of exons has been associated with the
functionality of lncRNAs10, we next investigated the distribution of
exons that are proximal to the 3’ ends, since the scRNA-seq datasets
analyzed in this work are 3’-biased due to the library amplification
protocol (Supplementary Fig. 7a). Interestingly, we found that exclu-
sive lncRNAs have, in general, a significantly higher number of exons
proximal to the 3’ end than the commonly detected lncRNAs (Fig. 3c,
Supplementary Fig. 7b). This contrasts with protein-coding genes,
where common protein-coding genes have a significantly higher
number of exons near the 3’ end (Fig. 3c, Supplementary Fig. 7b).

Furthermore, it has been noted that pseudoalignments methods
could cause poor quality alignments to low-complexity sequences that
result in unexpected high expression of particular genes47. To test this
possibility, we next compared the percentage of each gene that was
covered by repeat elements in both exclusively detected and common
features and represented this as a ratio. In agreement with this
explanation, we found that the repeat content of exclusive protein-
coding genes was clearly larger than that of the common ones (Fig. 3d,
right). However, the repeat content of exclusive and common lncRNAs
was very similar (Fig. 3d, left) suggesting that the increased detection
of lncRNAs by Kallisto was not caused by poor quality alignments to
low-complexity sequences. In fact, the ratio between the repeat con-
tent of exclusive to common protein-coding genes was significantly
higher than the ratio between the repeat content of exclusive to
common lncRNAs (p-value = 4e-5, one-tailed paired t-test). Similar
results were observed when explicitly assessing the influence of
transposable elements (Supplementary Fig. 7c).

Aside, it has been documented that lncRNAs with similar k-mer
profiles share related functions59. We applied this reasoning and ana-
lyzed the functional communities according to k-mer profiles. The
analysis did not identify communities preferentially composed of
exclusively captured lncRNAs. Indeed, functionally-related commu-
nities were formed by both common and exclusively identified
lncRNAs (Supplementary Fig. 7d), suggesting that exclusive lncRNAs
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are not enriched in a particular function related to k-mer content but
rather are comparable to known functional lncRNAs in this regard59.

Besides, given that lncRNAs are defined to be more cell type-
specific than protein-coding genes7–10, we wondered whether this was

maintained for the exclusive lncRNAs. Therefore, we calculated the
specificity of the exclusive lncRNAs and compared it with the specifi-
city of protein-coding genes. For this purpose, we defined a specificity
index (SI, see “Methods”) that measured how localized or ubiquitous
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value ≤0.0005. Boxplots represent 25 to 75 percentiles, whiskers are 1.5 x inter-
quantile range (interquantile range = percentile75–percentile25) e Ratio of the
number of nuclei for which there is more genes simultaneously activated with
Kallisto divided by the number of nuclei for which there is more genes simulta-
neously activated with Cell Ranger. For each nucleus we have considered the
expression of all genes (white), only protein-coding genes (gray) and only lncRNAs
(yellow). In (d) and (e), the x-axis represents the different thresholds used for
quantifying only a gene as simultaneously activated if it had: (t > 0) at least 1 UMI in
RNA-seq and 1 read inATAC-seq and, (t > 2) at least 3UMIs in RNA-seqand 3 reads in
ATAC-seq, (t > 5) at least 6 UMIs in RNA-seq and 6 reads in ATAC-seq, (t > 10/5) at
least 11 UMIs in RNA-seq and 6 reads in ATAC-seq and (t > 10) at least 11 UMIs in
RNA-seq and 11 reads in ATAC-seq. f ATAC-seq signal and RNA-seq expression, with
both Cell Ranger and Kallisto, of protein-coding gene CYP2F1 (left) and lncRNA
AC243960.3 (right).
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Fig. 3 | Exclusive and commonly identified lncRNAs share similar character-
istics. a Normalized expression differences, b Length differences and
c Differences in the number of proximal exons ( < 15 kb from the 3’ UTR) of (left)
exclusive vs. common lncRNAs (right) exclusive vs. common protein-coding
genes. In (a) and (b) only genes with more than 250 counts and present in more
than 25 cells were considered and significance was assessed with a two-tailed
Wilcoxon test. In (c) only genes with more than (up) 250 (down) 100 counts and
present inmore than (up) 25 (down) 10 cells were considered and significancewas
assessed with a one-tailed Wilcoxon test, testing if exclusive genes have more
proximal exons. In (a), (b) and (c) common and exclusive lncRNAs and common
and exclusive protein-coding genes have the following ‘n’ for each datasets;
Hg_PBMCs_10k: 591, 1774, 9273 and 1653; Hg_PBMCs_5k: 424, 1112, 8479 and 1577;
Hg_intestine_1: 261, 401, 8058 and 1368; Hg_intestine_2: 23, 11, 1744 and 376;
Hg_pulm_fibrosis: 94, 38, 5543 and 712; Hg_lung_1: 404, 966, 9705 and 911;

Hg_lung_2: 80, 50, 5365 and 1004; Mm_PBMCs_10k: 256, 372, 8937 and 844 and
Mm_brain_1k: 93, 78, 6293 and 564. d Ratio of the percentage of the sequence
covered by repeats of exclusive to common (left) lncRNAs (right) protein-coding
genes. A jitter on the y-axis was included for ease of visualization. Thresholds for
removing lowly-expressed genes;more than i) 25, ii) 50, iii) 100 and iv) 250 counts
and present in more than i) 3, ii) 5, iii) 10 and iv) 25 cells. e SI differences to test if
the SI of exclusive lncRNAs is significantly higher (one-tailed Wilcoxon test), than
the SI of protein-coding genes. SI distributions were calculated across distinct
sizes of clusters (5-9, 10-15, 16-22 and > 22 clusters. Only genes withmore than 250
counts and present inmore than 25 cells were considered. In (a), (b), (c) and (e) ns
represents p-value > 0.1, * represents p-value ≤0.1, ** represents p-value ≤0.05,
*** represents p-value ≤0.005 and **** represents p-value ≤0.0005 and boxplots
represent 25 to 75 percentiles, whiskers are 1.5x interquantile range (interquantile
range = percentile75 – percentile 25).
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the expression of a gene is. To assess the influence of both the size and
the number of clusters on the SI, we clustered the scRNA-seq datasets
in a gradient from large to small subpopulations. In accordance with
their defined properties, we corroborated that the SI exclusive
lncRNAs was significantly higher than that of protein-coding genes,
both in large and small subclusters in the majority of datasets (Fig. 3e,
Supplementary Fig. 7e). In summary, our findings indicate that exclu-
sive lncRNAs are less expressed than common lncRNAs, have more
exons near the 3’ end and are more cell type-specific when compared
to protein-coding genes.

