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Abstract

Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously
shown that TGF-b signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated
the role of TGF-b signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature.
TGF-b signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by
reduced phospho-smad2 in the adult retina. Blockade of TGF-b signaling led to increased vascular and neural cell apoptosis
in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of
the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity.
Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was
characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-b signaling
in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC
from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-b signaling. These
results implicate constitutive TGF-b signaling in maintaining the integrity and function of the adult microvasculature and
shed light on the potential role of TGF-b signaling in vasoproliferative and vascular degenerative retinal diseases.
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Introduction

Formation, stabilization and specialization of the vasculature is

a complex process that requires the coordinated action of a

number of growth factors and a variety of heterotypic cellular

interactions. Transforming growth factor-b1 (TGF-b1) is a

multifunctional growth factor that is a well-established modulator

of vascular cells [1]. In vitro studies indicate that TGF-b1 is

activated upon contact between endothelial and mesenchymal

cells [2] and that it mediates a variety of actions associated with

vessel maturation including, inhibition of EC proliferation and

migration, induction of pericyte differentiation, and production of

basement membrane [2–4]. These observations suggest that local

activation of TGF-b1 in vivo may be critical to vessel remodeling

and stability.

The retinal microvasculature, the site of the inner blood retinal

barriers, is one of the most stable microvascular beds in the body

with EC turnover rates estimated in years [5]. Pericytes envelop

EC tubes and are present at different pericyte-EC ratios depending

upon the microvessel bed [6,7]. Trypsin digests of the retinal

vasculature have revealed a ratio of pericytes to ECs roughly

equaled to 1, whereas ECs outnumber pericytes in other

microvascular beds by as much as 10 to 1 [6]. In vitro studies

demonstrate that contact between ECs and pericytes or astrocytes

leads to TGF-b1 activation, a major determinant of TGF-b1

availability and signaling [8]. Moreover, the loss of retinal

pericytes has been speculated to be permissive for the progression

of diabetic retinopathy [9]. Taken together, these observations

have led us to speculate that the high number of pericytes in the

retina reflects a significant role for constitutive TGF-b1 signaling

in maintenance of retinal microvascular integrity.

Binding of TGF-b1 dimers to TGFb-receptor II (TGFbRII)

leads to the recruitment of TGFb-receptor I (TGFbRI), the

formation of a tetrameric complex, phosphorylation and confor-

mational changes in the intracellular domain of TGFbRI, and

downstream activation of smad transcription factors. Most cell

types express only one TGFbRI receptor, ALK5 [10]. In ECs,

TGF-b1 activation of ALK5 is growth inhibitory and is thought to

mediate vessel stability [10]. ECs also express the TGFbRI

receptor ALK1, as well as the TGF-b1 co-receptor endoglin (also

referred to as TGFbRIII). In contrast to ALK5 signaling, TGF-b1

signaling via endoglin or ALK-1 on ECs is associated with vessel

destabilization, EC proliferation and migration, by limiting TGF-

b1-ALK5 EC signaling [11]. Consistent with these findings,

increased endoglin is a defining feature of proliferating vessels

in tumors and is a current target for anti-cancer treatments
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(http://www.clinicaltrials.gov/ct2/show/NCT00582985?term =

cd105&rank = 1) [12].

The phenotypes of mice deficient in TGF-b1 and of naturally

occurring mutations of TGF-b1 pathway support a role for

TGF-b1 in formation and maintenance of the vasculature.

Targeted deletion of alk1, alk5, TGFbRII, endoglin and smad5 are

all embryonic lethal, each with comparable cardiovascular

defects, with some subtle differences [13]. TGFbRII null mice

die around mid-gestation from defective yolk sac vascularization

and hematopoiesis [14], whereas mice deficient in TGFbRI have

defective yolk sac vasculogenesis, but normal hematopoiesis [15].

In humans, heterozygous mutations of either endoglin or alk1

cause hereditary hemorrhagic telangiectasia (HHT)-1 or HHT-

2, respectively, both characterized by vascular anomalies such as

dilated vessels, edema, arterio-venous malformations, and

pulmonary, liver and neurological problems due to vascular

defects [16].

Systemic inhibition of TGF-b and VEGF, as a result of high

levels of circulating placental derived soluble endoglin (sEng) and

soluble fms-like tyrosine kinase 1 (sFlt1), respectively, have been

reported to be involved in the pathogenesis of preeclampsia [17].

Preeclampsia is a condition of pregnancy characterized by

systemic endothelial dysfunction, multiple end-organ ischemia,

hypertension and proteinuria - a phenotype that is largely

recapitulated by systemic inhibition of TGF-b and VEGF in

pregnant rats [17]. Additionally, preeclampsia is associated with

increased vascular permeability [18].

One consequence of reduced circulating TGF-b and VEGF is a

decrease in endothelial formation of nitric oxide (NO) [17], a

potent vasoactive molecule with anti-thrombogenic effects. Recent

evidence demonstrates that administration of TGF-b1 can induce

arteriogenesis in the peripheral circulation [19], however the role

of endogenous TGF-b1 signaling in the quiescent adult microvas-

culature has not been defined. Therefore, we have examined the

effects of systemic TGF-b inhibition on perfusion, permeability

and function of adult microvasculature, using the retinal

microvasculature as an easily accessible and clinically relevant

model. The unique structure of the retina enables structural and

functional analysis of microvessels in vivo, which are not feasible

with other microvessel beds. In addition, we used an in vitro

coculture system to identify the effects of TGF-b1 blockade on

ECs and 10T1/2 cells (as mesenchymal precursors of pericytes)

[20].

Results

Systemic inhibition of TGF-b decreases smad2
phosphorylation in the retina

RT-PCR of cDNA collected from adult mouse retinas revealed

the expression of smad2, smad3, TGF-b1 and TGF-b3 (Figure 1A).

To evaluate the role of endogenous TGF-b signaling in vivo,

adenovirus of Ad-sEng was used to systemically inhibit TGF-b
signaling in mice; control mice included non-infected mice

(Figure 1B) and mice infected with an Ad-null virus (Figure 1C).

sEng binds both TGF-b1 and TGF-b3. In the retina, TGF-b1 is

associated with endothelial, mural and microglial cells, whereas

TGF-b3 is expressed mainly by ganglion and microglial cells [21–

23]. One of the earliest events of TGF-b signal activation is

phosphorylation of smad2 and its translocation to the nucleus [24].

