
Computational and Structural Biotechnology Journal 23 (2024) 834–842

Available online 29 January 2024
2001-0370/© 2024 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Microbial functional pathways based on metatranscriptomic profiling 
enable effective saliva-based health assessments for precision wellness 

Eric Patridge a, Anmol Gorakshakar a,1, Matthew M. Molusky a,1, Oyetunji Ogundijo a, 
Angel Janevski a, Cristina Julian a, Lan Hu a, Momchilo Vuyisich b, Guruduth Banavar a,* 

a Viome Research Institute, Viome Life Sciences Inc., New York City, USA 
b Viome Research Institute, Viome Life Sciences Inc., Seattle, USA   

A R T I C L E  I N F O   

Keywords: 
Saliva 
Metatranscriptomics 
Oral microbiome 
Functional pathways 
Oropharyngeal disease 
Precision wellness 

A B S T R A C T   

It is increasingly recognized that an important step towards improving overall health is to accurately measure 
biomarkers of health from the molecular activities prevalent in the oral cavity. We present a general method-
ology for computationally quantifying the activity of microbial functional pathways using metatranscriptomic 
data. We describe their implementation as a collection of eight oral pathway scores using a large salivary sample 
dataset (n = 9350), and we evaluate score associations with oropharyngeal disease phenotypes within an unseen 
independent cohort (n = 14,129). Through this validation, we show that the relevant oral pathway scores are 
significantly worse in individuals with periodontal disease, acid reflux, and nicotine addiction, compared with 
controls. Given these associations, we make the case to use these oral pathway scores to provide molecular health 
insights from simple, non-invasive saliva samples, and as molecular endpoints for actionable interventions to 
address the associated conditions.   

1. Introduction 

Billions of people are impacted by oral diseases such as dental caries, 
periodontal gum disease, oral pre-malignancies like leukoplakia, and 
oral cancers [1,2]. The number of people affected by them continues to 
grow for a variety of reasons, including the availability and affordability 
of food with high sugar content [3], a lack of reliable oral cancer 
screening tools [4], and limited success of effective oral health care 
services in communities [5], including regular access to fluoride [6,7]. 

The oral cavity is the primary gateway to the body, and it hosts a 
complex environment which plays vital functional roles [8,9]. Both the 
oral microbiome and the oral immune system defend against a vast array 
of pathogens [10–13], but when either of these components is impaired, 
the oral cavity can support pathogenic activity, leading to chronic oral 
inflammation [14–17]. Since digestion begins in the oral cavity [18,19], 
the impairment of either component can lead to digestion-related health 
issues, including putrefaction of foods and host proteins within the 
mouth [20]. Halitosis (bad breath), gum disease, and oropharyngeal 
cancers are just a few of the conditions or diseases research suggests may 
coincide with an impaired oral microbiome and/or oral immune system 

[21–26]. 
Poor oral health may point to underlying health issues, since bi- 

directional associations exist between oral health and systemic health 
[27]. For example, left unchecked, chronic oral inflammation may 
advance to gum disease, and is linked to several conditions beyond the 
oral cavity, including diabetes, cardiovascular diseases, and Alzheimer’s 
disease [28–32]. Similarly, chronic halitosis is associated with Heli-
cobacter pylori infections, liver disease, and gastroesophageal reflux 
disease [33–35]. Bi-directional associations like these are opportunities 
for health professionals to act on findings from early risk assessments 
and encourage proactive healthcare measures [36]. 

To improve oral health, and indirectly, some aspects of systemic 
health, the existing prophylactic and therapeutic healthcare efforts can 
be augmented with non-invasive wellness tools that comprise molecular 
tests, diet changes, and supplement use [37,38]. As many have already 
shown, oral diagnostics are non-invasive tools to identify and address 
existing health issues [4], but these are reactive measures and generally 
not useful to proactive healthcare efforts [39–41]. In fact, there are still 
relatively few options which individuals or health professionals can 
leverage in the pursuit of proactive efforts for general healthcare [42]. 

* Corresponding author. 
E-mail address: guru@viome.com (G. Banavar).   

1 Equal contribution. 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2024.01.018 
Received 1 November 2023; Received in revised form 25 January 2024; Accepted 25 January 2024   

mailto:guru@viome.com
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.01.018
https://doi.org/10.1016/j.csbj.2024.01.018
https://doi.org/10.1016/j.csbj.2024.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.01.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 834–842

835

We believe that an important step towards effective general health-
care is to provide deep health insights into the molecular activities 
prevalent in the oral cavity. Our recent efforts include a saliva-based test 
that measures the entire oral metatranscriptome [43] as well as the 
application of this test for personal wellness. A major aspect of our 
personalized precision wellness application is to provide each individual 
a detailed assessment of their molecular activities as a set of oral 
pathway scores. Microbial functions are far more important for human 
health than taxonomy [44–47], so each oral pathway score leverages the 
high-resolution detection of microbial functional features (i.e., micro-
bial gene expression) captured as KEGG Orthologs [48,49], or KOs, 
within the oral metatranscriptome. In the present context, each pathway 
score is defined as a set of well-understood microbial biochemical 
functions that have been tied to various health conditions in the litera-
ture or clinical domain. The scope of the score and decisions to include 
or exclude specific functions are curated by domain experts using as-
sociations with various health conditions. Through this approach, these 
pathway scores focus on oral host-microbiome interactions that main-
tain human health and can assist in developing methods to modulate 
microbial activities for improved health. 