Inaccurate annotation of lncRNAs causes detection differences
Having observed that exclusive and common lncRNAs share compar-
able biological features, we then delved into the reasons causing the
extra-detection of lncRNAs by Kallisto. We first hypothesized that, out
of the thousands lncRNAs exclusively detected, a fraction could be
false positives causedby the spuriousmappingof intronic reads, in line
with observations by prior studies31,47. To test this hypothesis, we used
the above scRNA-seq dataset consisting on 10k human healthy
PBMCs52, and assessed whether the k-mer overlap between intronic
regions and exclusively detected genes is higher than the overlap with
commonly detected ones. This analysis, would enable us to determine
which set of genes was more likely to contain falsely assigned intronic
reads. Surprisingly, the overlap with intronic regions was lower for
exclusive genes than in the commonly detected ones (Fig. 4a). Speci-
fically, the overlap between intronic regions and exclusive lncRNAs
was in average 10% lower compared with the overlap of commonly
detected lncRNAs, which suggests that spurious mapping of intronic
reads is not a main driver of erroneously detected lncRNAs among
exclusive lncRNAs.

We then hypothesized that the reason underlying the increased
detection of lncRNAs in Kallisto, is due to Kallisto model being more
robust against non-accurate annotations15,17. To test this, we investi-
gated whether the precision of lncRNAs references affects the detec-
tion differences. Therefore, using the above scRNA-seq dataset
consisting on 10k human healthy PBMCs52, we tested Cell Ranger and
Kallisto with the following references: 1) The less accurate GENCODE
hg19 (v19)60, 2) the originally applied GENCODE hg38 (v37)61, 3) the
more recent and precise GENCODE hg38 (v45), and 4) the NONCODE
annotation (v5)49, which is the most inclusive and integrated lncRNAs
collection. In agreement with our hypothesis, the proportion of
exclusively detected lncRNAs compared to the proportion of com-
monly detected lncRNAs was substantially reduced when testingmore
precise annotations (Fig. 4b). Indeed, the ratio of exclusively-to-
common lncRNAs was practically reduced by half with the most
inclusive annotation schemes, compared to the less precise reference
GENCODE hg19 (Fig. 4b). In contrast, the detection of protein-coding
genes, with a more precise annotation, was minimally affected by the
reference releases (Fig. 4c). These results indicate that annotation
inaccuracies of lncRNAs are likely responsible for their exclusive
detection by Kallisto.

To further investigate whether Kallisto but not Cell Ranger, is able
to detect truly expressed lncRNAs whose annotation is not totally
accurate, we performed a simulation of lncRNAs expression. To this
end, we first generated a simulated ground truth annotation by adding
artificial modifications to the annotation of lncRNAs from the GEN-
CODE “official” annotation. More specifically, we included an addi-
tional exon (of median exonic length) in the middle of the largest
intron of each transcript, and expanded all exonic boundaries 100 bp
in each direction (see “Methods”). Based on this ground truth annota-
tion, we simulated 2000 exonic reads belonging to 1500 randomly
subsampled lncRNAs, and randomly divided them in 100cells.We then
preprocessed the generated reads with Cell Ranger and Kallisto. Both
models were executed using the unmodified reference to determine
whether they could detect true expression originated from regions not

annotated as exonic in the official unmodified annotation. When
comparing the count matrices generated by Cell Ranger and Kallisto
against the ground truth count matrix, strikingly, the quantification
error of Cell Ranger was practically double than that of Kallisto in each
of the 10 simulations performed (Fig. 4d). Furthermore, from the 1500
randomly subsampled lncRNAs, Kallisto detected a significatively
higher proportion of highly-expressed lncRNAs (Fig. 4d). These results
indicate that part of the simulated reads, could only be rescued by
Kallisto and to the contrary, Cell Ranger missed the expression origi-
nated from regions not accurately defined as exonic.

Furthermore, as we indicated above, the fact that exclusive
lncRNAs have more exons near the 3’ end, where most expression is,
and hence more splicing-junctions that make them more prone to
annotation inaccuracies, is coherent with the explanation that exclu-
sive lncRNAs, or at least an important fraction of them, are not well
annotated and only Kallisto was able to capture them. These results
showed that Kallisto is able to capture truly expressed, but not per-
fectly annotated lncRNAs that Cell Ranger missed, and indicate the
reasons underlying its additional identification of lncRNAs.

Biologically relevant lncRNAs are uncovered by ELATUS
The additional detection of lncRNAs by Kallisto, enabled hypothesis
testing over thousands of them.However, limited by the capabilities to
experimentally study lncRNAs, there is a need for specialized work-
flows to select lncRNAs with potential biological significance.

To provide a curated list of lncRNAs likely of having biological
importance, we implemented a computational workflow for Elucidat-
ing biologically relevant lncRNAs annotated transcripts using scRNA-
seq, termed ELATUS. We reasoned that a biologically significant
exclusive lncRNA should be expressed over a threshold and should
have a highly cell type-specific expression pattern. Indeed, we
observed that the majority of exclusive lncRNAs were tissue-specific,
reaffirming the well-known specificity of lncRNAs7 (Fig. 5a, Supple-
mentary Fig. 8a). However, the biological relevance of these lncRNAs
remains to be determined. Interestingly, exclusive lncRNAs were
enriched among lncRNAs identified by CRISPRi screenings in multiple
human cell lines10 (FDR<0.05, hypergeometric test) (Supplementary
Data 2, Supplementary Fig. 9), indicating their role in supporting cel-
lular functions. Thus, ELATUS, besides retaining robustly expressed
lncRNAs detected by both Cell Ranger and Kallisto, was designed to
retain exclusive lncRNAs that were highly specific according to
restrictive selection thresholds (Fig. 5b, see “Methods”). Notably,
ELATUSuncovered87 cell type-specific andhighly-expressed lncRNAs,
which added to the 173 lncRNAs that were also undetected by Cell
Ranger and were hits in the CRISPRi screenings10 and to the 2080
highly-expressed commonly detected lncRNAs (Supplementary
Data 3), defined a complete collection of 2340 lncRNAs that exhibit
characteristics of functional lncRNAs in the diverse set of scRNA-seq
datasets analyzed.

Then, to further explore the potential of the ELATUS workflow in
identifying lncRNAs with significant biological roles, we decided to
investigate their expression in cells from triple-negative breast cancer
(TNBCs) tumors. These highly aggressive breast tumors comprise
various cell types, although our understanding of their transcriptional
identity is still incomplete. We obtained five patient-derived TNBC
fresh tumor biopsies and performed scRNA-seq that was then pro-
cessed by ELATUSusing bothCell Ranger andKallisto (see “Methods”).
After removing low-quality cells and poorly-expressed genes, we
observed an important fraction of highly-expressed exclusive lncRNAs
(1037 in total) in every sample, whereas most protein-coding genes
were commonly detected (Fig. 5c), confirming our previous
observations.

