
12364  |  Ecology and Evolution. 2021;11:12364–12377.www.ecolevol.org

1  | INTRODUC TION

Our understandings of animal movement patterns and behaviors
continue to rapidly advance with the use of ever smarter and smaller
tracking technologies (Ropert- Coudert & Wilson, 2005; Williams
et al., 2019). Increasingly, the tracking of animals is also combined with
accelerometer (ACC) data collection to study the free- roaming behav-
iors of animals across a wide range of taxa (Brown et al., 2013; Shepard
et al., 2008). Compared with direct human observation, using ACC to
study animal behaviors has the obvious advantage that it reduces the
influence of human presence and also allows the recording of behaviors
that would otherwise be hard to observe, away from the human eye
(Brown et al., 2013). However, these obvious merits of ACC technology
can only be achieved when a reliable behavior classification model is
available that can convert ACC data into meaningful behavior types.

Many studies have already conducted behavior classification
from ACC data (e.g., Nathan et al., 2012). In most cases, ACC data
with corresponding behavioral field observations are used to train
behavior classification models (e.g., Kölzsch et al., 2016; Kröschel
et al., 2017). However, in some instances the developed classifiers
that translate ACC data into behavior types yield only low classifi-
cation accuracy (Fehlmann et al., 2017). As a general remedy, using
fewer behavior classes and aggregating behaviors usually yields bet-
ter classification performance (Ladds et al., 2017). Such grouping of
behaviors is typically based solely on biological or ecological con-
siderations without the use of computational pattern recognition.
Nevertheless, some behaviors whose discrimination may have little
biological value might have very similar ACC recording patterns and
grouping of these behaviors based on the observed patterns might
potentially yield better classification models. It is this often iterative

Received: 20 November 2020  |  Revised: 2 July 2021  |  Accepted: 5 July 2021

DOI: 10.1002/ece3.7937

O R I G I N A L R E S E A R C H

R package for animal behavior classification from
accelerometer data— rabc

Hui Yu1,2  | Marcel Klaassen1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Centre for Integrative Ecology, School of
Life and Environmental Sciences, Deakin
University, Geelong, Vic, Australia
2Druid Technology Co., Ltd., Chengdu, China

Correspondence
Hui Yu, Centre for Integrative Ecology,
School of Life and Environmental Sciences,
Deakin University, Geelong, Vic, Australia.
Email: yubr@deakin.edu.au

Abstract
Increasingly, animal behavior studies are enhanced through the use of accelerom-
etry. To allow translation of raw accelerometer data to animal behaviors requires
the development of classifiers. Here, we present the “rabc” (r for animal behavior
classification) package to assist researchers with the interactive development of such
animal behavior classifiers in a supervised classification approach. The package uses
datasets consisting of accelerometer data with their corresponding animal behaviors
(e.g., for triaxial accelerometer data along the x, y and z axes arranged as “x, y, z, x, y,
z,…, behavior”). Using an example dataset collected on white stork (Ciconia ciconia),
we illustrate the workflow of this package, including accelerometer data visualiza-
tion, feature calculation, feature selection, feature visualization, extreme gradient
boost model training, validation, and, finally, a demonstration of the behavior clas-
sification results.

K E Y W O R D S

accelerometer, animal behavior classification, data visualization, interactive process, XGBoost

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0001-9151-5250
http://creativecommons.org/licenses/by/4.0/
mailto:yubr@deakin.edu.au

     |  12365YU and KLaaSSEn

process of grouping and splitting behaviors within the behavior set
that the here presented rabc (r for animal behavior classification)
package also endeavors to assist with. In this way, the rabc package
allows the user to derive optimal and validated behavior classifiers
suited to their specific research system and questions.

To help biologists translate ACC data into behaviors, this pack-
age uses XGBoost, which is currently one of the most promising
supervised machine learning methods for this specific purpose
(Yu et al., 2021). Unlike the web- based tool “AcceleRater” (Resheff
et al., 2014), our rabc package does not focus on providing a “one-
stop service” turning ACC data into behaviors. Rather, this package
focuses on (a) providing interactive visualization tools to its user to
assist in handling and interpreting the ACC input data, (b) deciding
on appropriate behavior categories for classification as highlighted
in the previous paragraph, and (c) reducing ACC data volume effi-
ciently and effectively (through the calculation and selection of a
range of features) without compromising behavior classification
performance. In brief, this package endeavors to open the lid of the
machine learning "black- box", allowing the integration of the user's
expert knowledge on their own research system in developing ad-
vanced behavior classification models.

2  | rabc WORKFLOW

The general workflow of the rabc package to transform ACC data
using supervised machine learning methods into behaviors is outlined
in Figure 1, Table 1. The data flow is composed of the following ele-
ments (where the numbering refers to the sections where these are
being described in detail): 2.1 ACC dataset preparation with behavior
labels; 2.2 ACC visualization; 2.3 Feature calculation; 2.4 Feature se-
lection; 2.5 Feature visualization; 2.6 Model training and validation;
and 2.7 Classification result check. Each section includes details on
the use of the rabc package, including example code and results.
The rabc package can be installed in Rstudio by “devtools::install_
github(“YuHuiDeakin/rabc”, build_vignette=TRUE)”.