This paper aims to describe (1) oral pathway scores designed to 
assess common oral and systemic health issues, developed through a 
well-defined, data-driven process, (2) the computational development 
methodology of saliva-based oral pathway scores using a large devel-
opment cohort (n = 9350), and (3) their validation against well-known 
oropharyngeal and related diseases within a large independent cohort 
(n = 14,129). 

2. Materials and methods 

All samples and metadata were obtained from customers who pur-
chased Viome’s Full Body Intelligence kits. These individuals were at 
least 18 years old at the time of sample collection, and they either 
completed a research Informed Consent Form (approved by an HHS- 
registered Institutional Review Board; IRB Number: IRB00011543; 
IORG Number: IORG0009710) or agreed to have their data analyzed in 
the terms and conditions during their purchase. 

Full Body Intelligence kits are shipped directly to participants’ 
homes. Each kit includes a saliva collection tube, along with a built-in 
insert that serves two functions: 1) a funnel to ease saliva collection, 
and 2) a press-sealed chamber with RNA Preservation Buffer (RPB) to 
preserve the RNA integrity at the time of collection. RPB has been 
clinically validated to preserve RNA for up to 28 days at room temper-
ature [43]. 

After (unstimulated) saliva collection, removal of the built-in insert 
releases RPB. The user then caps the saliva collection tube, mixes the 
RPB with saliva, and ships the sample at room temperature. Upon arrival 
in the lab, the saliva/RPB mixture is aliquoted into cryogenic tubes and 
stored at − 80 ◦C in the biobank. 

At the time of sample collection, participants also answer a 
comprehensive questionnaire describing their lifestyle, oral hygiene, 
dietary preferences, and health history. Relevant lifestyle questions 
include tobacco use and alcohol intake. Relevant oral hygiene questions 
include mouthwash use, brushing habits, and flossing habits. Relevant 
dietary preferences include caffeine intake. Health history is collected 
from both a multi-select question and open text response, resulting in 
hundreds of self-reported condition and disease phenotypes. Relevant 
self-reported health history includes gingivitis, acid reflux, nicotine 
addiction, dry mouth, kidney disease, kidney cyst, and Sjögren’s syn-
drome. All study data are de-identified; data analysis team members 
have no access to personally identifiable information. 

2.1. Cohort development 

To facilitate health insights from saliva samples, we develop and 
validate wellness scores in the context of reference cohorts that are 

representative of the general adult population. Each cohort is composed 
of approximately 10,000 samples and excludes outliers based on age, 
birth sex, and body mass index. 

For the score development cohort, additional criteria serve to 
diminish artifacts related to sequencing depth or data sparseness; cohort 
samples contain a total count of more than 1700 KOs, with a total read 
count of at least 70,000. The final cohort for score development is 
composed of 9350 saliva samples from adults (59.4% female; see  
Table 1). For independent validation of scores, the final cohort is 
composed of 14,129 saliva samples from adults (62.9% female; see 
Table 1) that were not part of the score development cohort. 

2.2. Metatranscriptomic analysis 

Saliva samples are collected and analyzed from individuals who fast 
and do not brush their teeth or use a mouthwash for at least 8 h. The 
complete set of transcripts (RNA molecules) from each saliva sample is 
quantified using previously reported metatranscriptomic techniques 
[43], yielding both the primary sequence and read count for each 
transcript. The bioinformatics method aligns each sequencing read to 
microbial genomes as follows: Viome maintains a custom reference 
catalog which includes 32,599 genomes from NCBI RefSeq release 205 
‘complete genome’ category, 4644 representative human gut genomes 
of UHGG [50], ribosomal RNA (rRNA) gene sequences, and the human 
genome GRCh38 [51]. These genomes cover archaea, bacteria, fungi, 
protozoa, phages, viruses, and the human host. The microbial genomes 

Table 1 
Representative anthropometric, sociodemographic, oral hygiene, and lifestyle 
metrics of the development and validation cohorts. (Mean ± SD for continuous 
variables).   

Score Development Cohort 
(n = 9350 saliva samples) 

Independent Validation Cohort 
(n = 14,129 saliva samples) 

Female 59.4% 62.9% 
Age (years) 46.2 ± 13.0 46.0 ± 13.1 
BMI (kg/m2) 26.1 ± 5.4 25.8 ± 5.2 
Ethnicity 74.2% White 

From the remaining 25.8%: 
28.1% Multi-ethnic 
28.9% Hispanic or Latino 
19.2% Asian 
11.1% Black/African 
American 
5.6% Arab or Middle Eastern 
7.0% Other 

73.4% White 
From the remaining 26.6%: 
26.7% Multi-ethnic 
29.1% Hispanic or Latino 
19.9% Asian 
10.6% Black/African 
American 
6.7% Arab or Middle Eastern 
6.9% Other 

Tobacco use 8.7% Current smoker 
13.3% Former smoker 
78.0% Never smoker 
0.0% No answer 

8.3% Current smoker 
13.4% Former smoker 
78.2% Never smoker 
0.1% No answer 

Alcohol intake 25.5% Heavy drinker 
60.6% Light/Moderate drinker 
9.2% Former drinker 
4.5% Abstainer 
0.2% No answer 

22.9% Heavy drinker 
62.5% Light/Moderate drinker 
9.8% Former drinker 
4.7% Abstainer 
0.1% No answer 

Caffeine intake  
(drinks) 