Next, we integrated the five TNBC samples, and cells were
classified into major and minor cell types using canonical markers
and reference datasets62 (Fig. 5d, e, Supplementary Fig. 8b, c,
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Supplementary Data 1). Further, we observed some lncRNAs over-
looked by Cell Ranger that had unique expression patterns (Fig. 5f).
Among them, using ELATUS we identified several cell type-specific
candidates, such as WT1-AS and AL133679.1, which are plasmablasts-
specific lncRNAs, or AC009312.1 that is enriched in dendritic cells
(Fig. 5g). Interestingly, we also recognized AL121895.1, that was specific
of breast cancer epithelial cells and could be a potential marker of
these tumorigenic cells. These findings highlight the importance of
ELATUS for uncovering cell type and cancer type-specific lncRNAs in
scRNA-seq experiments.

ELATUS-identified AL121895.1 is a cis-repressor required for tri-
ple negative breast cancer progression
Once established that our proposed workflow is able to detect cell
type-specific lncRNAs that were previously missed by de facto pre-
processing options, we next aimed to experimentally validate their
expression patterns in different cell types. To do that, we selected

AL121895.1 and WT1-AS, which according to ELATUS are specific to
breast cancer epithelial cells and plasmablasts, respectively (Fig. 6a,
Supplementary Fig. 8d). We independently analyzed their expression
in MDA-MB-231, a human epithelial breast cancer cell line, and in KMS-
12-BM, a plasma cell line of multiple myeloma that represents later
stages of B-cell differentiation63–65, similar to plasmablasts. Experi-
mental detection by RT-qPCR confirmed the expression patterns of
these lncRNAs that were found by ELATUS, since AL121895.1 was sig-
nificantly enriched in breast cancer cells, while WT1-AS had a sig-
nificantly higher expression in multiple myeloma cells (Fig. 6b).

Given that AL121895.1 is specific to breast cancer epithelial
cells, we next investigated its function in these tumoral cells by
knocking it down using siRNAs and antisense oligonucleotides
(ASOs) (Fig. 6c, Supplementary Fig. 8d). Subcellular fractionation
indicated that AL121895.1 is predominantly present in the chro-
matin of the cells (Supplementary Fig. 8e). Interestingly, we
observed that the knockdown of AL121895.1 significantly
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Fig. 4 | Inaccurate annotation of lncRNAs causes detection differences.
a Percentage of k-mers that overlapped with k-mers of intronic regions with
different k-mers lengths. K-mers were generated from the transcript sequences of
common and exclusive genes. b (left) UpSet plot displaying, for highly-expressed
lncRNAs the percentage of them that are detected by Kallisto and Cell Ranger
when testing different annotation schemes and (right) ratio of the number of
highly-expressed lncRNAs that are exclusively detected by Kallisto divided by the
number of highly-expressed lncRNAs that are commonly detected by Cell Ranger
and Kallisto. Fold GENCODE hg19. c (left) UpSet plot displaying, for highly-
expressed protein-coding genes the percentage of them that are detected by
Kallisto and Cell Ranger when testing different annotation schemes and (right)
ratio of the number of highly-expressed protein-coding genes that are exclusively
detected by Kallisto divided by the number of highly-expressed protein-coding
genes that are commonly detected by Cell Ranger and Kallisto when testing
different annotation schemes. Fold GENCODE hg19. Highly-expressed genes

defined as those with more than 250 counts and present in more than 25 cells.
Results in (a), (b) and (c) where generated using the scRNA-seq dataset consisting
of 10k human PBMCs from a healthy donor. d (left) Quantification error between
the ground truth matrix with the simulated lncRNA expression and the lncRNAs
preprocessing count matrices of Cell Ranger and Kallisto in n = 10 simulations.
Quantification performed using the Frobenious norm to measure distance
between matrices. Quantification errors are normalized to Cell Ranger quantifi-
cation error (right) Percentage of highly-expressed lncRNAs detected by Cell
Ranger and Kallisto in each of the n = 10 simulations from the 1500 lncRNAs
whose expression is simulated. Highly-expressed genes defined as those with
more than 500 counts. Boxplots represent 25 to 75 percentiles, whiskers are 1.5 x
interquantile range (interquantile range = percentile75–percentile 25). Statistical
significance was assessed with a two-tailed student t-test, ns represents
p-value > 0.1, * represents p-value ≤0.1, ** represents p-value ≤0.05, *** represents
p-value ≤0.005 and **** represents p-value ≤0.0005.
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decreased the proliferation rate of breast cancer cells (Fig. 6d),
indicating a pro-tumorigenic role in these cells. Furthermore, we
noticed that its knockdown using siRNAs or antisense oligonu-
cleotides (ASOs) increased the expression of the antisense
protein-coding gene, EPB41L1 (Fig. 6e, Supplementary Fig. 8f),
suggesting a previously undocumented cis-repressor function for

AL121895.1. The de-repression of EPB41L1 was more pronounce
when AL121895.1 was knocked down with the use of ASOs, which
are known to deplete RNAs as it is transcribed, supporting a
strong component of co-transcriptional regulation. However, the
fact that siRNA-mediated knockdown also led to EPB41L1 de-
repression, suggested the implication of an RNA-dependent

Fig. 5 | Biologically relevant lncRNAs are uncovered by ELATUS. a UpSet plot
displaying the overlap of lncRNAs exclusively found by Kallisto in the human
scRNA-seq datasets analyzed. b ELATUS workflow to uncover biologically impor-
tant lncRNAs. ELATUS starts importing the raw count matrices obtained with both
Cell Ranger and Kallisto. Next, there is a quality control step to distinguish empty
droplets from cells, filtering potential multiplets and cells with high mitochondrial
content, followed by a normalization and clustering steps. Then, highly-expressed
lncRNAs, both commonly detected by Cell Ranger and Kallisto and exclusively
detected by Kallisto were selected. All the commonly detected lncRNAs were
retained and from the exclusive lncRNAs, ELATUS retained those lncRNAs forwhich
Cell Ranger assigned less than 10 counts, that were 40 times more expressed
according to Kallisto than to Cell Ranger and that, according to Kallisto, had a

SI > 0.15. ELATUS also retained the exclusive lncRNAs whose functionality has been
independently validated by external studies. c UpSet plot displaying, as a percen-
tage, the overlap of: left) protein-coding genes, and right) lncRNAs detected by
Kallisto and Cell Ranger in each sample. Only genes with more than 250 counts in
more than 25 cells were considered in both panels. d UMAP plots displaying the
different TNBC cell population of: left) main cell types, and right) cell subtypes
identified when preprocessing with Kallisto. e UMAP plots displaying the different
TNBC cell population of: left) main cell types, and right) cell subtypes identified
when preprocessing with Cell Ranger. f Violin plot showing the expression of some
lncRNAs when preprocessing with Kallisto and Cell Ranger. g DotPlots showing,
with Kallisto and Cell Ranger, the averaged normalized expression in each cellular
subtype of these lncRNAs.
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mechanism rather than pure transcriotional interference. We
speculate that AL121895.1 may help recruit or release specific
chromatin factors, favoring the transcription of EPB41L1, which as
consequence, leads to the increased proliferative capacity of the
cancer cells.