We used immunohistochemistry for pp-smad2 to localize the cell

types with active TGF-b signaling in the retina. In both control

and treated mice, nuclear pp-smad2 was evident in the neurons of

the ganglion cell layer (Figure 1C; arrows); the inner nuclear layer

(INL), which contains bipolar, amacrine and horizontal cells

(arrowheads); and, EC and mural cells (Figure 1D). The staining

intensity of pp-smad2 was reproducibly reduced in Ad-sEng-

expressing mice as compared to control mice (Figure 1C). Western

blot analysis for pp-smad2 on whole retina lysates indicated a

marked reduction of smad2 phosphorylation in Ad-sEng mice

compared to the control after seven days (Figure 1E; Figure 1F

quantification), demonstrating that systemic expression of sEng

effectively neutralizes TGF-b signaling. No changes in total smad2

or phosphorylation of smad1/5/8 were noted after seven days of

TGF-b neutralization (Figure 1E).

Inhibition of TGF-b decreases retinal perfusion and
impairs peripheral vascular autoregulation

TGF-b1 regulates endothelial synthesis of numerous vasoactive

agents such as NO and endothelin-1 [25]. To examine the effect of

TGF-b1 blockade on microvascular perfusion, mice were perfused

with high molecular weight FITC-dextran 14 days post adenovirus

infection. Abnormal perfusion was apparent in retinal flat-mount

preparations from sEng-expressing mice (Figure 2A), and co-

staining for type IV collagen, a component of the capillary

basement membrane, confirmed a lack of perfusion in some vessels

of sEng expressing mice (Figure 2B). Microvascular perfusion was

quantified on serial cryosections of dextran-perfused retinas.

Though there was no change in the density of type IV collagen-

positive vessels in the retinas of sEng-expressing mice compared to

control mice, numerous of the type IV collagen-positive were

FITC-dextran negative (Figure 2C), indicating non-perfusion.

Quantification of the collagen and dextran-positive vessels in the

inner layers of the retina confirmed a significant (approx. 25%)

reduction in vascular perfusion in sEng-expressing mice

(Figure 2D).

The retinal microvasculature maintains perfusion by autoreg-

ulation, where endothelial-derived NO induces mural cell

relaxation thereby increasing local blood flow [26]. As altered

peripheral blood flow is often used as a surrogate for retinal

microvascular dysfunction [27], we monitored blood flow rates in

the tail vasculature. Acetylcholine (ACh), an endothelium-

dependent vasodilator, led to increased blood flow in control

mice but not in sEng-expressing mice, indicating impaired

endothelial vasoactive capacity (Figure 2E).

TGF-b inhibition causes reduced endothelial barrier
function in vivo and in vitro

Similar to the blood-brain-barrier, the retinal vasculature forms

the blood-retinal barrier (BRB), which protects neural retina from

neurotransmitters and potentially damaging circulating factors.

Barrier function in vivo was examined by fundus angiography.

Whereas vessels in Ad-null control mice were well-defined and did

not exhibit evidence of fluorescein leakage, vessels of sEng-expressing

mice appeared more diffuse due to a more rapid leakage of the dye

(Figure 3A). In parallel experiments, extravasated Evans blue was

quantified and confirmed a breakdown of the blood-retinal barrier in

sEng-expressing mice (Figure 3B).

Barrier function is mediated by tight and adherens barrier

proteins between adjacent ECs. Transmission electron micros-

copy (TEM) analysis of the superficial vascular plexus in sEng-

expressing mice revealed structural alterations in tight junctions

between microvascular ECs (Figure 3C). The tight junction

proteins zo-1 and occludin constitute a major aspect of the

blood retinal barrier [28]. Immunoprecipitation of occludin,

followed by western blotting for zo-1, revealed a decrease in

association between these two proteins in sEng-expressing mice

(Figure 3D).

TGF-b Signaling in the Retina
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To further define the function of TGF-b1 in barrier

function, we utilized Transwell cocultures of EC and 10T1/2

cells (as undifferentiated mesenchymal pericyte precursors),

which mimic the in vivo interaction between EC and mural

cells and which we have shown leads to local activation of

TGF-b1 [20]. Using a smad2/3 luciferase reporter construct

(CAGA-Luc), we demonstrated activation of smad2/3 signaling

in ECs in co-culture with 10T1/2 cells compared to EC mono-

cultures (Figure 4A). Addition of SB-431542, a pharmacolog-

ical inhibitor of TGFbRI /ALK5, reversed the co-culture effect

of co-culture, but did not significantly alter baseline smad2/3

luciferase in EC mono-cultures or phosphorylation of smad1/

5/8, downstream transcription factors of the TGF-bR1 –

ALK1 (Figure 4B).

Scanning electron microscopy (SEM) revealed enhanced

association between adjacent ECs co-cultured with 10T1/2 cells

(Figure 5A) and the size of EC in the co-cultures was more uniform

than that of EC cultured alone (Figure 5B). The role of TGF-b1

signaling was assessed using SB-431542. Addition of SB-431542 to

co-cultures reversed the co-culture-induced effects on interen-

dothelial association (Figure 5A) and led to a reversion to

heterogeneous EC cell sizes (Figure 5B). In contrast to changes

in EC shape that were evident in co-culture with 10T1/2’s, SEM

analysis of 10T1/2’s morphology revealed no obvious difference in

their morphology whether in mono-culture, co-culture, or in the

presence of SB-431542 (Figure 5A).

Immunoprecipitation of occludin followed by western blotting

for zo-1 revealed that coculture of EC with 10T1/2 cells led to an

increased association between occludin and zo-1 in EC, which was

significantly reduced by TGF-b1 inhibition (Figure 6A). Measure-

ment of barrier function of EC in Transwell by the permeability of

the EC layer to 40-kDa FITC-conjugated dextran [28] revealed

that coculture of ECs with the 10T1/2 cells enhanced EC barrier

function compared to that of ECs alone (Figure 6B). The reduction

in permeability by the ALK5 inhibitor SB-431542 further

implicates ALK5 signaling in the maintenance of EC barrier

function.