2.1 | ACC dataset preparation and behavior labels

Segments of continuous ACC data will need to be translated into
meaningful behaviors. For ACC data segmentation, there are two
choices: even- length segmentation and variable- length segmenta-
tion (Bom et al., 2014). Variable- length segmentation requires an

F I G U R E 1   The general workflow of the rabc package to develop classifiers for adequately transforming ACC data into behaviors. The
various elements in the diagram are numbered according to the paragraphs where these are being described in detail

12366  |     YU and KLaaSSEn

algorithm to detect behavior change points and may thus be prone
to error. Even- length segmentation does not require these additional
calculations and is therefore much easier to implement. However,
even- length ACC segments will inevitably contain behavior change
points (and thus multiple behaviors) affecting down the line pro-
cessing and behavior classification. An ACC segment should be
sufficiently long to contain enough data to be representative of a be-
havior (and, thus, interpretable as a specific behavior type), whereas
its length should be limited to avoid inclusion of multiple behaviors
as much as possible. Regarding the inevitable segments where be-
havior transitions take place, we recommend retaining these seg-
ments in the model training. Although these data might decrease the
accuracy of the classification model, they will make the model more
robust and avoid overestimating model performance.

The rabc package only supports even- length segmentation data
with corresponding behavioral data, that is, the key behavior scored
for the duration of the segment. These behavioral data are essential
for supervised machine learning methods. ACC data collection with
associated behavioral observations can be made both in the wild
(e.g., Kröschel et al., 2017) and in captivity (e.g., Kölzsch et al., 2016).
Obviously great care should be taken that observations (video re-
cording) are accurately synchronized with ACC data collection (e.g.,
Kröschel et al., 2017). Although not provided by the rabc package, to
reduce signal noise raw ACC data can potentially be preprocessed
(Brown et al., 2013) before entering the data into the rabc package.

Such “filtered” data would however require that any behavioral clas-
sification model generated by the rabc package is used to predict
behaviors on filtered ACC data exclusively.

The input data should be a data.frame or tibble containing data
including the behavior associated with the ACC data. For triaxial
ACC data, each row of equal length should be arranged as "x, y, z,
x, y, z, …, behavior", where “behavior” is the (primary) behavior ob-
served during that segment. For dual- axial ACC data, it should be
arranged as "x, y, x, y, …,behavior" and for single- axial ACC data as "x,
x, …, behavior". A range of ACC data formats exist that are different
to the format required by the rabc package. For instance, ACC data
from triaxial trackers developed by e- obs GmbH (Munich, Germany)
are arranged as “x y z x y z … ”. At the end of this section, we provide
an example for reading data recorded by e- obs trackers (Pokrovsky
et al., 2021) and transforming these into a format suitable for the
rabc package. Data provided by Ornitela (Vilnius, Lithuania) and
Druid Technology (Chengdu, China) ACC trackers are arranged in
a four column table format, where each row contains “timestamp,
x, y, z”. Thus, 10 rows of data make one second of ACC recordings
when the sampling frequency is 10 Hz. In the vignette of the rabc
package, which can be accessed by using the function “browseVi-
gnettes(‘rabc’)”, we provide an example on converting this specific
format to the format required by the rabc package.

The here used triaxial ACC demo dataset from white stork (Ciconia
ciconia) (data accessible from the AcceleRater website: http://

TA B L E 1   Summary of rabc functions. In the “Wrapper” field, functions from other R packages that are being used in the rabc package are
being listed

Functions Arguments Description Wrapper

order_acc() df_raw = NULL Arrange the rows according to behavior
labels

dplyr::arrange

plot_acc() df_raw = NULL, axis_num = 3 Use dygraph to plot all accelerometer data
grouped by behavior types

dygraphs::dygraph

calculate_feature_time() df_raw = NULL, winlen_dba, axis_num = 3 Calculate accelerometer data into time
domain mathematical features

calculate_feature_freq() df_raw = NULL, samp_freq, axis_num = 3 Calculate accelerometer data into
frequency domain features

feature_selection() df_feature = NULL, vec_label = NULL,
filter = FALSE, cutoff = 0.9,
wrapper = "XGBoost", no_features = 5

Select a subset of relevant features for use
in behavior classification

caret::train

plot_selection_accuracy() results = NULL Plot accuracies of selected features during
feature selection procedures

ggplot2::ggplot

plot_feature() df_feature = NULL, vec_label = NULL Use dygraph to plot feature(s) in sequence
grouped by behavior types

dygraphs::dygraph

plot_grouped_feature() df_feature = NULL, vec_label = NULL,
geom = "boxplot"

Plot feature distributions grouped by
behavior types

ggplot2::ggplot

plot_UMAP() df_time = NULL, df_freq = NULL,
label_vec = NULL

Plot two- dimensional UMAP that
embedding high dimensional features

umap::umap;
ggplot2::ggplot

train_model() df_feature = NULL, vec_label = NULL,
hyper_choice = "defaults",
train_ratio = 0.75