1.5% High intake 
19.2% Moderate intake 
63.1% Low intake 
16.1% Do not consume 
0.1% No answer 

1.3% High intake 
20.1% Moderate intake 
62.2% Low intake 
16.3% Do not consume 
0.1% No answer 

Mouthwash 
use 

23.8% Yes 
75.9% No 
0.3% No answer 

23.7% Yes 
76.1% No 
0.2% No answer 

Brushing habit 64.9% Two or more times a 
day 
30.9% Once a day 
4.0% Not every day 
0.2% No answer 

67.1% Two or more times a 
day 
29.3% Once a day 
3.4% Not every day 
0.2% No answer 

Flossing habit 9.0% Twice or more per day 
35.5% Once a day 
36.7% Less than once a day 
18.6% Do not floss 
0.2% No answer 

9.7% Twice or more per day 
36.6% Once a day 
35.6% Less than once a day 
18.0% Do not floss 
0.1% No answer  
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have 98,527,909 total annotated genes. We adopt KEGG Orthology (KO) 
[48,49] to annotate the microbial gene functions using eggNOG-mapper 
[52]. The microbiome pipeline maps paired-end reads to this catalog 
using Centrifuge [53] for taxonomy classification (at all taxonomic 
ranks). Reads mapped to the host genome and rRNA sequences are 
tracked for monitoring, but excluded from further analysis. Reads 
mapped to microbial genomes are processed with an 
Expectation-Maximization (EM) algorithm [54] to estimate the expres-
sion level (or activity) in the sample. Respective taxonomic ranks 
(strains, species, genera, etc.) can be easily aggregated from the ge-
nomes. For this study, we use species activity in the downstream ana-
lyses. These genome mapped reads are extracted and mapped to only 
gene or open reading frame (ORF) regions for molecular function or KO 
annotation and quantification. The KOs we identify from saliva samples 
are used for downstream analyses including score development, vali-
dation, and eventually, scoring of new samples. 

2.3. Score development framework 

With the goal of delivering health insights based exclusively on mi-
crobial functions (i.e., gene expression) from the oral microbiome, we 
adopt an iterative and multistep process for developing wellness scores. 
All scores described in this paper comprise only microbial KOs. Within 
the finalized scores, each KO contributes a certain weight to the score, 
either in a positive or negative direction. To develop the scores, we 
examine domain concepts such as the activities associated with micro-
bial colonization, consumption of salivary proteins, consumption of di-
etary mono and disaccharides, destruction of host tissues in the mouth, 
etc. We identify the microbial KOs associated with these physiological 
processes. The normalized expression value of each KO is aggregated 
with computationally determined weights applied to each, based on the 
first component of Principal Component Analysis (PCA). The final 
scores, when applied to a large cohort, exhibit a gaussian-like curve 
which stratify health insights across the population (shown in Supple-
mental Fig. S1). As shown in Fig. 1, the development steps for each score 
include: 1) domain exploration to identify KOs and associated pheno-
types; 2) curation of self-reported metadata to enable case/control dif-
ference analyses; 3) signal definition to align each score for broad 
wellness assessment; 4) feature selection which involves iterative cura-
tion of score KOs; and 5) pathway activity quantification of the KOs 
selected for the score. This section explains each step in further detail 
using the score development cohort. 

Step 1: Domain Exploration. 
For each wellness score, we prioritize explainability of the overall 

score and its full set of KOs. We therefore begin by exploring the domain 
in order to understand the biological and clinical phenomena within the 
scope of each score, such as inflammation within periodontal pockets. 
While surveying knowledge sources, scientific manuscripts, and clinical 
literature, we collect an exhaustive set of KOs that are related to the 
score concepts and associated phenotypes, either based on their bio-
logical functions or based on reported correlations of their 

transcriptional regulation. Furthermore, iterating over this domain 
exploration step also allows us to prioritize a subset of KOs and phe-
notypes to be utilized in downstream development steps. 

Step 2: Metadata Curation. 
Part of the score development process requires metadata labels for 

case/control difference analyses. To create these labels, we curate and 
normalize the phenotype data from individual surveys, including an-
thropometrics, socioeconomic, demographics, oral hygiene, and lifestyle 
characteristics. For the current manuscript, these sources are self- 
reported and specifically include health conditions/diseases, which 
enable us to explore the association between these wellness scores and 
diseases. If an individual reported no diseases or conditions, then they 
were identified as “lacking all disease phenotypes.” During the score 
development process, controls for each “case” definition are randomly 
sampled from the larger population, excluding anyone with a “case” 
label. 

Step 3: Signal Definition. 
As we begin defining wellness scores for health insights, we use both 

the development cohort and the exhaustive set of curated KOs from Step 
1. The metadata labels from Step 2 guide us during case/control dif-
ference analyses. Importantly, we make every effort to design scores for 
general wellness rather than diagnostics, so we avoid anchoring a score 
design to a single, individual disease. The definitive “signal” we pursue 
is a KO set that consistently differentiates related phenotypes across the 
development cohort. However, published gene expression efforts report 
variable findings across populations as well as reported measures 
[55–57], so it is not known which KOs will consistently differentiate 
signals across a large number of saliva samples. Therefore, we use a 
heuristic approach to prioritize KOs based on the numerous labels we 
create in Step 2. There are several metrics we utilize to define successful 
signals for phenotypes and health insights, and these include: 1) score 
difference between cases and controls; 2) a normalized score distribu-
tion; and 3) independence between score and sample sequencing depth. 
The output of the signal definition step is a minimal set of KOs, which 
sets a foundation for us to build upon for the final KO selection. 