Effect of TGF-b inhibition on the ultrastructure of the
retinal vasculature

TEM of capillaries in the ganglion cell layer of mice expressing

Ad-null revealed normal ultrastructure, with close apposition

between ECs and pericytes, a defined extracellular space, and few

vacuoles (Figure 7A). In contrast, retinal microvessels of sEng-

expressing mice were characterized by multiple abnormalities,

particularly in the superficial vascular plexus. The luminal surface

of some ECs exhibited a ruffled appearance, with luminal

projections and increased vacuoles (Figure 7B). Nuclear conden-

sation associated with apoptosis was apparent in some, but not all

pericytes (Figure 7C) and ECs (Figure D), and, consistent with our

findings of non-perfusion and impaired NO formation in sEng

expressing mice, many vessels appeared completely or partially

collapsed (Figures 7E and 7F).

TGF-b inhibition leads to morphological and functional
changes in neural retina

TUNEL staining revealed an increase in the number of

apoptotic cells in the ganglion cells layer, the inner, and outer

nuclear layers of the retina (Figure 8A). Increased apoptosis in

sEng-expressing mice was supported by a significant increase in

cleaved-caspase 3 by western blot analysis of whole retinas

(Figure 8B and 8C).

To determine if the reduced retinal perfusion in sEng-expressing

mice was associated with retinal dysfunction, the electrical

response of the retina to a light stimulus was measured via

electroretinogram (ERG). Although the exact origin and genera-

tion of ERG waves remain incompletely understood, it is well

accepted that the negative a-wave originates primarily from

photoreceptor cells and the positive b-wave derives from the

electrical response between photoreceptor cells and neural cells in

the inner retina such as bipolar and amacrine cells [29]. Full-field

ERG of Ad-null expressing control mice displayed baseline a- and

b-wave amplitudes (Figure 9A). Analysis of sEng-expressing mice

seven days after virus administration exhibited a-wave amplitude

similar to Ad-null infected control, whereas the b-wave amplitude

was significantly decreased (687.1+/231.68 vs. 524.2+/229.85)

(Figure 9B).

Examination of the structural integrity of the neural retina by

TEM revealed that TGF-b neutralization led to increased

apoptosis of ganglion cells and neural cells of the INL and ONL

(Figure 8C). Apoptotic Müller and amacrine cells were identified

based on their morphology and location in the INL [30]. Ganglion

cell, Müller cell and amacrine cell apoptosis in Ad-sEng mice was

evidenced by condensed nuclei, cellular shrinkage and membrane

blebbing. Photoreceptor cell nuclei displayed similar features of

apoptosis and separation from the surrounding matrix in some,

but not all mice. Axons beneath the ganglion cells were swollen,

with apparent rupture of mitochondria.

Inhibition of TGF-b1 signaling in EC - mesenchymal cell
coculture leads to increased EC apoptosis

Since TGF-b1 acts on both EC and 10T1/2 cells via TGFbRI /

ALK5 [2], we assessed the effects of inhibiting TGF-b1 signaling

in Transwell cocultures. Whereas EC apoptosis was similar in

mono-cultures of ECs and in EC-10T1/2 cell co-cultures, addition

of SB-431542 increased endothelial apoptosis in the cocultures,

but not in EC alone, suggesting that activated TGF-b1 is a survival

signal for ECs (Figure 10A). Although 10T1/2 cell apoptosis was

significantly decreased by coculture with EC; inhibition of TGF-b
signaling with SB-431542 did not alter 10T1/2 cell apoptosis in

the cocultures (Figure 10B), indicating that TGF-b1 does not

mediate the increased mesenchymal cell survival observed in EC-

10T1/2 cell cocultures.

In order to determine the mechanism of TGF-b1’s anti-

apoptotic effect on ECs, we examined cleavage of caspase 3, a key

step in the apoptotic cascade, and the BCl-2 family of proteins,

which also plays a role in apoptosis. Addition of SB-431542

Figure 1. Systemic inhibition of TGF-b decreases retinal smad2 phosphorylation in vivo. (A) RT-PCR of adult murine retinal cDNA revealed
the presence of smad2, smad3, TGF-b1 and TGF-b3. Lanes one and two are two retinal cDNA preparations. Lane three is a negative control with no RT
enzyme. Immunohistochemical localization of pp-smad2 in retinas from (B) control (non infected animals) and (C) Ad-null and Ad-sEng-expressing
mice (day 7) revealed pp-smad2 staining in nuclei of the ganglion cell layer (arrows) and the INL (arrowheads). sEng expression led to a decrease in
the intensity of pp-smad2 staining. Scale = 50 mm. (D) Higher magnification of ppsmad2 staining in control mice, demonstrating nuclear pp-smad2 in
retinal ECs (arrow). Scale = 20 mm. (E) Western blot analysis of pp-smad2, smad2, pp-smad1/5/8 and GAPDH in mouse retinas from Ad-null and Ad-
sEng-expressing mice (day 7). sEng-expressing mice displayed a decrease in retinal pp-smad2 (F). Each lane corresponds to a protein preparation
from one mouse retina. Quantification of ppsmad2 (n = 4, * p,0.05).
doi:10.1371/journal.pone.0005149.g001
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increased cleavage of caspase 3 in ECs co-cultured with 10T1/2

cells (Figure 10C), whereas no change in cleavage of caspase 3 was

detected between ECs from mono- or co-culture. In contrast,

addition of SB-431542 decreased EC BCl-xl protein levels

(Figure 10D).

To assess the role of TGF-b1 on EC-10T1/2 interactions in a

three-dimensional coculture model, EC were cocultured with

fluorescently pre-labeled 10T1/2 cells in Matrigel. EC formed

tube-like structures, with the 10T1/2 cells associating with the

endothelial abluminal surface and mimicking their association in

vivo (Figure 10E). Addition of SB-431542 led to the dissociation of

10T1/2 cells from the EC, a reduction in the number of EC tubes

(Figure 10D), and increased apoptosis of EC but not of 10T1/2

(Figure 10F).

