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Individuals with autistic traits are those who present in the normal population with
characteristics of social, communication, personality, and cognitive impairments but do
not meet the clinical threshold for autism spectrum disorder (ASD). Most studies have
focused on the abnormalities in ASD patients rather than on individuals with autistic
traits. In this study, we focused on the behaviors of a large sample (N = 401) of Chinese
individuals with different levels of autistic traits, measured using the Autism Spectrum
Quotient, and applied voxel-based morphometry (VBM) to determine their association
to differences in brain structure. The results mainly showed that the correlation between
gray matter volume (GMV) and gray matter density of the brain and the Autism Spectrum
Quotient was significant in these regions: the right middle frontal gyrus, which are
involved in social processing and social reasoning; the left parahippocampal gyrus,
which is involved in socioemotional behaviors and unconscious relational memory
encoding; and the right superior parietal lobule, which are involved in cognitive control
and the ability to show attention to detail. These findings reveal that people with autistic
traits in the normal population have atypical development in GMV and gray matter
density, which may affect their social functioning and communication ability.

Keywords: autism spectrum traits, young adults, gray matter volume, gray matter density, voxel-based
morphometry

INTRODUCTION

Autism spectrum disorder (ASD) consists of neurodevelopmental symptoms characterized by
core deficits in social functioning but also extending to other cognitive differences (Assaf et al.,
2010). The idea of a spectrum captures both the heterogeneity within ASD itself (e.g., from
low- to high-functioning intelligence) and the principle of continuity of the symptom profile
within the general population itself, in which individuals may exhibit autistic traits to a greater
or lesser extent. For instance, the parents of autistic children often report increased levels of
autistic traits which are not severe enough to merit a formal diagnosis (Wheelwright et al., 2010).
Variation in the level of autistic tendencies is often measured using the Autism Spectrum Quotient
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(Baron-Cohen et al., 2001). This is a self-report measure that
asks about the presence of a range of traits and behaviors
commonly seen in autism, including poor social understanding,
problems in attention switching, greater attention to detail, poor
imagination, and poor communication skills. There has been
considerable previous research exploring the brain differences
between ASD and controls using functional imaging (Pelphrey
et al., 2005; Ikeda et al., 2018) and structural imaging techniques
(Critchley et al., 2000; Grelotti et al., 2002; Belmonte et al.,
2004; Rojas et al., 2006; Deruelle et al., 2008). However, the
study of brain-based individual differences in autistic traits
within the general population has received comparatively less
attention. This is an important complementary approach that
may also have certain advantages. For instance, the overall level
of intellectual functioning (a potential confound) is likely to be
more homogenous among a student-based neurotypical sample
than an ASD sample. The present study examines differences
in gray matter linked to autistic traits using a Chinese version
of the Autism Spectrum Quotient (AQ) as well as provides
important evidence about the neural basis of autistic traits that
will potentially contribute to a wider discussion about how autism
should be diagnosed and characterized (Pang et al., 2018).

Gray matter volume (GMV) represents the absolute amount
of gray matter (Good et al., 2001; Mechelli et al., 2005), whereas
gray matter density (GMD) represents the relative concentration
of gray matter structures in spatially warped images (i.e., the
proportion of gray matter relative to all tissue types within a
region) (Mechelli et al., 2005). Focusing on both absolute GMV
and GMD may help our understanding of the mechanism of the
brain and the individual’s autistic traits.

Previous studies on GMV in ASDs have shown inconsistent
results. The existence of studies mostly focused on frontal and
temporal regions which are responsible for emotional control
and social communication (Hyde et al., 2010; Fan et al., 2012;
Morein-Zamir et al., 2016; Patriquin et al., 2016) had long been
controversial. First, some studies reported increased GMV in
the frontal gyrus (Hyde et al., 2010; Kaiser et al., 2010; Toal
et al., 2010; Ecker et al., 2012), while some studies reported
decreased GMV in the frontal gyrus (Abell et al., 1999; McAlonan
et al., 2005; Takeuchi et al., 2014a; Mori et al., 2015; D’Angelo
et al., 2016). Second, some studies reported increased GMV in
the temporal gyrus (Abell et al., 1999; Ecker et al., 2012; Lai
et al., 2013), while decreased GMV in the temporal gyrus was
also reported (Abell et al., 1999; Toal et al., 2010; D’Angelo
et al., 2016). There are also studies showing the subcortical
brain areas like the basal ganglia extending to the thalamus and
the ventral striatum (Takeuchi et al., 2014b). These inconsistent
results suggested that the mechanisms of the brain in individuals
are still remain unknown. There might exist some other brain
regions that closely relate to the autistic traits like the parietal and
the parahippocampal regions.