XGBoost model training and validation caret::train

plot_confusion_matrix() df_feature = NULL, vec_label = NULL Plot classification- result confusion table caret::train

plot_wrong_
classifications()

df_raw = NULL, axis_num = 3,
df_result = NULL

Use dygraph to plot wrong classification
bouts on all acceleration data

dygraphs::dygraph

http://accapp.move-ecol-minerva.huji.ac.il/

     |  12367YU and KLaaSSEn

accapp.move- ecol- miner va.huji.ac.il/, see Resheff et al., 2014) was
measured at 10.54 Hz. Forty triaxial measurements, totaling 3.8 s,
were used to form a behavior segment. The dataset includes 1,746
segments each forming a row in the dataset. Each row contains 121
columns. The first 120 columns are ACC measurements from three
orthogonal axes, arranged as x, y, z, x, y, z, …,x, y, z. The final column

is of type character containing the corresponding behavior. The
dataset contains 5 different behaviors including "A_FLIGHT" - active
flight (77 cases), "P_FLIGHT" - passive flight (96), "WALK" - walking
(437), "STND" - standing (863), "SITTING" - sitting (273).

In the following the relevant R code reading and converting ACC
data:

read the first 100 rows of an example dataset recorded by e-obs trackers

to illustrate data conversion to rabc format

eobs_example <- read.csv("~/Downloads/LifeTrack Rough-legged buzzards-

acceleration.csv", stringsAsFactors = FALSE, nrows = 100)

convert raw ACC data from character strings to numbers

eobs_acc_mat<-

t(matrix(as.numeric(unlist(strsplit(eobs_example$eobs.accelerations.raw,

" "))), nrow = 120))

create dummy behaviour labels for the example ACC data

eobs_labels <- c(rep("behaviour_one", 50), rep("behaviour_two", 50))

convert to the format required by the rabc package

eobs_df <- data.frame(eobs_acc_mat, label = eobs_labels)

….end of example reading and converting e-obs dataset

load the example dataset that will be used in the following sections

data(“whitestork_acc”)

head(whitestork_acc[, c(1:6, 121)], n = 2) # show first six columns and

first two rows

[] V1 V2 V3 V4 V5 V6 … V121

[]1 -4.053191 -2.749085 -11.34304 2.452568 3.746303 -20.660534 … A_FLIGHT

[]2 4.599146 6.914143 -20.80166 1.427321 4.714189 0.691159 … A_FLIGHT

http://accapp.move-ecol-minerva.huji.ac.il/

12368  |     YU and KLaaSSEn

2.2 | ACC visualization

The rabc package offers two types of graphs, that is, dynamic graphs
and static graphs. Dynamic graphs produced by the “dygraphs”
package (Vanderkam et al., 2018) allow users to zoom in and out and
scroll through the depicted ACC data to facilitate data examination.
Static graphs produced by the “ggplot2” package (Wickham, 2016)
help users to examine feature distributions and to check behavior
classification results.

Prior to visualizing the ACC data, the dataset needs to be sorted
by behavior using the order_acc function. The purpose of this func-
tion is to ease comparison of ACC patterns among segments shar-
ing the same behavior labels. For ACC data visualization, the rabc
package uses the function dygraph from the “dygraphs” package to
plot all ACC segments grouped by behavior. This dynamic mode of
presentation provides the user with a visual impression of how the
ACC signal generally relates to the different behaviors and can also
be used for data quality control (i.e., identifying potentially incorrect
segments where ACC and behavioral data do not conform to the
general pattern otherwise observed due to, for instance, incorrect
behavioral observation). The x- axis of this dygraph indicates the row
sequence number (i.e., the segment number) of the sorted data.

Plotting the complete white stork ACC dataset using function
plot_acc (Figure 2a) and next zooming in on the area around seg-
ments 55– 80 (Figure 2b), it can be seen that the ACC data between
segments 60 and 70 is very different from neighboring segments.
Albeit all being labeled as “A_FLIGHT”, the ACC data in this range
resemble more static behaviors, warranting their scrutiny and, po-
tentially, their relabeling or removal from the dataset.

In the following, the relevant R code plotting ACC data:

2.3 | Feature calculation

The next step is to calculate features from the ACC data. A feature
is a specific mathematical description (such as the mean and the

standard deviation) of the ACC signal within a segment, which will
form the input to the machine learning models (Brown et al., 2013).
Using functions calculate_feature_time and calculate_feature_freq,
two basic feature sets are calculated. The first, time- domain feature
set, includes mean, variance, standard deviation, max, min, range, and
ODBA, where ODBA is short for Overall Dynamic Body Acceleration.
This value has been proven to be correlated with the animal's energy
expenditure (Wilson et al., 2019). These features are calculated for
each ACC axis separately (denoted with prefix x, y, z in the output data
frame), except for ODBA, which is calculated using all available axes.
The frequency- domain feature set includes main frequency, main am-
plitude, and frequency entropy. Also, these features are calculated
for each ACC axis separately (denoted with prefix x, y, z). Calculations
of these features are based on Fast Fourier Transformation (FFT)
of ACC data. Frequency entropy here measures unpredictability of
the signal. It is worth noting that some ACC datasets may not have a
high enough sampling frequency to log useful frequency information
(Nathan et al., 2012). For example, Gilbert et al. (2016) studied white
storks using ACC data with a 1 Hz sampling rate, which is insuffi-
cient to accurately register the stork's wingbeat frequency, while in
our white stork example the sampling frequency of 10.54 Hz could
accurately assess wingbeat frequency at 3.1 Hz. Thus, if sampling fre-
quency is low, it is better not to use frequency- domain features for
behavior classification. In addition, it should be considered that the
functions calculate_feature_time and calculate_feature_freq provide
an essential but not an exhaustive list of potential features. Since it
has been asserted that feature engineering can improve the perfor-
mance of machine learning models (Boehmke & Greenwell, 2019),
users may consider calculation of custom features. All functions in
the rabc package are also able to process custom features after the