Discussion

Our findings reveal the existence of a constitutive TGF-b
signaling in adult mouse retina required for the survival of both

vascular and neural cells. Systemic inhibition of TGF-b led to

numerous abnormalities in the retinal microcirculation, with

impaired perfusion of the superficial vascular plexus and vascular

leakage. These findings are consistent with the expression of TGF-

b1 by pericytes and ECs of the human retinal microvasculature

[23], the requirement for TGF-b1 and its receptors in formation of

the vasculature [14,15]. Further, these observations support our

hypothesis that the relatively high ratio of pericytes to EC in the

retina, compared to other vessel beds, should lead to significant

activation of latent TGF-b1.

TEM analysis of retinas from sEng-expressing mice revealed

collapsed vessels, consistent with an impaired capacity to form NO

and to autoregulate flow. Coherent with this notion, NOS3, the

enzyme required for constitutive NO formation in ECs has been

shown to be downregulated in ECs harvested from HHT patients

[31], a pathology due to heterozygous mutations in either endoglin

or Alk1 and characterized by multiple vascular malformations.

NO facilitates blood flow by acting upon the endothelium to

maintain a non-thrombogenic surface. In addition, NO-induced

contraction and relaxation of pericytes may regulate lumen size

and thereby control capillary perfusion [32], functions supported

by pericyte expression of the muscle isoforms of actin, myosin and

tropomyosin [7]. As Pousielle’s law dictates, minor changes in

caliber of very small diameter capillaries would lead to significant

alterations in blood flow. The high ratio of pericytes to ECs in the

retina and brain may be of particular importance in regulating

local blood flow because the microvasculature of the CNS lacks

autonomic innervation and precapillary sphincters, which con-

tribute to autoregulation in other microvascular beds [33].

During new vessel assembly, mesenchymal cells are recruited to

forming capillary tubes via EC-derived PDGF-B, a process that

has been demonstrated both in vitro and in vivo [3,34]. Coculture

studies have demonstrated that contact between these two cell

types induces mesenchymal cell differentiation into mural cell

phenotype and suppression of endothelial cell proliferation and

migration - processes dependent upon TGF-b1 [2,3,35]. TGF-b1

has been shown to act on ECs via one of two type I TGF-b
receptors (ALK1 & ALK5) to regulate cell fate decisions. ALK1 is

activated in angiogenesis and its expression is diminished in adult

vessels [36] whereas ALK5 mediates the anti-proliferative and

anti-apoptotic actions of TGF-b1 signaling in ECs [37]. To

understand the inhibitory effects of TGF-b1 in quiescent adult

vasculature, ECs and mesenchymal cells were cocultured in

Transwell or 3-D Matrigel in the presence of the ALK5 inhibitor

SB-431542. Previous in vitro studies have revealed significant

differences between TGF-b1 actions in conventional 2-D cell

cultures and in 3-D matrices. In 3-D culture, TGF-b1 stimulates

EC polarization, formation of zo-1 containing junctional com-

plexes, redistribution and reorganization of the existing and newly

synthesized ECM; none of these effects are seen in parallel 2-D in

vitro experiments [38]. For these reasons we compared the effect

of TGF-b1 inhibition on EC and 10T1/2 cell apoptosis in 2-D

Transwell or 3-D cocultures. In both coculture systems, inhibition

of ALK5 led to a significant increase in endothelial, but not 10T1/

2, cell death. Analysis of EC samples from Transwell revealed an

increase in cleavage of caspase 3, concomitant with a decrease in

the anti-apoptotic BCl-xL upon TGF-b1 inhibition. Consistent

with these findings, BCl-xL has previously been described as a

negative regulator of caspase 3 [39]. Previous 2-D coculture

studies found that 10T1/2 cell-derived VEGF inhibits EC

apoptosis [40], however addition of TGF-b1 can also induce

apoptosis in the absence of supporting cells, demonstrating the

effects of TGF-b1 are context-dependent [41]. Our observation

that the presence of 10T1/2 cells did not significantly alter

endothelial apoptosis may be due to the higher levels of serum

and/or culture in Matrigel, which both contain VEGF. Further-

more, ALK5 inhibition led to a significant decrease in the number

of mesenchymal cells associated with ECs in the 3-dimensional

model, suggesting that TGF-b1 is required for the continued

association between these cells. Similarly, we have showed

previously that addition of neutralizing agents (soluble TGF-bRII)

blocks cord formation and 10T1/2 differentiation [20]. Activated

TGF-b1 blocks cell migration and leads to changes in matrix level

and composition [42] [4]; both are likely to contribute to the

observed decrease in cell association in SB-431542-treated

cocultures. Our findings are consistent with observations of

background diabetic microangiopathy in which loss of vessel-

associated pericytes is thought to underlie capillary dilation as well

as breakdown of the BRB and also a decrease in active TGF-b1 in

DR [43].

Our studies demonstrate perfusion abnormalities in sEng-

expressing mice. Results of fluorescein angiography, Evans blue

extravasation, and western blotting for association of the tight

Figure 2. Inhibition of TGF-b decreases retinal perfusion and vascular autoregulation. After fourteen days of Ad-sEng and Ad-null
expression, mice were injected with h.m.w. FITC-dextran through the left ventricle to localize perfused vessels. (A) Confocal analysis of retinal flat-
mounts revealed reduced perfusion of the retina in the sEng-expressing mice compared to the control (representative photo of n = 12 mice). Scale
bar = 200 mm. (B) The perfused vessels were visualized on retinal flat mounts by comparing the co-localization of type IV collagen (Cy3-red) and FITC
and quantified on cryosections by comparing the number of vessels in the innermost vascular plexus (arrowheads) positive for both type IV collagen-
and FITC to the number of vessels positive for type IV collagen but negative for FITC (C). (D) The retinas of sEng expressing mice show a marked
reduction in the number of perfused vessels (n = 5, ** p,0.01). (E) After seven days of adenoviral expression, blood flow rates in the tail were
measured non-invasively in response to intravascular injection of ACh. Measurements were made over 5 cycles pre-injection of ACh, normalized to 1
for each animal, and averaged at 5-cycle intervals post ACh injection. In Ad-null control mice, ACh increased tail vein blood flow rates 6–10 cycles
post-injection, whereas blood flow rates were unchanged in Ad-sEng expressing mice (Ad-null: 1.619 ml/cycle, n = 5; Ad-sEng: 0.960 ml/cycle, n = 4, *
p,0.01). Injection of 100 ml of saline in Ad-null or Ad-sEng mice elicited no response.
doi:10.1371/journal.pone.0005149.g002
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Figure 3. Inhibition of TGF-b decreases endothelial barrier function in vivo. (A) Fluorescein angiography of the retina was performed seven
days following adenovirus injection. Ad-sEng-expressing mice displayed increased retinal permeability compared to control mice. The increased
fluorescence leakage into the vitreous was observable at two min. Representative photographs are shown (n = 4). (B) Experimental mice infected for
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junction proteins occludin and zo-1 suggest that endogenous TGF-