Similar results were obtained in the frontal and the cingulate
regions when measuring GMD. A review of a voxel-based
morphometry (VBM) study found that GMD decreased in
the right paracingulate sulcus and the left inferior frontal
gyrus within adults with high-functioning autism (Brambilla,
2003). Another study which explored the relationship between

autism and schizophrenia patients within the gray matter and
the white matter found that the autism group demonstrated
bilateral prefrontal and anterior cingulate increases in contrast
with the prefrontal and the left temporal reductions in
schizophrenia (Katz et al., 2016). In the three important
psychiatric spectra – schizophrenia spectrum disorder, ASD,
and obsessive–compulsive disorder – it was found that the
GMD of patients did not develop randomly but rather followed
identifiable decreased patterns of coalteration in the lateral
prefrontal cortex, the ventromedial prefrontal, the orbitofrontal
cortex, and the cingulate regions (Cauda et al., 2018). There
was also increased GMD shown in the brain regions in autism
researches. The neural correlates of executive function in autistic
spectrum disorders have shown significant increase in the
middle frontal gyrus (MFG) compared with the control groups.
Moreover, in individuals with ASD, increased frontal GMD
and increased functional activation shared the same anatomical
location (Schmitz et al., 2006). Additionally, in a joint behavioral
and neuroimaging study of somatosensory and premotor, GMD
was significantly higher in the right motor cortex (precentral
gyrus) of those with ASD compared to controls (Winter, 2016).

ASD has special characteristics, mainly referring to social
deficits, communication disabilities, and repetitive and
stereotyped behaviors (Hadjikhani et al., 2005; Troyb et al.,
2016). These changes in behavior and mental health are thought
to be etiological factors reflected by brain maturation and
anatomy (Belmonte et al., 2004; Schmeisser and Boeckers,
2017). While people with autistic traits have not obtained
enough attention at a clinical level, they do have an impact on
their emotion control, social communication, and interaction
(Sucksmith et al., 2011). Individuals with autistic traits undertake
the same social responsibilities as normal individuals but
psychologically suffer more pain; they are doing the same job as
everyone else but taking up more cognitive resources (Sucksmith
et al., 2011; Lai et al., 2013). Research into autistic tendencies may
result, to some extent, in helping this group ease their burdens
and obtain a better, healthier life and therefore preventing a
regression to sub-optimal clinical health conditions (Guan and
Zhao, 2015). The atypical changes in GMV and GMD, especially
in the frontal lobe, the lingual gyrus, the occipital gyrus, the
anterior cingulate cortex, the insula, and the parahippocampus
during childhood, even to adulthood, within individuals with
autistic traits may reflect that these brain regions of the human
brain play important roles in cognitive functions, which affect
an individual’s brain and behavioral development. As mentioned
above, these studies of VBM have been mostly demonstrated on
ASD patients but have rarely focused on individuals varying in
their levels of autistic traits, especially in the Chinese sample.
Therefore, in this study, the participants underwent structural
MRI scans after performing an AQ test. The AQ scores were
then assessed in relation to GMV and GMD after brain scanning.
We hypothesized that the GMV and the GMD of the frontal lobe
and the parietal lobe would increase as AQ scores increased and
the parahippocampal gyrus (PHG) would decrease as AQ scores
increased in individuals with autistic traits since they require
more cognitive resources to perform the same work or task as
a neurotypical person. This may also be because gray matter
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maturation is abnormal, while normal gray matter development
increases at earlier ages, followed by sustained loss starting
around puberty (Gogtay and Thompson, 2010), which may also
lead to atypical gray matter development.