user has included these in the feature data frame using functions
cbind or bind_cols from the “dplyr” package (Wickham et al., 2021).

In the following, we present the relevant R code calculating fea-
tures from ACC data:

whitestork_acc_sorted <- order_acc(df_raw = whitestork_acc)

plot_acc(df_raw = whitestork_acc_sorted, axis_num = 3) # produces Figure 2

calculation of time domain features

df_time <- calculate_feature_time(df_raw = whitestork_acc_sorted,

 winlen_dba = 10) # length of running window ODBA calculation

calculation of frequency domain features

df_freq <- calculate_feature_freq(df_raw = whitestork_acc_sorted,

 samp_freq = 10.54)

     |  12369YU and KLaaSSEn

2.4 | Feature selection

Feature selection is the process of selecting a subset of relevant
features for use in model building (Chakravarty et al., 2019). In
animal behavior studies using ACC, dozens of features are typi-
cally used in model building (e.g., Shamoun- Baranes et al., 2012).
Although a relatively small number compared to often hundreds of
features were used in human behavior classification models (Zhu
et al., 2017), there may still be redundancy in the feature set. This
redundancy may for instance be caused by features that show high
correlation with other features and are thus likely to contribute
similarly to the behavior classification model. Additionally, irrel-
evant features may exist that hardly contribute to the classifica-
tion model. Three aims are being served with feature selection in
this package. Firstly, less features will make the model easier to
interpret. Indeed, there may for instance be biomechanical con-
nections between features and the ultimate classification model
(e.g., Chakravarty et al., 2019). Secondly, fewer features reduce
the risk of overfitting and may therewith lead to better behavior

classification from ACC data. Thirdly and finally, because of lower
computational requirements in assessing behavior from ACC data,
reduced feature sets have greater potential to be calculated on-
board the ACC devices themselves, for example, on- board of
light- weight tracking devices (e.g., Korpela et al., 2020; Nuijten
et al., 2020) on which they can either be stored or relayed to re-
ceiving stations.

The rabc package's select_features function uses a combination
of a filter and a wrapper feature selection method. The filter part
removes any redundant features based on the absolute values of the
pair- wise correlation coefficients between features. If two features
have a high correlation, the function looks at the absolute correla-
tion of each of the two features with all other features and removes
the feature with the largest mean absolute correlation value. The
threshold correlation coefficient (cutoff) is user- defined with a de-
fault "cutoff = 0.9". The select_features function will result in a list of
features where all feature correlations fall below the threshold cor-
relation coefficient. In the default constellation, the filter function is
turned off (i.e., "filter = FALSE").

F I G U R E 2   ACC data visualization
using a dynamic graph. Panel a shows
the complete white stork ACC dataset,
sorted by behavior type. The x- axis shows
the segment numbers of the dataset
ordered by behavior. Vertical dashed
lines separate different behavior types.
Panel b demonstrates how one can zoom
in on specific segment ranges, here from
segment 55 to 80

12370  |     YU and KLaaSSEn

The purpose of the wrapper is to select most relevant fea-
tures. The wrapper part applies stepwise forward selection (SFS)
(Rückstieß et al., 2011) using the extreme gradient boosting
(XGBoost) model, which is not only used for feature selection but
also for the final classification model (see below). XGBoost is a scal-
able tree boosting method that proved to be faster and have a better
performance than other currently available tree boosting methods
(Chen & Guestrin, 2016). In a comparison with three other super-
vised machine learning methods (support vector machine, artificial
neural network, and random forest models), XGBoost classified
behavior from ACC data similarly well to the alternative methods.
However, XGBoost had the fastest runtime and the second smallest
memory usage (Yu et al., 2021). The default limit to the number of
features (no_features) is 5 but can be user defined. The no_features
also determines how many rounds of SFS are being conducted. In the
first round, each feature is individually used to train a classification
model by XGBoost. The feature with highest overall accuracy will be
kept into the selected feature set. Then, in the second round, each
remaining feature will be combined with the first selected feature

to train a classification model and the pair with the highest accuracy
will be kept into the selected feature set. This process continues,
each round yielding an additional feature on top of the features al-
ready selected in previous rounds. This process will stop when the
number of rounds equals the no_features setting.