b1 is required to maintain the BRB. In concordance with these

observations in vivo, coculture of ECs and 10T1/2 cells led to

enhanced EC barrier function, and the addition of the ALK5

inhibitor reversed this effect and reduced coculture-induced

association between occludin and zo-1. Furthermore, previous

reports demonstrate that systemic administration of a TGF-bR1

inhibitor (Calbiochem: LY364947) increases tumor vessel perme-

ability [44] and smad4 deficient mice exhibit defects in vascular

integrity and maturation as well as abnormal gap junction

formation [45]. Furthermore, the finding that permeability defects

in Akt(2/2) mice can be rescued with addition of TSP-1 and

TSP-2, both potent activators of TGF-b1 in vivo [46], further

support a role for TGF-b1 in the maintenance of the BRB. These

results suggest that locally activated TGF-b1 is critical for optimal

endothelial barrier function and are in agreement with our

previous reports demonstrating that TGF-b1 induced by astro-

cytes contacting ECs contributes to the maintenance of the blood-

neural-barrier [47].

While there was no change in the levels of the tight junction

proteins zo-1 and occludin in retinas from sEng-expressing mice

(data not shown), there was a decrease in association between these

proteins, a characteristic feature of tight junction disassembly [28].

Similarly, the coculture-induced association between occludin and

zo-1 was reversed with addition of the ALK-5 inhibitor. Integrity

of inter-endothelial junctions is regulated by multiple parameters

including cytoskeletal tension, junctional protein-protein interac-

tion and connection between junctional proteins and the actin

cytoskeleton. Each of these determine the intercellular cleft size

and degree of permeability. For example, binding of zo-1 to the

COOH-terminal cytoplasmic tail of occludin plays a role in

maintaining the tight junction and also cytoskeletal tethering [48],

whereas previous studies describe the association of occludin/zo-1

as dependent upon both tyrosine phosphatase signaling and also

protein kinase C [49].

High levels of circulating sEng also led to significant neural cell

apoptosis, particularly of the ganglion cells and neural cells of the

INL. The pattern of apoptotic cells correlated well with the

localization of pp-smad2, the direct downstream target of TGF-b1,

suggesting that the apoptosis and functional defects of neural

retinal cells are the direct effect of a role for TGF-b1 or TGF-b3 as

a survival factor. In support of this notion, TGF-b1 has been

described in the monkey and human ganglion cells of the retina,

the outer plexiform layer (OPL), the axon bundles in the nerve

fiber layer; and the associated ganglion cell bodies proximal to the

basal lamina comprising the inner limiting membrane [50]. The

TGF-b1 precursor molecule LC pre-pro is evident in the

photoreceptor outer segments, the OPL and Muller cell endfeet

cytoplasm. In normal adult rat retinas, both protein and mRNA of

TGF-bRI and TGF-bRII are present in the ganglion cells [51].

TGF-b3 is not associated with microvascular cells, but is present in

neural cells of the ganglion cell layer, the inner nuclear layer and

some photoreceptor cells. The expression of TGF-receptors and

pp-smad2 in normal retinas suggests that TGF-b plays an

important role in the homeostasis of normal retina [52], with

effects independent of the vasculature. These findings of impaired

retinal function with inhibition of TGF-b have important

implications for understanding both vasoproliferative and vascular

degenerative retinal diseases.

14 days were injected intravenously with 2% Evans blue in PBS, followed by systemic PBS perfusion 40 min later. The eyes were removed, retinas
dissected and quantified for Evans blue/albumin leakage. Inhibition of TGF-b resulted in a significant increase in the leakage of Evans blue into the
extravascular space (n = 5, * p,0.05). (C) TEM micrographs of the inner retinal vasculature revealing tight junctions of Ad-null and sEng-expressing
mice (day 14). sEng mice displayed alterations in tight junction structure, with disturbed interdigitation between adjacent ECs (arrow), a reduction in
condensed regions characteristic of tight junctions and appearance of cellular debris between adjacent ECs (arrow). Scale = 0.5 mm. (D)
Immunoprecipitation of occludin and western blotting for zo-1 demonstrated a significant decrease in association between occludin and zo-1 in
lysates prepared from retinas of sEng-expressing mice (day 7). Each lane corresponds to an individual mouse (n = 4, * p,0.05).
doi:10.1371/journal.pone.0005149.g003

Figure 4. Co-culture of endothelial/mesenchymal cells acti-
vates endothelial smad2/3 signaling. (A) Transient transfection of
ECs with CAGA-Luc smad2/3 reporter revealed that co-culture with
10T1/2 cells activated smad2/3 signaling. Pharmacological inhibition of
TGF-b with 10 mM SB-431542 reversed this activation. (B) Co-culture of
ECs with 10T1/2 cells did not alter phosphorylation of EC smad1/5/8.
doi:10.1371/journal.pone.0005149.g004
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Figure 5. Inhibition of TGF-b decreases endothelial barrier function in vitro. (A) SEM analysis demonstrated a characteristic endothelial
cobblestone morphology in EC monocultures. Co-culture enhanced the association between adjacent cells, which was reversed with addition of SB-
431542. Scale bars = 100 mm (left panel); 10 mm (right panel). Cell size was calculated by tracing individual ECs using ImageJ. Morphology of 10T1/2
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Materials and Methods

RNA isolation and PCR
Retinas were dissected, and pooled for RNA extraction using a

RNAqueous - 4PCR kit (Ambion). RNA was reverse-transcribed

using Superscript II reverse transcriptase (Invitrogen). Standard

PCR was performed with 1 U Taq DNA polymerase (Roche

Diagnostics) and 0.2 mM of appropriate primer pair for 30 cycles.