Inspection of the expression of AL121895.1 and EPB41L1 in
the scRNA-seq of the TNBC samples, also confirmed a strong
anticorrelation between them in each cell type (Fig. 6f). Further,
since lncRNAs with similar k-mer content are functionally

related59, we clustered, by K-means, the k-mer content of
AL121895.1 together with the k-mer composition of already
described lncRNAs that are either cis-activators or cis-
repressors59. The clustering grouped AL121895.1 together with six
other lncRNAs, from which five were proved cis-repressors
(Fig. 6g), supporting its repressive role on its neighboring gene.
Thus, all the data suggest that AL121895.1 is a chromatin-
associated lncRNA that acts as a repressor of its antisense gene
EPB41L1 in TNBC cells.

Fig. 6 | ELATUS-identifiedAL121895.1 is a cis-repressor thatparticipates in triple
negative breast cancer progression. a Genomic locus of left) WT1-AS and right)
AL121895.1. In blue and red are represented the isoform ofWT1-AS and AL121895.1,
respectively, that contain most scRNA-seq reads assigned by Kallisto. b RT-qPCR
normalized RNA levels (mean + SD) of AL121895.1 and WT1-AS in MDA and KMS12
cell lines. AL121895.1 and WT1-AS expression has been normalized with respect to
MDA and KMS12, respectively. N = 4 technical replicates. c RT-qPCR normalized
RNA levels (mean + SD) showing the expression of AL121895.1 on MDA cells after
treating them with (left) scramble (siSCR) or knocked down with the siRNA1 (si1),
siRNA2 (si2) and the combination of both siRNAs (si1 & si2) (right) ASO control, or
knocking them out with ASO 1 and ASO 2. N = 4 technical replicates d MTS pro-
liferation assay (mean+ SD) ofMDAcellsmeasuredduring three days treating them
with scramble (siSCR) or knocked down with the siRNA1 (si1), siRNA2 (si2) and the

combination of both siRNAs (si1 & si2). N = 3 technical replicates e RT-qPCR nor-
malized RNA levels (mean + SD) showing the expression of EPB41L1 when treating
them with (left) scramble (siSCR) or knocked down with the siRNA1 (si1), siRNA2
(si2) and the combinationof both siRNAs (si1 & si2) (right) ASOcontrol, or knocking
them out with ASO 1 and ASO 2. N = 4 technical replicates. In (b), (c), (d) and (e)
statistical significancewas assessedwith a two-tailed student t-test, ns representsp-
value > 0.1, * represents p-value ≤0.1, ** represents p-value ≤0.05, *** represents p-
value ≤0.005 and **** represents p-value ≤0.0005. f Correlation plot of the nor-
malized expression of AL121895.1 and EPB41L1 in each cellular subtype of the TNBC
samples preprocessed with Kallisto. g Functional classification by SEEKR using
K-means clustering to find communities according to k-mer content of AL121895.1
together with described lncRNAs cis-activators and lncRNAs cis-repressors.
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Together, these results demonstrate the biological significance of
lncRNAsmissed by Cell Ranger and highlight the need for ELATUS, the
presented optimized scRNA-seq workflow in order to unlock cellular
features encoded by lncRNAs.

Discussion
It has been widely established that lncRNAs regulate gene expression
and stability by different mechanisms at multiple levels5,6,11. However,
given their high cell type specificity7,8,10, the current knowledge of
lncRNAs could be greatly expanded with the application of single-cell
technologies. Indeed, prior studies have showed that lncRNAs alone
can identify cell types1,43 and that there are certain cell groups that can
only be distinguished by them3. Nevertheless, compared to protein-
coding genes, the annotation of lncRNAs is less well established and
more prone to inaccuracies15,17, which complicates its correct quanti-
fication. In fact, as previously probed in bulk RNA-seq experiments50,
pseudoaligners are promising alternatives to the closed-source and
aligner-based Cell Ranger, which is the standard scRNA-seq pre-
processing pipeline. In this work we have shown, in a wide and diverse
set of public scRNA-seq datasets, that the detection and quantification
of lncRNAs is severely affected by the preprocessing choice due their
less accurate annotation and that the presented workflow tailored to
lncRNAs, ELATUS, is essential, not only for defining an exhaustive
collection of functional lncRNAs, but also for uncovering biologically
important lncRNAs previously undetected.

Although two previous studies noticed that Kallisto is able to
detect a higher number of lncRNAs29,48, they did not delve into
the origin of this behavior. They either noted that it provided a
comparable increment in the detection of both lncRNAs and
protein-coding genes48, or attributed it to poorly expressed
lncRNAs solely captured with Kallisto, that did not provide a
significant biological signal gain29. We hypothesize that this
increased detection is not happening with Salmon due to its
selective alignment strategy, in which the authors recommend
including a set of decoy sequences to provide a more precise
mapping37. Further, preceding investigations have alerted of the
reduction in quantification accuracy of pseudoaligners due to the
spurious mapping of intronic reads31,47, which can lead to false
expression of particular genes48. The developers of Kallisto noted
this phenomenon to be plausible but rare34. We inspected and
determined the reasons that caused this increased detection of
lncRNAs and provided multiple evidence supporting the validity
of the proposed workflow for the identification of lncRNAs.

Due to the notably greater number of lncRNAs exclusively
detected by Kallisto, we aimed to confirm whether they exhibit char-
acteristics consistent with bona fide lncRNAs and to investigate the
reasons for this improved detection. To achieve this, we conducted a
thorough characterization of the exclusive lncRNAs in comparison to
those commonly detected. Importantly, in this study we tested and
corroborated that the less accurate annotation of lncRNAs is the main
cause of the additional detection of lncRNAs. By comparing different
reference schemes and simulating expression from regions not cor-
rectly annotated as exonic, wewere able to confirm that Kallisto is able
to detect truly expressed lncRNAs that are not perfectly annotated.
Besides, the fact that exclusive lncRNAs have a significantly higher
number of proximal exons supports this hypothesis.

Furthermore, we showed that the overlap with intronic regions is
higher for commonly captured lncRNAs, which suggests that the
explanation attributing spurious alignments of intronic reads does not
fully apply to lncRNAs. However, in order to mitigate the risk of
including false transcripts and enable robust inference of lncRNAs,
here we implement a computational pipeline, termed ELATUS, which
enriches for lncRNAs with functional features. ELATUS generates a
collection of biologically relevant lncRNAs by retaining, not only those
robustly detected lncRNAs, but also, by filtering those that exhibit

characteristics of functional lncRNAs from the thousands exclusively
identified by Kallisto.