The select_features function will return a list, of which the first
member (i.e.,.[[1]]) contains a matrix providing the classification
accuracy for each of the features (columns) across all steps (rows,
top row being the first step) of the SFS process. Once a feature is
selected into the selected feature set, the remaining values in this
feature's column are set to zero. The second member of the list
(i.e.,.[[2]]) contains the names of the selected features in the order
in which they were selected in the SFS process. The development
of the classification accuracy with each step in the SFS process is
plotted with function plot_selection_accuracy (Figure 3). In the case
of the white stork dataset, we can see that after the sixth selected
feature, “z_variance”, there is almost no further improvement in clas-
sification accuracy with the addition of more features.

The relevant R code for feature selection:

F I G U R E 3   Classification accuracy plot
providing an overview of the individual
(gray bars) and cumulative (red line and
circles) contribution of each feature (in
which they were selected in the stepwise
forward selection (SFS) process)

0.729

0.160

0.020 0.009 0.005 0.004 0.0e+00 0.0e+00 −1.7e−03 −3.4e−06
0.00

0.25

0.50

0.75

1.00

z_range y_max y_variance z_mean ODBA z_variance y_sd z_sd y_freqmain z_freqmain

Selected features

A
cc

ur
ac

y
Classification accuracy

labels <- whitestork_acc_sorted[, 121]

selection <- select_features(df_feature = cbind(df_time, df_freq), filter =

FALSE, cutoff = 0.9, vec_label = labels, no_features = 10) # filter not

used in this example

plot_selection_accuracy(results = selection) # produces Figure 3

     |  12371YU and KLaaSSEn

2.5 | Feature visualization

Above, under “Feature selection” we already mentioned the three
objectives with feature selection: improving interpretability, re-
ducing overfitting, and reducing computational requirements.
Visualization of the features can further assist in deciding on the fea-
tures to use in the ultimate behavior classification model, yet its main
use is in deciding if any behavior types should be combined to ulti-
mately improve behavior classification performance. Alternatively,
the visualization may also lead to considering splitting up existing
behavior types into multiple behaviors. In other words, this visualiza-
tion aids in evaluating the behavior set.

The rabc package offers three ways to visualize features. The first
two visualize the features in isolation whereas the third is an integrative

approach where entire feature domains are analyzed collectively. The
first of the visualization methods, plot_feature, draws individual values of
features ordered by behavior (Figure 4). The second, plot_grouped_fea-
ture, produces a boxplot of a selected feature for all behavior types, as
demonstrated for the ODBA feature in Figure 5. In the case of the white
stork dataset, it suggests clear differentiation of behaviors by ODBA
with a trend of ODBA decreasing from active flight via walking to passive
flight, standing, and sitting. The third and most important, integrative ap-
proach uses Uniform Manifold Approximation and Projection (UMAP).

In the rabc package, we use UMAP (Konopka, 2020) to plot the
different behaviors, represented by differently colored symbols
in the two- dimensional space. UMAP is a very powerful nonlinear
dimensionality- reduction technique, which is also highly suitable for
high- dimensional data visualization (McInnes et al., 2018) and we will

F I G U R E 4   Feature data visualization
using a dynamic graph. The feature ODBA
in this plot is calculated by function
calculate_feature_time. The x- axis shows
the segment numbers of the features
ordered by behavior. Vertical dashed lines
separate different behavior types

F I G U R E 5   Boxplot of the feature
ODBA

ODBA

A_F
LIG

HT

P_F
LIG

HT

SITTIN
G

STND
WALK

0

5

10

15

20

label

Va
lu

es

12372  |     YU and KLaaSSEn

here use it to transform and visualize collections of features in a two-
dimensional plot. UMAP has already found its niches in bioinformatics,
material sciences, and machine learning (McInnes et al., 2018). Within
the broad field of biology, it has been used in bioacoustics studies (e.g.,
Sainburg et al., 2019), but it has rarely been used in animal behavior
studies. The optimal scenario to which one strives is to obtain a rep-
resentation where each behavior forms an isolated cluster of symbols
within this two- dimensional space. In this way, UMAP provides an
indication of how the final classification model will perform, isolated
behavior clusters indicating high classification accuracy. If overlaps
in clusters exists, researchers may wish to consider grouping certain
behaviors because they may not be adequately separated using ACC
data. Conversely, if behaviors are spread out over a plot, having those
behaviors reclassified in multiple behavior types may be a possibility.

We made the UMAP visualization into a Shiny App to facilitate
user interaction. The Shiny App was built with the “shiny” R pack-
age (Chang et al., 2021). The Shiny App offers an interactive way
for users to adjust parameters and update results without the need
to rerun code from the R console. There are three tabs in the Shiny
App, representing three functions. Tab 1: "UMAP calculation and
tuning"— assists with evaluating whether ACC features adequately
represent behaviors. Tab 2: "Feature visualization through UMAP"—
can show how feature values vary across the two- dimensional
UMAP plot. Tab 3: "Selected features"— assists with evaluating the
performance of selected features in differentiating between the
different behaviors. In Figure 6, we show screenshots of the three
UMAP tabs, loaded with the time and frequency- domain features
from the white stork dataset. It shows that the different behaviors
separate generally well (Figure 6a), suggesting that there is good po-
tential to develop a satisfactory performance behavior classification
model. In the next tab (Figure 6b), we selected the ODBA feature,
the plot showing how its value varies across the different behavior
types with active flight having distinguishably high ODBA values fol-
lowed by walking, then passive flight, standing, and sitting. Finally,
in the third tab (Figure 6c), we only selected the six features identi-
fied by function select_features to form a new UMAP plot. We can
see that these features can preserve the manifold structure of the
different behaviors. The demo of this Shiny App can be accessed
through <https://huiyu - deakin.shiny apps.io/rabc_UMAP/>.