Genes monitored were smad2, smad3, TGF-b1, TGF-b3 and

glyceraldehyde phosphate dehydrogenase (GAPDH). Primer pairs

(Invitrogen) used were smad2 (For: CGGAGATTCTAACA-

GAACTG; Rev: TGCTTGAGCATCGCACTGAA), smad3

(For: AGCACACAATAACTTGGACC; Rev: TAAGACA-

CACTGGAACAGCGGATG), TGF-b1 (For: GCTGCGCTT-

GCAGAGATTAAA; Rev: TTGCTGTACTGTGTGTCCAG),

TGF-b3 (For: GCTCTTCCAGATACTTCGAC; Rev: AG-

CAGTTCTCCTCCAGGTTG) and GAPDH (For: GTGG-

CAAAGTGGAGATGGTTGCC; Rev: GATGATGACCCG-

TTTGGCTCC). Following PCR, reaction products were ana-

lyzed by agarose gel electrophoresis on 2.5% gels with 100 bp

ladders as size standards, and visualization by ethidium bromide

staining.

Animals
All animal protocols were approved by the Schepens Eye

Research Institute IACUC and mice were handled in accordance

cells from cocultures with ECs was not visibly altered when compared to 10T1/2 monoculture or with the addition of SB431542. (B) Analysis of EC size
in monoculture or coculture with 10T1/2 cells (+/2SB431542). Coculture did not significantly alter average cell size, however, EC size were more
uniform when compared to EC mono-cultures. Addition of SB431542 led to larger and more heterogenous cell size.
doi:10.1371/journal.pone.0005149.g005

Figure 6. Inhibition of TGF-b impairs endothelial tight junction
protein association. (A) Assay of tight junction components in
Transwell cocultures of EC and 10T1/2 cells. Immunoprecipitation of
occludin and western blotting for zo-1 revealed a significant increase in
association between occludin and zo-1 in coculture compared to
monocultures (* p,0.05), which was reversed by the addition of SB-
431542. Non-specific IgG was used as a control for IP. (B) Assay of
permeability in Transwell cocultures. Coculture of BAECs with 10T1/2
cells increased EC barrier function as measured by decreased flux of
FITC-dextran from the upper to lower chamber. Addition of SB-431542
increased permeability of BAEC/10T1/2 cocultures.
doi:10.1371/journal.pone.0005149.g006

Figure 7. Ultrastructure of retinal vasculature following
inhibition of TGF-b. (A) TEM micrograph of a microvessel in the
ganglion cell layer from a retina of a control mouse expressing Ad-null
(day 14). Nuclei of an EC and pericyte are apparent, with a defined
basement membrane (arrow). (B)–(F) TEM micrographs of the retinal
vessels from mice expressing Ad-sEng. (B) The lining of some ECs
appeared ‘ruffled’ with finger-like processes protruding into the luminal
space and multiple vacuoles within the cytoplasmic space (arrow).
Nuclear condensation characteristic of apoptosis was apparent in some
(C) pericytes and (D) ECs (arrows). (E) (F) Numerous vessels in the inner
retinal layers displayed significant reductions in luminal diameter
(arrows). (A)–(F) Scale = 2 mm.
doi:10.1371/journal.pone.0005149.g007
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with the ARVO statement for the Use of Animals in Ophthalmic

and Vision Research. For in vivo neutralization of TGF-b, adult

CD-1 mice were injected via tail vein with 1610‘10 viral particles

(VP) Ad-CMV-null (Ad-null) or 2.5610‘9 VP Ad-CMV-sEng

(Ad-sEng) (Q Biogene, Montreal, Canada) with the day of

injection considered as day zero. Blood was collected in EDTA

tubes on day seven by submandibular vein or by cardiac puncture

on day 14 and plasma was collected and stored at 280uC. Plasma

sEng, measured via ELISA (R&D Systems, Minneapolis, MN),

was approximately 200 ng/ml seven days following injection.

Figure 8. Inhibition of TGF-b increases retinal cell apoptosis. (A) Following 14 days of infection with Ad-null or Ad-sEng, retinas were
examined for apoptotic cells via TUNEL staining. Retinas of sEng-expressing mice displayed a significant increase in the number of apoptotic cells. In
the control retinas, occasional cells of the inner nuclear layer (INL) could be marked as apoptotic (arrowheads). Positive control tissue sections were
treated with DNAse enzyme. Retinal sections were lightly counter-stained with hematoxylin QS to reveal nuclei (blue). Expression of sEng led to the
induction of apoptosis of most of the cells in both the ganglion cell layer (arrows) and in the INL (arrowheads). Scale = 100 mm. (B) Lysates of whole
retinas were analyzed via western blotting for cleaved caspase 3 levels. Inhibition of TGF-b led to increased cleaved caspase 3 as compared to control
mice. (C) Quantification of (B) (* p,0.05).
doi:10.1371/journal.pone.0005149.g008

TGF-b Signaling in the Retina

PLoS ONE | www.plosone.org 11 April 2009 | Volume 4 | Issue 4 | e5149



TGF-b Signaling in the Retina

PLoS ONE | www.plosone.org 12 April 2009 | Volume 4 | Issue 4 | e5149



SDS-PAGE and immunoblot analysis
Cell pellets were treated with lysis buffer and equal protein was

fractionated by 10% (wt/vol) polyacrylamide resolving gels. After

transfer to nitrocellulose membranes, non-specific protein binding

was blocked by a 60-min incubation in PBS-T (phosphate-buffered

saline, 0.1% Tween-20) containing 5% (wt/vol) nonfat skim milk.

Membranes were then incubated overnight at 4uC with either pp-

smad2 (1:100; Chemicon, Temecula, CA) or caspase 3 (1:100; Cell

Signaling) antibodies diluted in PBS-T with 2.5% BSA. After two

10-min washes with PBS-T, membranes were incubated with

horseradish peroxidase–conjugated rabbit polyclonal IgG anti-

body (1:300) for 90 min at room temperature. After two further

washes with PBS-T, immunoreactive proteins were identified by

enhanced chemiluminescence. Scanning densitometry was per-

formed with image-analysis software (ImageJ).