Step 4: Feature Selection. 
The final KO set for each score is defined through an iterative cura-

tion process, which uses all of the KOs and metadata labels identified 
through the above steps. We do not intentionally aim for each score to 
contain a specific number of KOs. Instead, iteration continues until 
scores reach an optimum, as determined through case/control difference 
analyses, stratifying individuals from the cohort into lower and higher 
scores, such that the phenotype labels remain consistent. If the overall 
“signal” is not consistent, or the score distribution is far from a normal 
curve, or the score is highly correlated with sequencing depth, then the 
iterative process continues. 

Step 5: Pathway Activity Quantification. 
Once the feature set (KOs) for a given pathway score is defined, the 

goal of this step is to combine the expression levels of the selected fea-
tures to arrive at an aggregate quantification of the entire pathway. We 
derive a pathway score as a weighted function Score = C1F1 + C2F2 

Fig. 1. Score Development Framework.  
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+ … + CnFn, where Fi is the expression level of the feature and Ci is its 
weight. After experimenting with multiple weight computation 
methods, including a manual approach based on domain knowledge and 
decision tree methods, we settled on an algorithmic method that learns 
the weights based on the simultaneous expression (i.e., covariance) of 
the selected features, which intuitively corresponds to the activity of the 
entire pathway. Since the first principal component of PCA captures the 
largest variance in the original dataset, we believe that it provides a 
reasonable approximation of the simultaneous expression of the selected 
features. Furthermore, weighting features by the first principal compo-
nent also enhances explainability of the score’s complete set of features. 

2.4. Score validation framework 

The validation cohort of 14,129 saliva samples is used to validate the 
reproducibility of the signals found in score development in an unseen 
independent sample set. To validate score designs, we ask whether 
scores can assess common oral health issues within the validation 
cohort. Domain knowledge provides evidence that many oral diseases 
increase risk for others: i.e., periodontal disease with halitosis [58]; 
periodontal disease with Sjögren’s [59]; acid reflux with both peri-
odontal disease and cavities [60]. Therefore, we pursue a general 
wellness approach and examine the performance of all eight oral 
pathway scores with several diseases known to directly impact 
oropharyngeal health. 

We specifically focus on three phenotypes – gingivitis, acid reflux, 
and nicotine addiction – for the validation process presented in this 
paper. To test scores with each disease phenotype, we perform case/ 
control differential analyses. Case labels constructed for the develop-
ment cohort are also applied to the validation cohort. Controls are 
defined as all individuals with no self-reported health conditions/dis-
eases; they lacked all disease phenotype labels. Controls are matched to 
cases (1:10) on age, birth sex, and BMI. For age, we match individuals 
≤ 10 year difference. For BMI, we match within BMI categories as fol-
lows: BMI < 18.5 (defined as ‘underweight’), 18.5 ≤ BMI < 24.9 
(defined as ‘healthy’), 24.9 ≤ BMI < 29.9 (defined as ‘overweight’), 
29.9 ≤ BMI (defined as ‘obese’). To perform case/control difference 
analyses, we use the Mann-Whitney U test along with the Benjamini- 
Hochberg correction to control the False Discovery Rate. 

3. Results 

3.1. Cohort characteristics 

For score design and validation, we use a score development cohort 
and an independent validation cohort, respectively. The development 
cohort consists of 9350 saliva samples from adults (59.4% Female) with 
an average age of 46.2 ± 13.0 years and BMI of 26.1 ± 5.4 kg/m2. The 
validation cohort consists of 14,129 saliva samples from adults (62.9% 
Female) with an average age of 46.0 ± 13.1 years and BMI of 25.8 
± 5.2 kg/m2. 

Anthropometric, sociodemographic (including ethnicity), oral hy-
giene (including mouthwash use, brushing habits and flossing habits), 
and lifestyle characteristics (including tobacco use, alcohol intake, and 
caffeinated drink intake), all self-reported at the time of sample collec-
tion, are shown in Table 1 for the development and validation cohorts. 

3.2. Metatranscriptomic analysis 

Transcriptome metrics for score development (n = 9350) and vali-
dation cohorts (n = 14,129) demonstrate the range and quality of 
sample data generated across both cohorts. Total single reads, or the 
number of reads in paired-end fastq files after demultiplexing, for the 
development and validation cohorts combined is 8.09 ± 3.34 in mil-
lions. The number of unique KOs (KO richness) associated with each 
sample for the development cohort and validation cohort combined is 

3276 ± 488 KOs. The distribution for the number of unique species 
(Species richness) associated with each sample for the development 
cohort and validation cohorts combined is 349 ± 53 species. 

3.3. Score Development 

All eight oral pathway scores presented in this paper are shown in  
Table 2, and each score is intended to assess a biological or clinical 
phenomena. During score development, authors selected a name for 
each score to represent the score’s intended functionality while 
remaining accessible to the general population. Across these scores we 
include 234 distinct KOs, and we make every effort to minimize feature 
overlap between the scores; there is a maximum of two KOs shared 
between any two scores. Across all eight scores, 221 of the KOs appear 
only once, while the remaining 13 KOs appear 2–4 times. 

Score development is a five-step process that begins with domain 
exploration to identify microbial KOs potentially relevant to the score 
concepts and associated phenotypes. Here, we detail the score devel-
opment process using OralUreaseActivityPathways as an illustrative 
example. (Each of the other scores follow a similar process.). 