Presenting the relevant R code for the plotting of features:

plot_feature(df_feature = df_time[, “ODBA”, drop = FALSE], vec_label =

labels) # produces Figure 4

plot_grouped_feature(df_feature = df_time[, “ODBA”, drop = FALSE],

vec_label = labels, geom = “boxplot”) # produces Figure 5

plot_UMAP(df_time = df_time, df_freq = df_freq, label_vec = labels) #

produces Figure 6

2.6 | Model training and validation

After feature selection and visualization (including potential group-
ing and/or splitting of behavior types in the original behavior set), the
user can train a supervised machine learning model (XGBoost in this
package) with the selected, most relevant features through function
train_model. Usually, the construction and evaluation of supervised
machine learning models includes three steps: (a) machine learning
model hyperparameter tuning by cross- validation, (b) model train-
ing with the optimal hyperparameter set, and (c) evaluating model
performance through validation with a test dataset. Function train_
model is a wrapper function that utilizes relevant functions from the
“caret” (Kuhn, 2020) and “xgboost” packages (Chen et al., 2021) to
automatically conduct the three above steps for model construction
and evaluation.

Four arguments can be set in the function train_model to con-
trol the training and validation processes. Which features to use
for model building is set by "df", which in the following example is
set to “selection$features[1:6]” (i.e., the first six selected features
from the feature selection procedure). The “vec_label” argument is
used to pass on a vector of behavior types. How to select the hy-
perparameter set is set by “hyper_choice”, which has two options.
The first is "defaults" which will let XGBoost use its default hyper-
parameters with a fixed setting of “nrounds = 10”. The alternative
“hyper_choice” option is "tune", which will run repeated cross-
validations (main parameters: method = “repeatedcv”, number = 5,
repeats = 3) to find a best set. Note that for four hyperparameters,
a set of alternative values are provided which will be optimized in
this procedure (nrounds = c(5, 10, 50, 100), max_depth = c(2, 3,
4, 5, 6), eta = c(0.01, 0.1, 0.2, 0.3), gamma = c(0, 0.1, 0.5)), while
for three hyperparameters we fixed the setting (colsample_bytree
= 1, min_child_weight = 1, subsample = 1). The settings for these
seven hyperparameters are based on our previous experience with
a range of different ACC datasets (Yu et al., 2021). For details on
the function of the hyperparameters, please refer to https://xgboo
st.readt hedocs.io/en/lates t/param eter.html. Finally, “train_ratio”
determines the percentage of data used to train the model, the re-
mainder of the data being used for model validation.

The ultimate output consists of four parts. The first is a confusion
matrix, depicting how well the ultimate behavior classification model

https://huiyu-deakin.shinyapps.io/rabc_UMAP/
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html

     |  12373YU and KLaaSSEn

predicts the different behaviors based on the validation part of the
dataset only (i.e., 25% of the dataset in our stork example using a
train_ratio of 0.75). On the diagonal of this table, where the ob-
served behavior is organized in columns and the predicted behavior
is organized in rows, the correct predictions are depicted, with all the
wrong predictions being off the diagonal. The overall performance

statistics are presented next, the meaning of which is explained in
detail in <https://topepo.github.io/caret/ measu ring- perfo rmance.
html>. The third part of the output, statistics by class, presents a
range of performance statistics for the individual behavioral cate-
gories, which are explained in detail in <https://topepo.github.io/
caret/ measu ring- perfo rmance.html>. Finally, the importance of the

Image Missing

F I G U R E 6   Demonstrations of the
three tabs generated by the plot_UMAP
function. Tab a— UMAP calculation
and tuning— evaluates whether ACC
features represent behaviors. The
“Features to input” section allows
users to choose which feature groups
to use as input to UMAP. The “UMAP
hyperparameter tuning” section allows
users to interactively adjust three
hyperparameters within the UMAP
function to control the two- dimensional
clustering. Tab b— Feature visualization
through UMAP— shows how feature
values vary across the two- dimensional
UMAP plot. Users can choose which
feature to plot by selecting from the drop
box. Tab c— Selected features— allows
evaluating the performance of selected
features in differentiating between the
different behaviors. Users can choose
which features to input into UMAP by
ticking the checkboxes

https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html

12374  |     YU and KLaaSSEn

various features in producing the behavior classification model is
being presented.

Another way of calculating and visualizing the performance of the
behavioral classification model makes use of cross- validation using
function plot_confusion_matrix. In this case, the entire dataset is ran-
domly partitioned into five parts. In five consecutive steps, each of
the five parts is used as a validation set, while the remaining four parts
are used for model training. This procedure thus resembles a fivefold
“classification model training and validation” with a train_ratio of 0.8,

be that in this case the dataset is systematically divided and each
point in the dataset is being used for the validation process at some
point (see function createFolds in “caret” for more details). Thus, after
all five training and validation rounds, all behavioral observations will
also have an associated predicted behavior, which are being stored
in the data frame that is being returned by plot_confusion_matrix in
addition to a plot of the confusion table (Figure 7).