MATERIALS AND METHODS

Standard Protocol Approvals,
Registration, and Consent
This study and the experimental procedure were approved by the
Brain Imaging Center Institutional Review Board of Southwest
University of China. In accordance with the Declaration
of Helsinki (World Medical Association [WMA], 1991), all
participants provided written informed consent and received
payment for their time.

Participants
Four hundred and one individuals (111 men, aged 18–26 years,
mean = 21.04 years, standard deviation = 1.27) participated in
this research as part of our project investigating associations
among genes, brain imaging, and mental health (Liu et al.,
2017). Before the experiment, we collected the sample’s basic
information to exclude subjects with potential mental disorder;
two trained and experienced graduate students in the School of
Psychology performed the Structured Clinical Interview for the
DMS-IV; all participants included in this study did not meet
the DMS-IV criteria for psychiatric disorders and did not use
drugs that can affect brain functions. In addition, a self-report
checklist was used by all participants to exclude any of following
criteria: serious brain trauma, substance abuse, hypertension, or
cardiovascular disease. All participants were right-handed, had
normal vision, got reasonable payment, and were undergraduates
at Southwest University.

Assessment of AQ
The AQ is a quantitative measure of autistic traits in the
general population (Baron-Cohen et al., 2001). The Chinese
version of AQ (Lau et al., 2013) was used in this study which
consists of the social skill, communication, attention switching,
imagination, and attention to detail subscales contained within
50 statements, to which the participants responded on a four-
point Likert scale: “definitely agree” or “slightly agree” responses
scored one point, while “slightly disagree” or “definitely disagree”
responses scored one point in reverse options. In half of the
statements, the diagnostic answer is “agree,” and in the other
half “disagree.” One point is awarded for each diagnostic
answer which results in a continuous distribution of scores in
the population sample. The total score ranges from 0 to 50
points, with higher scores suggesting a greater magnitude of
autistic traits. Currently available data from research on the
properties of this scale indicate that the measurement reliability
for the total score is satisfactory (Austin, 2005; Hurst et al.,
2007; Hoekstra et al., 2008; Ingersoll et al., 2011; Kloosterman
et al., 2011). In the present study, we focused on analyzing
the total AQ score.

Image Acquisition
A 3-T Siemens Trio MRI scanner (Siemens Medical, Erlangen,
Germany) was used to gather images. Then, high-resolution
T1-weighted structural images (repetition time = 1,900 ms,
inversion time = 900 ms, flip angle = 9◦, echo time = 2.52 ms,
256 × 256 matrix, 176 slices, 1.0 mm slice thickness, and voxel
size = 1 × 1 × 1 mm3) were collected, on which a magnetization-
prepared rapid gradient echo (MPRAGE) sequence was used.

MRI Preprocessing
The structural magnetic resonance (MR) images were processed
with SPM81 implemented in MATLAB R2014a (MathWorks Inc.,
Natick, MA, United States). First, every magnetic resonance
image was displayed in SPM8 to monitor artifacts and obvious
anatomical abnormalities. Then, VBM was performed with
diffeomorphic anatomical registration using exponentiated lie
algebra (DARTEL) (Ashburner, 2007). The new segment toolbox
from SPM8 was applied to every T1-weighted MR image to
extract tissue maps corresponding to gray matter, white matter,
and cerebrospinal fluid in the native space. The DARTEL
template creation toolbox was used to improve intersubject
alignment. The resliced images of the gray and white matter
were registered to a subject-specific template, and subsequently
the normalization function in the DARTEL toolbox was used to
normalize the individual images of gray and white matter to the
MNI space (1.5 mm isotropic voxels). Finally, each subject’s gray
and white matter maps were warped using their corresponding
smoothed (10-mm full-width at half-maximum Gaussian kernel)
and reversible deformation parameters to the custom template
space and then to the MNI standard space. GMV images were
modulated by calculating the Jacobian determinants derived from
the special normalization step and by multiplying each voxel by
the relative change in volume.