To determine the validity of ELATUS, the different expression
patterns were tested computationally and experimentally. Indeed, the
expression of lncRNAs computed by Kallisto correlated more closely
with ATAC-seq data than that of those detected by Cell Ranger. This
indicates that pseudolignment effectively identified bona fide tran-
scripts generated from regions of open chromatin. Moreover, the
proposed computational workflow, ELATUS (available online as an R
package), in addition to preserving robust and commonly detected
lncRNAs, it unveils highly cell-type specific and biologically relevant
lncRNAs from among the thousands of exclusive candidatesmissed by
Cell Ranger.

It is of particular relevance the previously uncharacterized lncRNA
AL121895.1, specific of breast cancer epithelial cells and whose func-
tionality at single-cell level could not be determined by standard pre-
processing. Indeed, AL121895.1 acts as a cis-repressor lncRNAs
regulating EPB41L1 expression and promoting TNBC progression.
EPB41L1 encodes a multifunctional protein that has been shown to
mediate interactions between the erythrocyte cytoskeleton and the
overlying plasma membrane, although it is also expressed in other
tissues66,67. Moreover, AL121895.1 is associated with TP53 mutations, a
main hallmark of cancer68, according to the PDAClncDB
database69.Our results indicate that the regulation of EPB41L1 by
AL121895.1 occurs at the chromatin level, and is dependent on the RNA
product of AL121895.1, not just its transcription. These findings could
have clinical implications, since AL121895.1 could potentially be an
actionable cancer vulnerability, targetable by the newly evolving
antisense drugs. The presented data evidences the potential impact of
ELATUS to unveil important biological roles of lncRNAs and to expand
the map of interactions, in individual cell populations, between the
expression of a previously undetected by Cell Ranger lncRNA and the
nearby protein-coding gene. Moreover, it exemplifies how scRNA-seq
can inform mechanistic questions, such as the cis vs trans regulatory
roles of lncRNAs.

It should be noted that the library preparationmethod could also
influence the detection of lncRNAs. Conventional 10x Genomics
scRNA-seq library preparation protocols target only polyA transcripts.
Since an important fraction of lncRNAs are not polyadenylated6, these
technologies cannot achieve a complete map of the transcriptome.
Therefore, alternative scRNA-seq preparation protocols that capture
both polyadenylated and non-polyadenylated transcripts, processed
following the ELATUS workflow could potentially reveal an expanded
number of functional non-coding transcripts that participate in
important cellular functions.

Another direction that should be explored is the improve-
ment of the reference annotation, since annotation inaccuracies
explain a significant part of ELATUS better performance. On the
one hand, the application of an intronic reference, already
recommended for snRNA-seq and that considers both mature and
unmature RNAs has been widely discussed in the scRNA-seq
community. However, the pre-mRNA reference poses a dis-
junctive when an exon of a gene is overlapped by an intron of
another gene since every read falling in that region would
be considered ambiguous (Supplementary Fig. 10a, b) without
reaching a clear consensus on how to resolve these situations70–72.
On the other hand, tissue-specific de novo annotation can greatly
increase the detection of poorly annotated transcripts structures
of specific lncRNAs43. However, generating such annotations
requires a high use of resources, and still may not recapitulate
highly cell type-specific transcript forms, for which ELATUS can
still remain a useful alternative. Future investigation combining
an improved reference annotation together with ELATUS could
provide significant improvements in gene detection, especially
for less studied biotypes such as lncRNAs.
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Finally, with the proposed workflow, we favor the detection of
lncRNAs with higher cell type specificity, as defined by the high spe-
cificity index (SI). We reason that this set of lncRNAs will include those
with the most interesting biological features. However, while high cell
specificity is recognized as a general characteristic of lncRNAs7–10, the
existence of ubiquitous lncRNAs playing essential roles73,74 should not
be excluded. Here, we propose an optimized computational workflow
for analyzing scRNA-seq experiments that has the potential to unlock
cellular features and transcriptional complexity, increasing insights
into cell identity and lncRNA biology.

Methods
Single-cell RNA-seq preprocessing pipelines
The following scRNA-seq preprocessing pipelines were benchmarked:
Cell Ranger, STARsolo, Kallisto-Bustools (referred as Kallisto) and
Salmon-Alevin (referred as Salmon). All pipelines were executed with
the default recommended parameters in the user guides. For scRNA-
seq analysis, Cell Ranger countwas run inversion 3.0.1, STAR inversion
2.7.9, Kallisto in version 0.46.1, Bustools in version 0.40.0 and Salmon
in version 1.4.0. For the pulmonary fibrosis dataset, since it was
necessary to split cDNA sequence in more than one file, Kallisto was
run in version 0.46.2 following authors indications75.

Reference annotation and generation of the indexes
Human and mouse reference genome, transcriptome and annotation
were downloaded from GENCODE13. Particularly, for human, hg38
(v37), and for mouse, mm39 (v27), were selected. We created the
indexes for each preprocessing pipeline following recommended set-
tings. Specifically, Cell Ranger and STARsolo were indexed against the
entire genome, Kallisto against the transcriptome and Salmon was
indexed to perform selective alignment to the transcriptome with full
decoys as suggested by both the authors and independent benchmark
studies31,47,48,76. The commands for preprocessing and generating the
indexes for each preprocessing tool can be found in https://github.
com/ML4BM-Lab/manuscript_scRNAseq_lncRNAs.

To analyze the evolution in the number of annotated protein-
coding genes and lncRNAs, we analyzed the annotation provided by
GENCODE since version 7, published in 2010, until the version 44,
published in December 2022.

scRNA-seq public datasets
Different scRNA-seq preparedwith 10x Genomics protocols, with both
v2 and v3 chemistries, were used. Most of them were public, while
sequencing data regarding TNBC samples were manually prepared.
The description of each dataset as well as their link to access the
sequencing data is provided in Supplementary Data 4.

scRNA-seq quality control, gene detection and post-
processing steps
Raw count matrices were used to standardize preprocessing pipelines
as input for quality control, where we followed common scRNA-seq
computational guidelines77. Specifically, emptydrops78 was applied to
distinguish empty droplets from cells in each dataset processed with
Cell Ranger, STARsolo and Kallisto. On the other side, Salmon,
employs a whitelisting filtering strategy to filter empty droplets and it
does not output the raw count data. To account for that and stan-
dardize filtering strategies, the minimum number of counts surviving
emptydrops filtering in Cell Ranger, STARsolo and Kallisto was selec-
ted as an additional threshold to filter cells in Salmon with fewer
counts than this defined threshold. Potential doublets were then
identified and removed with scDblFinder79. Finally, cells with high
mitochondrial content and an abnormally high number of counts were
also filtered.

Once low-quality cells had been removed, the detection and
quantification of protein-coding genes and lncRNAs were compared.

In order to test the differences between lncRNAs and protein-coding
genes by the overall lower expression of lncRNAs, we calculated the
total expression of each lncRNA with each preprocessing pipeline (for
simplicity termed “lncRNAs overall expression”). Then, we only con-
sidered those genes less expressed than the mean “lncRNAs overall
expression” plus i) 0.5 ii) iii) 2 * the standard deviation of the lncRNAs
overall expression.