As part of domain exploration, we identify key components and 
functions that we consider to be “in scope” for the 

Table 2 
High level overview of Oral Pathway Scores. Score names are shown along-
side the high level descriptions of their scope, and the number of KOs in each 
score. In a pairwise comparison of each score, there is a maximum of two KOs 
shared between any two scores.  

Score Name Key functions Microbial activities KOs 

OralAmmonia- 
Production- 
Pathways 

Ammonia 
productionArginine 
biosynthesis 
Nitrogen metabolism 

Homeostatic levels of 
ammonia within the oral 
cavity which protect 
against acids and impart 
an anti-cariogenic effect.  

26 

OralButyrate- 
Production- 
Pathways 

Butanoate products 
Lysine degradation 
Short chain fatty acid 
metabolism 

Production of beneficial 
butyrate as well as 
butyrate from pathogens.  

30 

OralCariogenic- 
Pathways 

Acid production 
Chelation activity 
Sucrose metabolism 

Cariogenic and chelation 
activities, as well as other 
activities which promote 
dental cavities.  

28 

OralFlagellar- 
Assembly-Pathways 

Bacterial secretion 
system 
Chemotaxis 
Flagellar assembly 
Quorum sensing 

Flagellar components, 
related motility, 
informative of 
pathogenic activity.  

49 

OralLPS-Biosynthesis- 
Pathways 

Biofilm formation 
Biosynthesis of 
nucleotide sugars 
Lipopolysaccharide 
biosynthesis 

Production of pro- 
inflammatory 
lipopolysaccharide 
(LPS).  

35 

OralPeriodontal- 
Mucin-Degradation- 
Pathways 

Amino sugar 
metabolism 
Galactose metabolism 
Glycoprotein 
metabolism 
Nucleotide sugar 
metabolism 

Degradation of salivary 
mucin and diminishment 
of oral health barrier 
defenses.  

30 

OralPeriodontalPro- 
Inflammatory- 
Pathways 

Glyoxylate 
metabolism 
Lipoic acid 
metabolism 
Porphyrin metabolism 
Protease/peptidase 
activity 

Inflammatory factors and 
degradation of 
periodontal gum health.  

26 

OralUrease- 
ActivityPathways 

Acid-stress 
Nickel transport 
Urate metabolism 
Urea metabolism 

Acid-stress and pH 
balancing activities as 
well as others which 
protect against an acidic 
environment and related 
pathogenic activity.  

29  

E. Patridge et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 23 (2024) 834–842

838

OralUreaseActivityPathways score (Table 3), which focuses on the oral 
microbiome’s acid/base activities related to urea. 

After extensive research covering the scope of the score, we identify a 
long list of relevant KOs (in the hundreds or thousands), and we sup-
plement these with additional relevant KOs which we identify from the 
development cohort. At this point in the process, all KOs are thought to 
directly or indirectly contribute to a “key component” or “key function” 
shown in Table 3. 

The second and third steps of the Score Development Framework 
involve metadata curation and signal definition. The metadata labels we 
consider to be central to the OralUreaseActivityPathways score include 
Dry mouth, Kidney disease, Kidney cyst, and Sjögren’s syndrome, from a 
total of more than 500 labels available. 

The fourth step is feature selection, and the output of this step is the 
final set of KOs and their weights (loadings) to the score. Using Ora-
lUreaseActivityPathways as an example, Table 4 shows the included KOs 
and their respective weights. As presented here, the KOs with positive 
loadings are indicative of beneficial contributions with respect to the 
oral microbiome’s acid/base status and related to urea. 

3.4. Score validation 

We set out to determine whether there is a significant association 
between scores and disease phenotypes within an unseen independent 
cohort. Using the validation cohort, matched case/control difference 
analyses are conducted with oropharyngeal diseases, demonstrating that 
the final scores are able to differentiate phenotypes across a set of 
samples independent from those we use in score development. 

To minimize complexity, we assess the oral scores with a small set of 
diverse phenotypes. The selected oropharyngeal and related disease 
phenotypes (Gingivitis, Acid Reflux, and Nicotine Addiction) have var-
ied origins and are known to be associated with altered oral micro-
biomes [61–65]. 

Cases for three oropharyngeal and related disease phenotypes were 
identified based on self-reported information in response to the ques-
tion: “Please list all of the illnesses you are currently suffering from or 
diagnosed with.” 

The selected phenotypes are used to validate oral pathway scores 
through case/control difference analyses (Fig. 2). Cases of gingivitis 
(n = 150; c=1462), cases of acid reflux (n = 450; c=4268), and cases of 
nicotine addiction (n = 67; c=665) are all matched (1:10). As seen in 
Fig. 2, the differences between “case” and “control” samples are variably 
significant across the eight scores (p ≤ 0.05 to p ≤ 0.001) according to 
the Mann-Whitney U test with Benjamini-Hochberg correction for 
multiple hypothesis testing (FDR < 0.05). 

4. Discussion 

Oral microbiomes are associated with both oral and systemic dis-
eases. Therefore, our starting point in this study was that molecular data 
obtained from the oral microbiome may provide useful biomarkers of 
health and disease. Further, it is clear from multiple studies [66,67] that 
the functional aspects of the microbiome are likely more impactful on 

human physiology than composition (taxonomy), which only measures 
the functional potential. Our metatranscriptomic method quantifies 
gene expression, that is the activity of microbial functions, and makes 
them available as KEGG Orthologs or KOs, which we use as the basis of 
developing oral functional pathway scores. 