Statistical Analysis
We applied multiple linear regression to identify the brain
regions whose GMV and GMD were associated with individual
differences in the AQ within SPM8. In this study, a customized
binary mask was used to avoid the partial volume effect by
including voxels with a gray matter value >0.2. All subsequent
statistical analyses were conducted in this mask. To remove
potential confounds, we used age and total GMV and GMD
mean values as nuisance covariates. Clusters with continuous
suprathreshold voxels (p < 0.001) were initially identified within
the custom mask and within the AlphaSim correction for
multiple-comparison in DPABI. Many studies used smoothness
kernel in preprocessing to estimate the biggest cluster size
with AlphaSim correction; however, the effective smoothness
is bigger than the applied because the pre-smoothed image
has implicit smoothness. Simply inputting Gaussian smoothing
kernel that was applied during preprocessing to AlphaSim is
incorrect (Bennett et al., 2009). DPABI prevents that kind
of errors by performing AlphaSim correction based on the
estimated effective smoothness (Yang et al., 2016). The minimum

1https://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | A summary of the demographic information in the present study.

Measure N = 401

Mean SD Range

Age 21.04 1.27 18–26

AQ (total) 19.58 5.72 7–37

Social skill 3.75 2.47 0–10

Attention switching 5.14 1.63 1–10

Attention to detail 4.66 2.13 0–10

Communication 3.09 1.93 0–10

Imagination 2.94 1.62 0–7

AQ, Autism Spectrum Quotient; SD, standard deviation; N, number.

cluster size in AlphaSim correction of GMV-positive and GMV-
negative was k >192. The minimum cluster size in AlphaSim
correction of GMD positive was k >50, respectively. The
p-maps were thresholded to yield an expected p-value of <0.05,
voxel-wise p < 0.005.

RESULTS

Descriptive Statistics
The demographic data and behavioral results are shown in
Table 1. The mean AQ score of the current sample was 19.58, and
the standard deviation was 5.27. The difference in AQ between
gender are shown in Supplementary Table S1.

Correlations Between GMV and AQ
Score
After entering age, gender, and global volumes of gray matter
as covariates into the regression model, a multiple regression
analysis revealed that the AQ (total) score had a significant
positive association with the GMV in the MFG and the middle
occipital gyrus (MNI coordinates: 10, 33, 1.5, T = 3.90; 30, -
88.5, 0, T = 3.22). Additionally, the AQ score had a significant

negative association with the GMV in the left parahippocampal
gyrus (MNI coordinates: -13.5, 3, -27, T = -3.79) (see Figure 1
and Table 2).

Correlations Between GMD and AQ
Score
After entering the age, the gender, and the global density of
gray matter as covariates into the regression model, a multiple
regression analysis revealed that the AQ (total) score had a
significant positive association with the GMD in the left superior
frontal gyrus (SFG), right precentral gyrus, and negative in the
right superior parietal lobule (SPL) (MNI coordinates: 25.5, -6,
63, T = 3.60; -45, -1.5, 52.5, T = 3.33; 13.5, -73.5, 58.5; T = -3.18)
(see Figure 2 and Table 3).

We also explore the associations between the sub-dimensions
of AQ and the brain areas of GMV and GMD and found
significant associations in social skill, attention switching, and
communication parts (see Supplementary Table S2).

DISCUSSION

In this study, we investigated associations between the GMV and
the GMD of brain structures and the AQ of individuals with
autistic traits. Our VBM analysis results showed that the AQ
(total) score had a significant positive association with GMV in
the right MFG and the right middle occipital gyrus and a negative
association to left PHG. The AQ (total) score had a significant
positive correlation with the GMD in the left SFG and the right
precentral gyrus and a negative association with the right SPL
and the right MFG. These findings point to disturbances of brain
growth and maturation as an important pathomechanism. The
atypical development in GMV and GMD in the brain structures
of individuals with autistic traits may explain the abnormal neuro
and social behaviors to some degree.

In the present study, we focused on the brain regions that
are closely related to the autistic traits. First, the AQ (total)
score was significantly and positively correlated with gray matter

FIGURE 1 | The significant positive correlation between gray matter volume (GMV) and Autism Spectrum Quotient score showing areas in the right middle frontal
gyrus and in the middle occipital gyrus, and had a significant negative association with the GMV in the left parahippocampal gyrus. Alphasim-corrected cluster level
p < 0.05, voxel-wise level p < 0.005.
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TABLE 2 | The brain regions in gray matter volume significantly correlated with Autism Spectrum Quotient.