Next, poorly expressed genes were also filtered by applying a
gradient of thresholds on the expression. The different thresholds
applied retained those geneswithmore than 1) 250 counts and present
in more than 25 cells, 2) 100 counts and present in more than 10 cells,
3) 50 counts and present in more than 5 cells and 4) 25 counts and
present in more than 3 cells. These thresholds were also applied in the
characterization of the genes exclusively identified by Kallisto com-
pared to genes commonly found ones. Due to the differences in the
preserved number of cells in each scRNA-seq dataset, both absolute
numbers and percentages have been used to represent the differences
and the overlap of the detected highly-expressed genes by Kallisto and
Cell Ranger.

After the quality control was completed, normalization was per-
formed using logNormCounts function from scuttle R package80.
Dimensionality reduction was conducted using runPCA, runTSNE and
runUMAP functions from scater R package81. Next, clustering was
performed on a generated shared nearest-neighbor (SNN)82 graph
using the Louvain community detection algorithm to cluster the
cells83,84. These clusters were manually annotated to cell types using
canonical markers (Supplementary Data 1). Subtypes in TNBC inte-
grated data were distinguished using the annotation program JIND85

selecting as a reference adataset consisting of ~45000cells fromTNBC
samples62. We assessed the correlation (Spearman) between the nor-
malized expression of AL121895.1 and EPB41L1 per these cellular sub-
types in each cell that expressed either AL121905.1 or EPB41L1
(or both).

Single-cell multiome analysis
In 3k PBMCs sequenced with single cell multiome, scATAC-seq raw
data has been directly downloaded from 10X Genomics website58 on
which scATAC-seq specific thresholds were first applied to remove
low-quality nuclei. In particular, nuclei with very few or excessive
ATAC-seq counts were filtered, as well as those with high nucleosome
signal or little enrichment at the TSS86.

Gene expression data was obtained with Cell Ranger count (ver-
sion 5.0.1) using—include-introns option. Regarding Kallisto (version
0.46.1) the index was generated to include both introns and exons
using—workflow lamanno parameter.

For the raw RNA-seqmatrices, those nuclei the fit the scATAC-seq
quality control thresholds in both Cell Ranger and Kallisto were
retained. Nuclei with very few RNA-seq counts or very high mito-
chondrial content were further removed. Next, ATAC-seq data from
these high-quality nuclei were normalized using a Latent Semantic
Indexing approach. “Weighted nearest neighbor” (WNN) analysis was
then performed to integrate the ATAC-seq with the gene expression
obtained by Cell Ranger and Kallisto87. This was performed by nor-
malizing the ATAC-seq applying term frequency inverse document
frequency (TF-IDF) and Singular Value Decomposition (SVD) and uti-
lizing FindMultiModalNeighbors function from Seurat using default
parameters (20 mutimodal neighbors to compute) following devel-
opers’ recommendations88. This integrated data was used for gen-
erating the clusters (following indications in scRNA-seq post-
processing section) that weremanually assigned to different cell types
according to the expression of established marker genes.

To compare the similarity between the ATAC-seq signal and the
RNA-seq gene expression, the GeneActivity function from Signac R
package89 was applied to obtain a gene activity matrix by counting the
scATAC-seq fragments that fall in each gene body ( + 2Kb upstream
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from the TSS). Then, for every high-quality nucleus we compared
(student’s t-test) the number of genes that have simultaneous ATAC-
seq-signal and RNA-seq expression when preprocessed with Cell Ran-
ger or with Kallisto. A gene was defined to be simultaneously activated
if its ATAC-seq signal and its RNA-seq expression were higher than a
gradient of defined thresholds. Specifically, from less to more
restrictive thresholds; if they had at least 1) 1 read in ATAC-seq and 1
UMI in RNA-seq, 2) 3 reads in ATAC-seq and 3 UMIs in RNA-seq, 3) 6
reads in ATAC-seq and 6 UMIs in RNA-seq, 4) 6 reads in ATAC-seq and
11 UMIs in RNA-seq and 5) 11 reads in ATAC-seq and 11 UMIs in RNA-seq.

The differences, per cell, were also represented as an odds ratio
(in log2 scale) showing the likelihood of having more genes simulta-
neously activatedwith Kallisto thanwith Cell Ranger. Further, the ratio
(in log2 scale), of the number of nuclei for which there were more
simultaneous activation when the snRNA-seq was processed with
Kallisto than with Cell Ranger has been computed. A positive ratio
indicates a better correspondence between ATAC-seq and Kallisto
than between ATAC-seq and Cell Ranger, while a negative ratio indi-
cates the opposite.

Exclusive vs. common genes: Length, proximal exons, repeat &
TE content and k-mer analysis
To investigate the length, the number of exons that are closer than
15 kb from the 3’ UTR and repeat content of both exclusive and
commonly detected genes in every scRNA-seq dataset, the longest
isoform of each gene was selected. The annotation of repeats for
both human and mouse genomes was downloaded from Repeat-
Masker (version 4.1.5)90, where we considered all distinct types of
repeats with the exception of microsatellites repeats. We calculated
the ratio between the percentage of the sequence of exclusive
features covered by repeats divided by the percentage of the
sequence of common features covered by repeats. The annotation
of transposable elements was downloaded from the Hammel lab91

and we calculated the ratio between the percentage of sequence of
exclusive features covered by transposable elements divided by the
percentage of sequence of common features covered by transpo-
sable elements.

We compared the k-mer content of all lncRNAs using SEEKR59, a
software developed for sequence evaluation through k-mer con-
tent, where we calculated the 6-mer functionally-related commu-
nities using the canonical isoformof each gene following the default
recommended settings by the authors92. For the K-means (stats R
package) clustering of AL121895.1 according its k-mer content and
the k-mer content of described cis-activators (DBET, HOTAIRM1,
HOTTIP, LINC00570, PCAT6, PVT1) or cis-repressors (BDNF-AS,
CDKN2B-AS1, KCNQ1OT1, TSIX, XIST, GNAS-AS1, SNHG14,
SCAANT1)59, we considered the isoform AL121895.1-
EST00000441208. This is the isoform to which Kallisto assigned
most of scRNA-seq reads and for which RT-qPCR primers and siR-
NAs were designed.