In the design of our oral pathway scores, both the development and 
independent validation cohorts are considerably important to the pro-
cess. Further, the large number of samples in each cohort is essential to 
identifying sufficient numbers of “case” metadata labels, which enable 
the case/control difference analyses presented herein. A comparison of 
the two cohorts (Table 1) indicates they are similar and comparable in 
terms of anthropometrics, sociodemographics, oral hygiene (including 
mouthwash use, brushing habits and flossing habits), and lifestyle 
metrics (including tobacco use, alcohol intake, and caffeinated drink 
intake), supporting our goal of validating the reproducibility of the 
signals found in score development within an unseen independent 
validation cohort. 

While developing each oral pathway score, we prioritize health in-
sights for oropharyngeal disease phenotypes, leveraging the connection 
between the oral microbiome and oral health. The key functions we 
identify for each score (Table 2) are relevant to disease phenotypes, and 
these functions take central roles in the score designs and guide the 
selection of specific KOs. In the case of OralUreaseActivityPathways, the 
expanded set of key functions (Table 3) point to several urea-related KOs 

Table 3 
Scope of the OralUreaseActivityPathways Score.  

Key components Organic acids Citrate, succinate, fumarate, 2-oxoglutarate 
Proteins Urease, urea carboxylase, urea transporter, organic acid transporter, stress regulator, argininosuccinate lyase 
Purines Uric acid, xanthine, hypoxanthine, adenine, guanine 
Enzyme cofactors Nickel, nickel-pincer cofactor, manganese, iron 
Amino acids Arginine, citrulline, ornithine, glutamine, glutamate 
Other Urea, allantoate, ureidoglycine, N-acetylglutamate, Acetyl-CoA, ammonia, nitrate, nitrite 

Key functions Nitrogen waste Urea metabolism, urate metabolism, ammonia production 
Signaling Acid-stress, acid tolerance 
Homeostasis Protection, carbon metabolism 
Other pH balance, nutrient deprivation  

Table 4 
Score design for OralUreaseActivityPathways. Loadings originate from the first 
principal component of PCA analysis using the development cohort.  

Loadings KEGG Ortholog (KO) and Description  

0.23282 
0.21168 
0.20788 
0.20710 
0.17742 
0.10082 
-0.00871 
-0.01382 
-0.01632 
-0.03862 
-0.04997 
-0.07264 
-0.09710 
-0.10985 
-0.13493 
-0.14145 
-0.15198 
-0.17054 
-0.17658 
-0.18129 
-0.20003 
-0.21234 
-0.21740 
-0.22403 
-0.26017 
-0.26711 
-0.27764 
-0.29448 
-0.31953 

K00101 (lldD); L-lactate dehydrogenase (cytochrome) 
K03746 (hns); DNA-binding protein H-NS 
K01420 (fnr); CRP/FNR family transcriptional regulator 
K11605 (sitC); manganese/iron transport system permease 
K11606 (sitD); manganese/iron transport system permease 
K00605 (gcvT,AMT); aminomethyltransferase 
K01895 (ACSS1_2,acs); acetyl-CoA synthetase 
K15585 (nikB,cntB); nickel transport system permease 
K15586 (nikC,cntC); nickel transport system permease 
K01941 (uca); urea carboxylase 
K03187 (ureE); urease accessory protein 
K07770 (cssR); two-component OmpR, response regulator 
K01755 (argH,ASL); argininosuccinate lyase 
K01218 (gmuG); mannan endo-1,4-beta-mannosidase 
K07650 (cssS); two-component OmpR, histidine kinase 
K14977 (ylbA,UGHY); (S)-ureidoglycine aminohydrolase 
K01466 (allB); allantoinase 
K02083 (allC); allantoate deiminase 
K01428 (ureC); urease subunit alpha 
K01430 (ureA); urease subunit gamma 
K09477 (citT); citrate:succinate antiporter 
K01429 (ureB); urease subunit beta 
K03190 (ureD,ureH); urease accessory protein 
K03188 (ureF); urease accessory protein 
K14048 (ureAB); urease subunit gamma/beta 
K00366 (nirA); ferredoxin-nitrite reductase 
K22373 (larA); lactate racemase 
K00370 (narG,narZ,nxrA); nitrate reductase, alpha subunit 
K03191 (ureI); acid-activated urea channel  
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which are up-regulated at low pH or during acid stress, and these guide 
the design for this score. While finalizing each KO set, we minimize 
correlations with the sequencing depth (r = 0.08 for OralUr-
easeActivityPathways) so that scores are robust (less sensitive to the 
amount of data generated). We also work towards a normal distribution 
of scores across the development cohort (See Supplemental Fig. S1) to 
maximize their utility as wellness scores. The case/control difference 
analyses with oropharyngeal and related disease phenotypes (Fig. 2) 
indicate these wellness scores are effective for oral health insights, and 
this signal is reproducible in a very large cohort of independent samples. 

The choice of the eight oral pathway scores presented here was based 
on the biochemical and biological functions that underlie the disease 
phenotypes we focused on for this study – gingivitis, acid reflux, and 
nicotine addiction. While we focus on a few health conditions, the 
development and validation methodology presented here is general 
enough to quantify a large array of functional pathways. Indeed, we are 
currently in the process of developing and validating not only the full 
oral microbiome, but also the gut microbiome and the human blood 
transcriptome scores. 