Changes in occludin/zo-1 co-association were monitored by

immunoprecipitation, performed as previously described [53] with

minor modifications. Cells lysates (50 mg) were incubated with

1.75 mg of anti-occludin antibody (final volume of 500 ml) and

incubated overnight at 4uC with continuous rotation. Complexes

were captured with 50 ml protein A beads (50% slurry; Upstate),

washed in PBS, resuspended in 25 ml of SDS-PAGE sample buffer

and heated for 5 min at 90uC. Beads were pelleted and

supernatant examined by Western blotting as described above

with anti-zo-1 antibodies (1:500; Zymed).

Immunohistochemistry
Cryosections were blocked with 0.2% Tween, 3% donkey

serum and 3% goat serum in PBS (Sigma, St Louis, MO), then

incubated overnight at 4uC with primary antibodies diluted in

blocking solution (pp-smad2, 1:500; Chemicon, Temecula, CA).

Secondary antibody of biotin-conjugated goat anti-rabbit (Vector

Labs, Burlingame, CA) were added, and were visualized with

avidin-biotin-peroxidase technique and 3, 39-diaminobenzidine

(DAB) substrates (Vector ABC kit). Each experiment included a

section incubated with isotope-matched IgG as a negative control.

Images were captured with a Zeiss Axioskop 2 MOT plus

microscope.

Fluorescein perfusion
Following 14 days of infection, mice were perfused with seven

ml of fluorescein dextran 2610‘6 m.w. (Sigma, St Louis, MO)

(50 mg/ml in 4% paraformaldehyde) in PBS pre-warmed to 37uC.

Perfusion was accomplished from a 21-gauge cannula inserted into

the aorta via the left ventricle, allowing blood and fixative to exit

via an opening in the right atrium. Tissues were removed, fixed in

4% paraformaldehyde at 4uC overnight and processed for

cryosections or retinas were isolated and flat-mounted for

visualization by confocal fluorescence microscopy using a Leica

TCS Sp2 confocal microscope. Composites were generated using

Adobe Photoshop.

Quantification of vascular perfusion
Cryosections (10 mm) of retinas from mice perfused with FITC-

dextran were blocked overnight at 4uC (in PBS, 0.2% Tween, 3%

donkey serum and 3% goat serum), then incubated at 4uC
overnight with rabbit anti-collagen type IV polyclonal (1:400;

Abcam, Cambridge, MA) followed by a rhodamine-conjugated

anti-rabbit secondary antibody (1:300; Jackson Immunoresearch,

West Grove, PA). Perfusion of retinal vessels in the ganglion cell

layer was measured by comparing the number of collagen IV-

positive vessels to the number of FITC positive vessels on

successive cryosections. For each animal, three cryosections

separated by 150 mm were quantified.

Blood flow autoregulation
To assess peripheral autoregulation capacity, flow rates (ml/

cycle) were measured in the tail using a CODA 6 non-invasive

blood pressure system (Kent Scientific, Torrington, CT) under 2%

isoflurane anesthesia. Seven days post injection, baseline flow rates

were established in Ad-null or Ad-sEng mice, before measuring

vasoactive response to retro-orbital injection of 12.5 mg/kg

acetylcholine (Ach) (total volume 100 ml), an endothelium

dependent vasodilator.

Fundus angiography
Seven days after adenovirus injection, mice were anesthetized

and their pupils dilated with 1% atropine sulfate. Fluorescein

angiography was performed after intraperitoneal injection of

0.05 ml of 25% fluorescein sodium (Akron). Photographs were

taken with a preset 20D lens appositioned to the fundus camera

lens at regular time (from 1 min to 4 min post I.P injection).

Evans blue permeability
Vascular permeability was assessed using Evans Blue as

previously described [17]. Seven days after injection, mice were

anesthetized and injected via tail vein with 2% Evans Blue dye.

After 40 min mice were perfused via heart puncture with PBS

containing 2 mM EDTA for 20 min. Retinas were harvested and

incubated in formamide and rotated at 70uC for 24 hr.

Supernatants containing extravascular Evans blue were collected

after centrifugation at 14,000 rpm for 10 min. The optical density

(OD) was measured at 620 nm. The following formula was used to

correct OD for contamination with heme pigments: OD620

(corrected) = OD6202(1.3266OD740+0.030).

Transmission electron microscopy (TEM)
Following 14 days of adenoviral infection, mice were perfused

with fluorescein as described above except that 10 ml sodium

cacodylate buffer 0.2 M, pH 7.4, followed by 10 ml of half

strength Karnovsky’s fixative was used. Retinas were dissected and

fixed with half strength Karnovsky’s fixative, followed by 2%

osmium tetroxide and en block stain with 0.5% uranyl acetate.

After dehydration and embedding, ultra-thin sections were

visualized using a Phillips 410 transmission electron microscope.

Scanning electron microscopy (SEM)
Transwell cultures were washed in PBS and fixed in half-

strength Karnovsky fixative, rinsed in PBS and dehydrated in a

Figure 9. Inhibition of TGF-b leads to functional and morphological changes in retinal neural cells. (A) Following seven days of infection
with Ad-null or Ad-sEng, retinal function was examined by scotopic ERG recording. (B) Inhibition of TGF-b did not alter the a-wave response, however
b-wave was significantly decreased in Ad-sEng mice (n = 5, * p,0.05). (C) TEM of retinas from mice expressing Ad-null or Ad-sEng (day 14). Ganglion
cells of sEng-expressing mice displayed features characteristic of apoptosis, with condensed nuclei (white arrow), cellular shrinkage and separation
from surrounding extracellular matrix. Microvessels in Ad-null-infected mice appear normal in GCL and in the INL. Apoptosis was evident in the INL of
sEng-expressing mice with separation of cells from surrounding tissue creating empty spaces (arrows) and apoptosis was apparent in the ONL of
some sEng-expressing mice. Scale = 5 mm.
doi:10.1371/journal.pone.0005149.g009
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graded series of ethanol solutions. After drying in a critical point

dryer (Samdri-795; Tousimis, Rockville, MD), samples were

coated with a 150A carbon layer (Ion Beam Coater; Gatan,

Pleasanton, CA). Cell images were captured on a scanning

electron microscope (FESEM 7401F; Field-Emission Scanning

Electron Microscope; JEOL, Peabody, MA) using backscatter

detection to visualize the gold labeling.