Exclusive vs. common genes: Specificity index
In order to implement the Specificity Index (SI), in line with other
methods4,43, each scRNA-seq datasets was clustered across distinct
ranges of number and sizes of clusters, from fewer and bigger
clusters to more but smaller clusters. We started by splitting the
cells in 5-9 clusters, then 10–15 clusters, then 16-22 clusters and
finally generating a very detailed subdivision with at least 23 clus-
ters. The SI metric was then designed in order to inform if a lncRNA
is more specific of big or small subpopulations. We implemented
the SI following the Shannon-Entropy specificity (HS) formulation
defined in TSPEX, a library with several specificity metrics93. So, in
order to define the SI for each gene g, we first calculated its mean
expression xi in each cluster, i = 1,2…n, where n is the number of
clusters. Next, we calculated for each gene, the proportion of mean

expression in each cluster, Pi:

Pi =
xiPn

i = 1 xi

� � ð1Þ

Finally, using the entropy HS formulation, we implemented the SI
metric, where we assessed if each gene is expressed in fewer and
localized clusters or if its expression is more broadly expressed.
Concretely the SI, for each gene, was defined as:

SI = 1 +
Xn

i= 1

Pi*lognPi ð2Þ

The SI is ranked from [0–1], fromgenes very ubiquitously expressed to
very cluster-specific genes. A gene whose expression is equally
distributed across different clusters will have a SI of 0, while if a gene
is exclusively expressed in one cluster its SI will be 1.

Bulk RNA-seq analysis from human healthy PBMCs
Bulk RNA-seq public data from healthy human PBMCs were analyzed
from sample GSM317278594. Raw fastq files were preprocessed with
Kallisto and STAR in order to generate the count matrices and com-
pare gene expression in bulk and scRNA-seq.

Intronic regions: K-mer analysis
To determine whether Kallisto exclusive or commonly detected genes
could be originated from spurious mapping of intronic regions, we
assessed the k-mer overlapbetween intronic regions and the transcript
sequences of commonly and exclusively detected genes. Starting with
k = 31, the default k-mer size applied by Kallisto, we tested larger k-mer
sizes. Specifically, we tested k = 50, k = 75 and k = 91, which was the
dataset’s read length.

Simulation of lncRNAs expression in scRNA-seq
ScRNA-seq reads have been extracted fromexonic regions indicated in
the official reference annotation and from artificial exonic modifica-
tions in order to include probable unannotated exonic regions17,95,96,
considering that lncRNAs are universally alternatively spliced97. Every
exonwas expanded 100bp in each direction and an exon in themiddle
of the largest intron of each transcript was added (with the median
exonic length). This constituted a simulated synthetic ground truth
annotation that could represented lncRNAs whose annotation is not
correctly reflected by the GENCODE “official” reference.

Based on this ground truth annotation, we simulated expression
from every exonic region of 1500 randomly subsampled lncRNAs. We
assigned 2000 reads to each of them and randomly divided in 100
cells. This process generated a ground truth expression matrix. Then,
we created the corresponding fastq files from the simulated hastq files
from the simulated reads, thatwerepreprocessedwithCell Ranger and
Kallisto using the “official” unmodified reference. After performing
10 simulations, the quantification error between the preprocessed
count matrixes generated by Cell Ranger and Kallisto and the simu-
lated ground truth matrixes was compared using the Frobenious
norm98.

ELATUS workflow defines a collection of functional lncRNAs
On the one side, to get the list of biologically relevant lncRNAs, we
analyzed the 288 CRISPR functionally validated lncRNAs in multiple
human cell lines10. Using a hypergeometric test with FDR correction99,
we tested the significance of their overlap with those lncRNAs exclu-
sively identified by Kallisto, in every human scRNA-seq. In total, there
was an overlap of 173 Kallisto-exclusive lncRNAs.

On the other side, we implemented ELATUS in order to capture
the highly-expressed lncRNAs commonly detected and to inspect the
highly-expressed lncRNAs exclusively identified with Kallisto to assess
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their biological relevance. Therefore, we started by importing the raw
count matrices obtained with both Cell Ranger and Kallisto and we
performed emptydropts to distinguish empty droplets from cells.
Next, we removed potential multiplets and performed a quality-
control filtering, followed by a normalization and clustering steps.
Further, we integrated samples from the same tissue. Then, highly-
expressed lncRNAs (i.e. those with more than 250 counts and present
in more than 25 cells), both commonly detected by Cell Ranger and
Kallisto and exclusively identified by Kallisto were selected. All the
commonly detected lncRNAs were retained, whereas from the exclu-
sive lncRNAs ELATUS retained those lncRNAs for which Cell Ranger
assigned lass than 10 counts, that were 40 times more expressed
according to Kallisto than to Cell Ranger and that, according to Kal-
listo, had an SI > 0.15. ELATUS also retained the exclusive lncRNAs
whose functionality has been independently validated by external
studies. To include a representative set of cluster sizes to calculate the
SI, scRNA-seq datasets were divided in different cluster sizes, from 10
to 19 clusters (Supplementary Data 4). ELATUS, which is openly avail-
able as an R package in https://github.com/ML4BM-Lab/ELATUS, has
been executed with these restrictive thresholds to ensure biological
relevance and to minimize the risk of false expression caused by
spurious mapping.

Statistical analysis and data plotting
Post-processing analysis were performed in R (version 4.1.2). Barplots
and violin plots were represented with ggplot2 (v.3.4.2), where ggpubr
(v.0.4.0) was used to test statistical test significance. The specific sta-
tistical test for each analysis is detailed in its figure caption, where ns
represents p-value > 0.1, * represents p-value ≤0.1, ** represents
p-value ≤0.05, *** represents p-value ≤0.005 and **** represents
p-value ≤0.0005.

From Seurat (v.4.0.1)87, DimPlot function was used to plot UMAP
dimensionality reductionplots andDotPlot and FeaturePlots functions
were applied to evaluate gene expression in different cell types and
dimensionality reduction spaces, respectively. UpSet plots were gen-
erated with UpSetR (v.1.4.0)100 and ggupset (v.0.3.0). In the analysis of
single-cell multiome data, Signac R package (v. 1.9.0)89 was applied to
create the coverage and expression plots.

Cell lines and growth conditions
MDA-MB-231 (HTB-26) were purchased from the American Type Cul-
ture Collection (ATCC). MDA-MB-231 cells were cultured in DMEM
(GIBCO), supplemented with 10% fetal bovine serum (GIBCO) and 1x
penicillin/streptomycin (Lonza). KMS-12-BM cells were from Xabier
Agirre’s lab at CIMA, University of Navarra. KMS-12-BM cells were
grown in RPMI-1640 (GIBCO) medium with 20% fetal bovine serum
(GIBCO), 1% penicillin, and 2% Hepes. All of them were maintained at
37˚C and 5% CO2.

RNAi
For RNA knockdown, siRNAs, which were designed using the i-Score
designer tool and purchased from Sigma. Antisense oligonucleotides,
with the same targeting sequence, were synthesized by iDT, with 3’-o-
methoxyethyl nucleotides on the 5’ and 3’ ends, as well as consecutive
oligodeoxynucleotides to support RNaseH activity (Supplementary
Table 1). Control ASO was designed and synthesized bi Ionis
Pharmaceuticals.

MDA-MB-231 cells were transfected with Lipofectamine 2000
(Invitrogen) in Serum-freeOpti-MEM (GIBCO), followingmanufacturer
instructions. siRNAs and ASOs were transfected for 24 hours at 40 nM
and 50nM final concentrations respectively.