Our approach to validating oral pathway scores is to examine 
whether the scores differentiate cases and controls as expected; a case 
cohort with the disease phenotype of interest is compared with a healthy 
control cohort without that disease phenotype. The key question in this 
study, of course, is whether a signal found during score development is 
reproducible in independent collections of samples. Both the case and 
control validation cohorts come from a sample set that was independent 
and unseen at score development time. We recognize that there could be 
other ways to validate the mechanistic basis of these pathways, for 
example, via independent laboratory analysis of the resulting metabolite 
measurements for each pathway – this could be possible future work. 

Among cases of gingivitis, three of the expected oral pathway scores 
demonstrated significant differences with respect to controls (Fig. 2), 
OralLPSBiosynthesisPathways, OralPeriodontalMucinDegradationPath-
ways, and OralPeriodontalProInflammatoryPathways. These scores were 
designed to assess microbial activities which strongly align with symp-
toms of gingivitis (Table 2). In its earliest form, before progressing to full 

periodontal disease, gingivitis symptoms include irritation, redness, and 
swelling of the gums (inflammation), although these are reversible with 
proper care and maintenance. The OralPeriodontalMucinDe-
gradationPathways score is focused on salivary barrier defenses, which 
preserve the health of the oral cavity, and mucin degradation is a known 
factor in periodontal disease [68–71]. The design of the OralPer-
iodontalProInflammatoryPathways score is heavily focused on both 
inflammation and periodontal destruction, which are defining symp-
toms of gingivitis and periodontal disease [72–74]. The OralLPSBio-
synthesisPathways score overlaps with proinflammatory signals, but it is 
designed to typify inflammatory activities, specifically highlighting 
contributions of a detrimental Gram-negative biofilm [75–78]. As 
gingivitis develops into full periodontal disease, we anticipate other 
scores would gain significance, and we look forward to examining this in 
future work. 

In looking at cases of acid reflux, all eight of the oral pathway scores 
demonstrated significant differences with respect to controls (Fig. 2). 
These results are consistent with an oral environment associated with 
acid reflux [64,65]. In addition, mounting evidence indicates that acid 
reflux (and the low pH of gastric acid) diminishes both dental health 
[79–81] and oral soft tissue health [82–84]. Reports also show disease 
associations increase with gastric acid contact [85,86]. Three of the oral 
pathway scores, OralAmmoniaProductionPathways, OralCariogenicPath-
ways, and OralUreaseActivityPathways, are strongly aligned with the 
acidic environment fostered by the low pH of gastric acid. And, as 
already indicated, several scores are strongly aligned with gingival 
damage and inflammation. In future studies, we look forward to 
examining how interventions designed to address the low pH and/or 
contact time of gastric acid will impact the scores. 

We also found significant differences for seven of the oral pathway 
scores between cases of nicotine addiction and controls (Fig. 2), and 
these results are consistent with an oral environment disrupted by to-
bacco products [62,63]. Among cases (individuals who self-reported a 
nicotine addiction) and controls, 92.5% and 8.4% were current tobacco 
users, respectively. Tobacco smoke contains over four thousand com-
pounds, most of which are considered toxic in both gaseous and solid 

Fig. 2. Oropharyngeal and related diseases negatively impact oral scores. Oral scores from our independent validation cohort comparing people with self-reported 
oropharyngeal and related diseases (case in red) versus people with no self-reported comorbidities (control in blue). Cases include gingivitis (n = 150; c=1462), acid 
reflux (n = 450; c=4268), and nicotine addiction (n = 67; c=665). Cases and controls are matched (1:10) by age, sex, and BMI. The color line represents mean ± SD 
of each score in case and control respectively; *p ≤ 0.05, * *p ≤ 0.01, * **p ≤ 0.001, ns p > 0.05, from the Mann-Whitney U test with Benjamini-Hochberg 
correction for multiple hypothesis testing (FDR < 0.05). 
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form [87,88], and nicotine itself is known to impact many systems 
across the human body [89–91]. With regards to oral health, it is 
well-established that tobacco products have a detrimental impact on 
every oral condition as well as the success of many oral treatments [92]. 
Specifically, it has been shown that tobacco products can diminish 
salivary pH [93,94], reduce salivary flow [94,95], and exacerbate bone 
loss and inflammation [96–98]. Long term tobacco use is also known to 
increase risk for dental caries [99], periodontitis [100], oral cancer 
[101], and many other oral conditions [102,103]. Thus, the overall 
impact of tobacco-related oral conditions aligns with the design and 
performance of our scores. 

Besides affecting oral health, there is increasing evidence that the 
oral microbiome is linked to systemic health. Our extensive catalog of 
over 500 systemic disease phenotype labels affords us the opportunity to 
explore connections to systemic health as an additional aspect of oral 
pathway scores. For example, with regards to the OralUr-
easeActivityPathways score, there are well-established connections be-
tween salivary urea levels and kidney function [104,105]. Therefore, 
during score development, we prioritize phenotypes like kidney disease 
and kidney cyst, which retain high explainability with the OralUr-
easeActivityPathways score. Given this, we can do a case/control differ-
ence analysis for OralUreaseActivityPathways in our independent 
validation cohort. Here, “case” samples are defined using an aggregate 
of multiple systemic disease phenotypes which are based on reported 
associations to urea or uric acid levels in saliva (or blood) [106,107], 
including: alcohol addiction [108,109], ankylosing spondylitis [110], 
diverticulosis [111], gout [107], hyperlipidemia [112,113], kidney cyst 
[114,115], kidney disease [116–118], pancreatitis [119,120]. “Control” 
samples are selected from those lacking all disease phenotype labels in 
the validation cohort. We did such an initial analysis, with case 
(n = 388) and control (n = 3633) matched (1:10) by age, sex, and BMI. 
Although this effort is outside the scope of the current paper, the result 
was a significant difference in score values (p ≤ 0.001) using the 
Mann-Whitney U test with Benjamini-Hochberg correction for multiple 
hypothesis testing (FDR < 0.05). Similar analyses could be done for each 
score presented here and will be attempted as future work. 