The relevant R code for classification model training and
validation:

F I G U R E 7   Confusion matrix plot of
fivefold cross- validation results. The dots
in the graph are colored according to
the classification results, with blue and
red symbols being correct and incorrect
classifications, respectively. Sample size
for each observation and prediction
combination is provided

3

61

3

6161

4

6161

9

61

4

999

4

9999

4

9

616161616161

3 828282

2

8282828282

5

7

55

8282828282828282828282

5

828282828282

7

828282

5

828282

7777

82828282

7

82

2

8282828282828282828282828282828282

236236

34

236236236236236236236236

34

236236236236236236236236236236

34

236

34

236

3434

236236236236236236236236236236236236236236236236

3434

236236236236

3434343434343434343434

236

3434343434

236236236236236236236236236236236236236236236236236

34

236236236236236236236236236236236236

34

236236236

34

236

34

236

34

236236

34

236

2

236

3434

1

236236236

34

236236236236

34

236

2

236

810

19

810

19

810810810810810810810

3

810810

19

810

3

810

27

810810810810

4

810

19

810810810810810810810810810

27

810810810810810810810810

2727

810

3

810810810810810810810

27

810

1919

810810810810810810810

19

810810810810

19

810

27

810

27

810

4

810810810810810810810810810810810810810810810810810810

27

810810810810810810

4

27

810810

191919

810

19

810810810810810

27

810

27

810

27

810810810

19

810

27

810810810

19

810810810810

19

810

27

810

27

810810810810810810810810810810810810810810810810810

27

810810

19

27

810810810810810

27

810810810810810810810810810810810

19

810

2727

4

27272727

810810810810810810810810

19

810810810810810810810810810810

19

810

27

810810810810810810810810810810810810810810810810

27

810810

27

810

411411411411411411411411411

4

411

18

411411

2

411411411411411411411411

4

18

4

411411411411411411411411411411411411411411411411

18

411

18

411

18

411411411411411411

4

411411411411411

18

411

2

411411411411411411411411411411411411411411411411

2

411

2

411411411411411411411411411411411

18

411

1818

411

18

411

1818

411411411411411411411411411411411

18

411

18

411

18

411411411411

18

411411411411411411

18

411411411

18

411

79.22 85.42 86.45 93.86 94.05

A_FLIGHT

P_FLIGHT

SITTING

STND

WALK

88.41

89.13

91.12

92.78

90.73

A_FLIGHT P_FLIGHT SITTING STND WALK

Recall rate (%)

Observations

P
re

di
ct

io
ns P

recision (%
)

correct

incorrect

Classification confusion table plot

model_output <- train_model(df = df_time[, selection$features[1:6]],

vec_label = labels) # train a model that can next be used for predicting

behaviour from ACC data

df_time_prediction <- calculate_feature_time(df_raw =

whitestork_acc_sorted[1:100,], winlen_dba = 10) # treat the first 100 bouts

of the demo dataset as new dataset for demonstration of how to predict new

dataset using the trained model

predicted_behaviours <- predict(model_output, df_time_prediction[,

selection$features[1:6]])

predictions <- plot_confusion_matrix(df_feature = df_time[,

selection$features[1:6]], vec_label = labels) # produces Figure 7

     |  12375YU and KLaaSSEn

2.7 | Classification result check

Using the predictions from the behavior classification model, we can
now return to the original ACC data to evaluate which ACC signals
lead to correct and incorrect classifications using function plot_con-
fusion_matrix. This function basically uses the same digraph with
near identical look to function plot_acc used earlier. The only devia-
tion is that all incorrect predictions (identified using the data frame
from function plot_confusion_matrix) are now marked as such. The
original behaviors are grouped and separated by dashed lines with
the corresponding original behavior stated at the base of the dashed
lines. The incorrect predictions are marked by dotted lines with the
predicted behavior stated at the top (Figure 8).

The R code to visualize incorrect classifications

3  | DISCUSSION AND CONCLUSIONS

As demonstrated, the rabc package can assist researchers in devel-
oping good animal behavior classification models in an interactive
fashion. ACC data visualization assists in the detection of aberrant
associated behavior scores. Feature visualization helps researchers
to understand how different features distribute across behaviors and
whether the current behavior set potentially needs adjustments, ei-
ther by grouping or by splitting behaviors into new behavior types.
Finally, classification- result visualization assists the understanding of
misclassification patterns. Other than the visualization functionalities,
this package provides complete functions to perform behavior classi-
fication through XGboost, including feature calculation, feature selec-
tion, model hyperparameter tuning, model training and validation, and
an output classifier for future ACC data classification.