Proliferation assay
Cell proliferation was measured using the CellTiter96 Aqueous Non-
Radioactive Cell Proliferation Assay (MTS) kit (Promega). After

24 hours transfection, 1000 MDA cells were cultured in M-96 plate
wells. Every 24 hours, 20 µL of MTS reagent (Promega) were added to
culture media, and incubated for 2 h, prior to 490 λ measurement.
Triplicate measures were normalized to day 0, and statistical differ-
ences between control and experimental conditions at day 3 were
calculated with a two-tailed student t-test.

Cellular fractionation
For cellular fractionation, all steps were performed in the presence of
protease inhibitors (Roche), phosphatase inhibitors (Roche), and
RNAsin (Promega). A total of 1 × 107MDA-MB-231 cells were harvested
with trypsin, washed, and resuspended in 200 µl of isotonic lysis buffer
(10mM Tris-HCl pH7, 150mM NaCl, 0.15% NP-40) for 5min on ice and
layered on a sucrose buffer (10mM Tris-HCl, 150mM NaCl, 25%
sucrose). Nuclei were centrifuged for 10min at 13.000× g, to recover
the supernatant as the cytoplasmic fraction. The nuclear pellet was
washed (1mM EDTA, 0.1% Triton-X100 in PBS), and resuspended in
200 µl glycerol buffer (20mM Tris-HCl pH8, 75mM NaCl, 0.5mM
EDTA, 505 glycerol, 0.85mM DTT) and finally lysed with 200 µl of
nuclear lysis buffer (20mM HEPES, 300mM NaCl, 1M urea, 0,2mM
EDTA, 1% NP-40, 1mM DTT). Lysed nuclei were centrifuged at
13.000× g for 2min to separate the soluble fraction (supernatant)
from the chromatin-associated fraction (pellet).

RNA extraction, processing, and RT-qPCR
Cell preparationswerefixedwith TRIzol (Sigma), andRNAprecipitated
with isopropanol. RNA extraction was followed by Turbo DNAse
(Invitrogen) digestion for 30minutes at 37 °C. For RT-qPCR, 1 µg RNA
was reverse-transcribed using the High-Capacity cDNA Reverse Tran-
scription Kit (Applied 30 Biosystem) with random hexamer primers,
followingmanufacturer instructions. The obtained cDNAwas analyzed
by quantitative PCR (qPCR) using iTaqUniversal SYBRGreen supermix
(Bio-Rad) in a ViiA™ 7 Real-Time PCR Systemmachine (ThermoFisher),
all reactions performed in quadruplicate. For total extract analysis,
GAPDH RNA levels were used for normalization. To assess subcellular
RNA distribution, relative RNA levels found in chromatin, nuclear and
cytoplasmic extracts were represented as a percentage of a whole,
where relative GAPDH and MALAT1 levels were used as control cyto-
plasmic and chromatin-localized RNAs, respectively. U6 and U4
snRNAs were used as nuclear control RNAs. Statistical differences
between relative RNA levels were calculated by unpaired two-tailed
Student’s t-test. RT-qPCR primers were self-designed or designed with
the NCBI Primer designing tool, and purchased from Metabion (Sup-
plementary Table 2).

Human samples
All patients participating in the study provided written informed con-
sent. The study and the use of all clinical materials have been approved
by the Research Ethics Committee of the University of Navarra under
decision number 2021.058Mod1. Samples and data from patients
included in the studywere provided by the Biobank of theUniversity of
Navarra and were processed following standard operating procedures
approved by the Ethical and Scientific Committees.

TNBC sample preparation and preparation of the scRNA-seq
libraries
Five biopsies of tissue from different patients of breast cancer were
processed following manufacturer’s instructions of Human Tumor
Dissociation Kit from Miltenyi Biotec. Briefly, 2-3 tissue cylinders per
patient were cut into small slices of 2–4mm, digestedwith enzymes H,
R and A, and dissociated with gentleMACS Dissociator (Miltelnyi Bio-
tec). After 30minutes incubation at 37 °C and a short centrifugation
step (400× g, 1minute at 4 °C), sample material at the bottom of the
tube was collected. cell suspension was then moved to a Falcon cell
strainer (70μm) placed on a 50mL tube, washedwith 20mL of DMEM,
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and centrifuged at 400× g for 5minutes at 4 °C. Pelleted cells were
washed with 1ml of PBS 1×0.05%BSA, supplemented with 5ul RNAse
OUT (Invitrogen), and transferred to a Dolphin tube (Sorenson) where
cell suspension was centrifuged at 400× g for 5minutes at room
temperature. Viability ( > 70%) of resuspended cells was corroborated
with cellometer (Nexcelom).

The transcriptomes of 16,000-20,000 cells were examined using
Single Cell 3’ Reagent Kits v3.1 (10X Genomics) according to the
manufacturer’s instructions. Briefly, 17000–20000 cells were loaded
at a concentration of 1000 cells/µL on a Chromium Controller instru-
ment (10X Genomics) to capture single cells in gel bead-in-emulsions
(GEMs). In this step, each cell was encapsulated with primers con-
taining a fixed Illumina Read 1 sequence, a cell-identifying 16 bp 10x
Genomics barcode, a 12 bp Unique Molecular Identifier (UMI) and a
poly-dT sequence. Upon cell lysis, reverse transcription yielded full-
length, barcoded cDNA. This cDNA was then released from the GEMs,
PCR-amplified and purified withmagnetic beads (SPRIselect, Beckman
Colter). Enzymatic Fragmentation and Size Selection was used to
optimize cDNA size prior to library construction. Fragmented cDNA
was then end-repaired, A-tailed and ligated to Illumina adapters. A final
PCR-amplification with barcoded primers allowed sample indexing.
Library quality control and quantification was performed using Qubit
3.0 Fluorometer (Life Technologies) and Agilent’s 4200 TapeStation
System (Agilent), respectively. Sequencing was performed in a Next-
Seq2000 (Illumina) (Read1: 28; Read2: 91; i7 index: 8) at an average
depth of 500000 reads/sample.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. TNBC scRNA-seq data have been
publicly stored inNCBIwith the following identifier: GSE246142. Public
scRNA-seq data of human intestine was studied from GSM480339 and
GSM480348. Public scRNA-seq data of human lung was downloaded
from GSM4037320, GSM5020383, GSM4037316. Human public
scRNA-seq of PBMCs and mouse public scRNA-seq datasets were
downloaded from 10x Genomics website. Human public bulk RNA-seq
from PBMCs was downloaded from GSM3172785.

Code availability
The code and scripts to reproduce the results are freely available and
can be accessed in https://github.com/ML4BM-Lab/manuscript_
scRNAseq_lncRNAs101. ELATUS R package for elucidating biologically
relevant lncRNA annotated transcripts using scRNA-seq is available at
https://github.com/ML4BM-Lab/ELATUS.
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