The study presented here has some limitations. Our validation em-
ploys case/control difference analyses which do not account for all 
possible confounders. Our analyses do not evaluate causality; the KO 
features that make up the scores are most likely a combination of causal 
and consequential. Prospective interventional trials will identify the 
causal features in follow-on studies. While our cohorts are very large and 
include many demographics, they may not perfectly represent every 
group in the USA or other countries. Finally, our metadata labels are 
based on self-reported data that may be misreported; however, given the 
size of our cohorts, such effects should be negligible. 

One important objective of this work is to develop an iterative pro-
cess for continuously improving the design of these scores (the selection 
of features and their weights). We will continue to improve the utility of 
the scores as we collect more data from more samples and individuals, 
and as the field of molecular science advances to include additional 
insights. The goal for each score is to provide the most meaningful 
health insights given the latest science and data. 

Another important future objective of this work is to show the impact 
of lifestyle factors and specific interventions on functional pathways, 
over the course of a longitudinal re-testing regime. For example, there 
are several interventions for periodontal gum disease that could be 
initiated by an individual as part of a self-care routine, or by a dental 
professional who sees acute or chronic issues. An important question is 
how these oral pathway scores change longitudinally from a pre- 
intervention state to a post-intervention state. We look forward to 
evaluating the effect of a range of interventions on molecular functional 
pathway scores in the future. 

5. Conclusions 

With the increasing prevalence of many types of chronic diseases due 
to lifestyle factors, and the advent of broadly available molecular 
testing, it is important to establish a systematic methodology for 
assessing microbial functional pathways relevant to these diseases. 
Chronic diseases being complex and multifactorial, it is necessary for 
such a methodology to assess a group of related molecular markers 
together (rather than individual molecular markers). In this paper, we 
have presented such a methodology, in the context of the oral micro-
biome providing functional pathway insights associated with oropha-
ryngeal disease phenotypes. We have described the development of 
eight oral functional pathway scores using a large cohort, and shown 
that the scores are able to distinguish oropharyngeal disease phenotype 
cases from controls in an unseen independent validation cohort. The 
same methodology can be applied to other contexts, such as the gut 
microbiome providing functional pathway insights associated with 
gastrointestinal and related disease phenotypes. 

To our knowledge, these are the first reported wellness scores based 
on the oral metatranscriptome, and they are designed to provide mo-
lecular health insights from simple, non-invasive saliva samples. In this 
context, it is possible to aggregate many oral scores as presented here, 
into an overall score that represents oral health at the highest level; 
indeed, this is the approach we have taken in our implementation within 
our wellness product. Within this product, these scores also facilitate a 
personal timeline of health insights across multiple time points, for in-
dividuals who re-test their oral health. Furthermore, the health insights 
delivered by these oral pathway scores can drive hygiene, dietary, life-
style, and pharmaceutical recommendations [121]. 
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[11] Şenel S. An overview of physical, microbiological and immune barriers of oral 
mucosa. Int J Mol Sci 2021;22(15):7821. 

[12] Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key 
modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2023: 
1–30. 

[13] Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune 
response gene expression by oral epithelial cells. Mol Oral Microbiol 2019;34:1. 

[14] Pasman R, Krom BP, Zaat SAJ, Brul S. The role of the oral immune system in 
oropharyngeal candidiasis-facilitated invasion and dissemination of 
staphylococcus aureus. Front Oral Heal 2022;3:851786. 

[15] Dong J, Li W, Wang Q, Chen J, Zu Y, Zhou X, et al. Relationships between oral 
microecosystem and respiratory diseases. Front Mol Biosci 2022;8:718222. 

[16] Sudhakara P, Gupta A, Bhardwaj A. Oral dysbiotic communities and their 
implications in systemic diseases. Dent J 2018;6(2):10. 

[17] Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral 
microbiome-host interactions. Comput Struct Biotechnol J 2021;19:1335–60. 

[18] Maddu N. Functions of Saliva [Internet]. Saliva and Salivary Diagnostics. 
IntechOpen; 2019. Available from: https://doi.org/10.5772/intechopen.84709. 

[19] Deo PN, Deshmukh R. Oral microbiome: unveiling the fundamentals. J Oral 
Maxillofac Pathol Jomfp 2019;23(1):122–8 (Available from), 〈https://www.ncbi. 
nlm.nih.gov/pmc/articles/PMC6503789/〉. 

[20] Foo LH, Balan P, Pang LM, Laine ML, Seneviratne CJ. Role of the oral 
microbiome, metabolic pathways, and novel diagnostic tools in intra-oral 
halitosis: a comprehensive update. Crit Rev Microbiol 2021;47(3):359–75. 

[21] Hampelska K, Jaworska MM, Babalska ZŁ, Karpiński TM. The role of oral 
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