Cell culture
For cocultures, 10T1/2 cells were cultured on the underside of

Transwell inserts (0.4 mm pore size, Co-star) for four days at

confluence before addition of BAECs and culture for a further

three days in DMEM 10% FBS. The TGF-b signaling inhibitor,

SB-431542 (Tocris) (10 mM), which inhibits ALK5, but not ALK1,

kinase activity, [54] was added in DMEM containing 1% FBS for

24 hr. Control wells contained equivalent volumes of DMSO.

For 3 dimensional cocultures, 8.06104 BAECs and 2.06104

10T1/2 cells were cocultured for five days in 400 ul of 50%

MatrigelTM(BD Biosciences) in 10% FBS, 40% DMEM, 10 ng/ml

VEGF (obtained from the NIH-NCI Preclinical Repository).

Media containing 10% FBS overlaid each gel. To distinguish

between the two cell types, 10T1/2 cells were pre-labeled with

PKH26 red fluorescent linker dye (Sigma, St Louis, MO). To

examine effects of ALK5 inhibition, 10 mM SB-431542 was added

for 72 hr in DMEM containing 1% FBS. Control gels were treated

with equivalent amounts of DMSO. Apoptotic cells were detected

using the VybrantH Apoptosis Assay Kit (Invitrogen, Carlsbad,

CA) followed by FACS analysis using a FACSCAN flow

cytometer.[55] Cells were retrieved from Matrigel with BD cell

recovery solution (BD Biosciences) as per the manufacturer’s

instructions.

Transendothelial permeability assay
BAECs-10T1/2’s were grown on Transwell filters in the

presence or absence of SB-431542 (10 mM). FITC-dextran

(0.5 mg/ml; 40 kDa; Sigma, St Louis, MO) was added to the

upper chamber. Aliquots (100 ml) were collected over time from

the lower chamber (5, 15, 30, 60, 120, 240 min). The liquid

volume and hydrostatic pressure in the lower chamber were

maintained by replenishing 100 ul of media (+/2SB-431542) to

the lower chamber at each time point. Fluorescence measurements

were determined immediately using a fluorescence reader

(excitation maximum 490 nm; emission maximum: 520 nm).

Electroretinogram recording (ERG)
Retinal function was assessed using a UTAS-E3000 recording

system (LKC, Technologies, Inc. Gaithersburg, MD). Mice were

dark-adapted for 6 hr and anesthetized with a mixture of

ketamine/xylazine (120 mg/kg and 10 mg/kg, respectively).

Pupils were dilated with drops of 1% tropicamide and 1.5%

cyclopentolate. The active electrode was a gold wire loop on the

cornea, the reference electrode was placed in the head, and the

ground electrode was placed in the back. Each mouse was placed

in front of a Ganzfeld bowl (UTAS3000; LKC Technologies) that

presented a series of flashes with increasing intensity. ERG

response to a series of increasing intensity light flashes: +10-dB was

averaged over 10 separate flashes per light intensity. The inter-

stimulus interval was 1 minute for all flash intensities. The a-wave

amplitude was measured from the baseline to the trough of the first

negative wave and the b-wave amplitude was measured from the

trough of the a-wave to the peak of the positive wave or when the

a-wave was not present, from baseline to the peak of the positive

wave.

TUNEL assay
Apoptotic cells were detected using the Promega Dead End

HRP kit (Promega, Madison, WI), following the manufacturer’s

procedure with some modifications. Sections were permeabi-

lized for 5 min in cold PBS containing 0.2% Tween-20, then

pre-equilibrated with equilibration buffer and incubated at

37uC in TUNEL reaction mix containing biotinylated nucle-

otides and TdT (terminal deoxynucleotidyl transferase) en-

zyme. The reaction was terminated after 1 hr with 26 SSC

solution for 15 min at RT. Biotinylated nucleotides were

detected by incubation with Strepavidine-HRP followed by

DAB incubation. Staining was stopped by washing in PBS and

sections were lightly counterstained with hematoxylin prior to

mounting.

Statistical analysis
In all experiments, unless otherwise indicated, data are reported

as mean6SD in at least 3 replicates per group. Data were

analyzed by student’s unpaired T-Test. P values ,0.05 were taken

to indicate statistical significance.
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Figure 10. Inhibition of TGF-b signaling in EC-10T1/2 cell coculture leads to increased EC apoptosis. (A–B) Transwell cocultures of BAECs
and 10T1/2 cells in the presence and absence of SB-431542, an inhibitor of ALK5. (A) Coculture of BAEC and 10T1/2 did not alter baseline levels of
BAEC apoptosis. Addition of SB-431542 led to a significant increase in BAEC apoptosis in cocultures, but not monocultures. (B) Culture of 10T1/2 cells
in the presence of BAECs significantly decreased baseline rates of 10T1/2 cell apoptosis. Addition of SB-431542 did not alter 10T1/2 cell apoptosis in
either monoculture or in coculture with BAECs. Addition of SB-431542 increased cleavage of EC caspase 3 in co-culture with 10T1/2 cells (C) whereas
the anti-apoptotic BCl-xl decreased (D). (E) Coculture of BAECs (unlabelled) in direct coculture with 10T1/2 cells (red) led to the formation of tube-like
structures by EC, with 10T1/2 cells wrapped around and in close association with tubes. Addition of SB-431542 to BAEC-10T1/2 cocultures, after tubes
had formed, led to the dissociation of 10T1/2 cells from the ECs and disassembly of tube-like structures. (F) Annexin V FACs assay for apoptosis of
BAECs and 10T1/2 cells from (E) demonstrated a significant increase in EC apoptosis. Cells were retrieved using Matrigel dissociation solution and
distinguished as red (10T1/2) or unlabeled (BAEC). Baseline apoptotic rates of both cell types in Matrigel are high as the cells that do not form tubes
remain in the matrix and undergo apoptosis. Each experiment is representative of at least three independent experiments with similar results.
doi:10.1371/journal.pone.0005149.g010
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