Item Voxels H T BA MNI Brain regions

Positive AQ 195 R 3.90 10 33 48 1.5 Middle frontal gyrus

313 R 3.22 18 30 −88.5 0 Middle occipital gyrus

Negative AQ 118 L −3.79 n/a −13.5 3 −27 Parahippocampal gyrus

MNI, Montreal Neurological Institute; H, hemisphere; L, left; BA, Brodmann areas; n/a, not available. Alphasim-corrected cluster level p < 0.05, voxel-wise level p < 0.005.

FIGURE 2 | The significant negative correlation between gray matter volume and Autism Spectrum Quotient score showing areas in the left superior frontal gyrus
and in the right precentral gyrus, and negative in the right superior parietal lobule. Alphasim-corrected cluster level p < 0.05, voxel-wise level p < 0.005.

TABLE 3 | The positive correlation between gray matter density and Autism Spectrum Quotient.

Item voxels H T BA MNI Brain regions

Positive AQ 124 L 3.60 10 25.5 −6 63 Superior frontal gyrus

108 R 3.33 24 −45 −1.5 52.5 Precentral gyrus

Negative AQ 50 R −3.18 7 13.5 −73.5 58.5 Superior parietal lobule

MNI, Montreal Neurological Institute; H, hemisphere; L, left; BA, Brodmann areas; n/a, not available. Alphasim-corrected cluster level p < 0.05, voxel-wise p < 0.005.

in an extensive region that included the right MFG and SFG
of gray matter, which is in line with a previous study and
involved in social communication and interaction (Hyde et al.,
2010; Fan et al., 2012; Marsh et al., 2014; Morein-Zamir et al.,
2016; Patriquin et al., 2016; Stevenson et al., 2018); these two
regions are also known to be involved in planning, flexibility,
executive functioning, and working memory in ASD (Zelazo
and Müller, 2002; Hill, 2004; Jurado and Rosselli, 2007; Craig
et al., 2016). These findings collectively suggested atypical
development in the structure and functions of the brain; indeed
neuropsychological and neuroimaging studies performed thus
far have suggested the association between people with autistic
traits and increases in MFG and SFG volumes which may be
influenced by executive dysfunction and social communication
deficits (Booth et al., 2003; Corbett et al., 2009; Vanegas and
Davidson, 2015; Craig et al., 2016). People with autistic traits who
have normal intelligence, normal lifestyle, and seemingly normal
social interactions are burdened with more social pressure, which
may be due to their social executive dysfunction (Bayliss and
Tipper, 2005; Christ et al., 2010). The discrepancy between social
communication situational pressures and actual social abilities is
consequent to the compensatory strategies of adults with autistic
traits or of clinical ASD patients that bring task performance

to ceiling levels (Schneider et al., 2013, 2014). The atypical
development in the MFG and SFG could reflect a lack of pruning
during the normal growth spurt, leading to excessive preservation
of unneeded increases. Such an effect would certainly lead
to abnormal structure between individuals with autistic traits
and brain regions.

Second, the significant decrease in the left PHG of GMV
was consistent with previous neuroimaging findings in adults
and children with autism (Page et al., 2009; Kosaka et al.,
2010; Mueller et al., 2013; Yu et al., 2019), Moreover, severely
restricted and repetitive behaviors were associated with the
PHG (Monk et al., 2009; Weng et al., 2010; Hau et al., 2019).
These two brain regions are implicated in unconscious relational
memory encoding, autobiographical memory (Tanweer et al.,
2010; Duss et al., 2014), and socioemotional behaviors (Dawson,
1991; Yang et al., 2016; Puiu et al., 2018) that are abnormal
in individuals with autistic traits and in patients with clinical
ASD, such as understanding the mental state of others, emotion
processing, and language (Barrett et al., 2007; Lartseva et al.,
2015; Grecucci et al., 2016). As previously reported, individuals
with autistic traits could communicate with others in a normal
way but are burdened with more social pressure (El Kaliouby
et al., 2006). Individuals with autistic traits show deficits
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in social communication or social avoidance and do not
have compensatory strategies, which influence the relationship
between cognitive functions and neural system (Senju et al.,
2011; Low and Watts, 2013). Additionally, individuals with
autistic traits usually remembered more adverse events like
social rejection, childhood trauma, and daily interpersonal
stress (Sebastian, 2015). Young adults have the ability to
integrate emotional information into a proper degree that
need wholesome neurological development (Sebastian, 2015).
Neuroimaging evidence is now showing that improvements in
social cognition during young adults are underpinned by the
ongoing development in relevant regions (Blakemore, 2008). This
may be the reason for the decrease in GMV of the left PHG as
reflected in the current study and may explain atypical behaviors
such as poor communication disorder and repetitive behaviors
within individuals with autistic traits.

Third, we also found that individuals with autistic traits had a
decrease in GMD in the right SPL which was inconsistent with
previous study, which might be the case given that the large
sample has more weight in this study than others. The SPL is
important in cognitive control and attention to detail (Koechlin
and Hyafil, 2007; Kompus et al., 2009; Qiu et al., 2018). To
identity brain regions that differed in activity during social and
non-social orienting, Greene’s study found that the ASD group
demonstrated significant activation in the SPL (Greene et al.,
2011). In a facial processing research, improved facial affected
recognition performance which was accompanied by higher
activation of the right SPL (Bolte et al., 2006), which indicated
that the decrease of SPL in the present study within individuals
with autistic traits might influence social cognition deficits. The
SPL also composed the frontal–parietal control (FPC) network
(Koechlin et al., 1999; Kompus et al., 2009; Mundy, 2018), and
deficits to this phenomenon in brain regions may explain the
non-social difficulties in individuals with autistic traits, such
as repetitive, poorly controlled, and poor goal-directed action
(Takarae et al., 2014; de Wit, 2018). The FPC system has been
identified as supporting cognitive control and decision-making
processing (Vincent et al., 2008). Relative to typical individuals,
the social failure of individuals with autistic traits to process
information globally might be argued to follow from problems
in shifting between local and global processing (Bogousslavsky
et al., 1987; Frith, 2004; Liss et al., 2008; Van Eylen et al., 2018),
and a failure of cognitive control may be the neural basis of the
autistic traits in these individuals (Vartanian et al., 2018). These
atypical social cognitive functions relative to SPL was found
within individuals with autistic traits in this study, indicating
that social cognition deficit not only influences people’s behavior
strongly but also results in a unique neuroanatomical structure.
Above all, these atypical developments in brain structures, such
as the MFG SFG, the left PHG, and the SPL, may play a role in
social and attention abilities associated with brain function.

CONCLUSION

In summary, the present study replicated a previous study
and broadened our understanding of the neural mechanisms

underlying autistic traits within young adults. We found that
the MFG, the SFG, the PHG, and the SPL brain regions
play an important role in individuals with autistic traits;
these brain regions are involved in some cognitive function
deficits like social communication, cognitive control, attention
to detail, and socioemotional behaviors. These abnormalities
are consistent in young adults with autistic traits, which are
reflected in specific brain regions. The current study that
interpret individuals with autistic traits can help young people
know themselves and integrate into their social life better in
some degree.

LIMITATIONS

The current study investigates the brain areas of GMV
and GMD in a large sample of young adults with autistic
traits. The results showed that social communication, cognitive
control, and some other brain functions are linked to brain
areas in GMV and GMD, which replicated a previous study
and broadened our understanding of the neural mechanism
underlying autistic traits. Meanwhile, there are also deficiencies
in the following three aspects: first, our autistic traits sample
are all university students; this may have a bias in it
compared to average level. Second, in our sample, there
is a difference between genders. In a future study, we
will further explore this difference using a larger sample
wherein there is balancing of gender difference between men
and women. Third, we want to further explore the neural
mechanism using more different brain types, like resting-state
functional connectivity and task-based functional connectivity,
among others.
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