Given its unique aim and functionality, the rabc package will be a
valuable addition to the growing array of R packages already available
for behavior and movement analyses (Joo et al., 2020). There is one
other R package, “m2b”, that shows some resemblance to the rabc
package in that it uses supervised machine learning (random forest)
to classify behaviors, be it from GPS rather than ACC data. The rabc
package only supports classification in a supervised fashion, which
requires users to label ACC data with the corresponding behavior
types. However, in some cases behavioral data may not be available
and for those circumstances users may want to resort to using the
Ethographer package in Igor Pro (WaveMetrics Inc., USA) for process-
ing ACC data in an unsupervised fashion (e.g., Berlincourt et al., 2015).

A non- R tool designed for animal behavior classification that
also uses ACC data in combination with behavioral observations

is AcceleRater. Like rabc, AcceleRater trains behavior classifi-
cation models, yet, there are three major differences between
AcceleRater and the rabc package. Firstly, the rabc package is writ-
ten in R and used in the R environment, which gives users ample
freedom of preprocessing and postprocessing the data. Secondly,
rather than offering a “black- box” training process, the visualiza-
tion tools within rabc assist users in building an understanding of
the behavior classification process and why some behaviors can
be better classified than others, providing avenues to modify or
improve the behavior classification model. Finally, the classifica-
tion model trained in rabc can be exported and used on- board of
trackers as for instance used in (Yu et al., 2021). It is worth not-
ing that the features calculated in the rabc package can be fur-
ther extended if deemed necessary. Users can develop additional
features and include these in the here described analyses and the

F I G U R E 8   ACC data visualization
including behavior classification results
using a dynamic graph. White stork ACC
data are shown from segment 55 to 80
(cf Figure 2b). Vertical black, dashed lines
separate different originally observed
behavior types, while vertical gray dotted
lines mark incorrect predictions with
predicted behavior type labeled at the top

plot_wrong_classifications(df_raw = whitestork_acc_sorted, df_result =

predictions) # produces Figure 8

12376  |     YU and KLaaSSEn

ultimate generation of a behavior classification model. Although
we only use XGboost as the supervised machine learning model
in this package, users can potentially use the output from the rabc
package as input to the “caret” package. This will allow for the use
of other machine learning models in generating behavior classifi-
cation models such as decision tree, support vector machine, and
random forest. Finally, although ACC data from different animal
species and under a variety of circumstances are increasingly be-
coming available, where possible, we encourage making these ac-
cessible with the associated behavior labels. Such data may not
only be used to guide studies on new species with comparable be-
havioral repertoires, but also have the potential to ultimately gen-
erate cross- species behavioral classification models.

ACKNOWLEDG MENTS
We gratefully acknowledge Ran Nathan for sharing the dataset used in
this study. We thank Batbayar Galtbalt and Tobias Alexander Ross for
testing the software and providing feedback. We thank Rocío Joo and
an anonymous reviewer for their constructive comments on an earlier
version of the manuscript and the rabc R package.

CONFLIC T OF INTERE S T
The authors declare that there is no conflict of interest.

AUTHOR CONTRIBUTIONS
Hui Yu: Conceptualization (equal); Methodology (lead); Software
(lead); Validation (lead); Writing- original draft (lead). Marcel
Klaassen: Conceptualization (equal); Methodology (supporting);
Software (supporting); Writing- review & editing (lead).

DATA AVAIL ABILIT Y S TATEMENT
The white stork dataset used in this paper is accessible from the on-
line software AcceleRater website: http://accapp.move- ecol- miner
va.huji.ac.il/. The dataset is also archived at: https://doi.org/10.5061/
dryad.dz08k prxv.

ORCID
Hui Yu https://orcid.org/0000-0001-9151-5250

R E FE R E N C E S
Berlincourt, M., Angel, L. P., & Arnould, J. P. Y. (2015). Combined use

of GPS and accelerometry reveals fine scale three- dimensional for-
aging behaviour in the short- tailed shearwater. PLoS One, 10(10),
e0139351. https://doi.org/10.1371/journ al.pone.0139351

Boehmke, B., & Greenwell, B. (2019). Hands- on machine learning with R.
Bom, R. A., Bouten, W., Piersma, T., Oosterbeek, K., & van Gils, J.

A. (2014). Optimizing acceleration- based ethograms: The use of
variable- time versus fixed- time segmentation. Movement Ecology,
2(1), 6. https://doi.org/10.1186/2051- 3933- 2- 6

Brown, D. D., Kays, R., Wikelski, M., Wilson, R., & Klimley, A. P.
(2013). Observing the unwatchable through acceleration log-
ging of animal behavior. Animal Biotelemetry, 1(1), 20. https://doi.
org/10.1186/2050- 3385- 1- 20

Chakravarty, P., Cozzi, G., Ozgul, A., & Aminian, K. (2019). A novel biome-
chanical approach for animal behaviour recognition using accelerom-
eters. Methods in Ecology and Evolution, 10(6), 802– 814. https://doi.
org/10.1111/2041- 210X.13172

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., &
Borges, B. (2021). shiny: Web Application Framework for R. Retrieved
from https://CRAN.R- proje ct.org/packa ge=shiny

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining (pp. 785– 794). https://doi.
org/10.1145/29396 72.2939785

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,
Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y.
(2021). xgboost: Extreme Gradient Boosting. Retrieved from https://
CRAN.R- proje ct.org/packa ge=xgboost

Fehlmann, G., O’Riain, M. J., Hopkins, P. W., O’Sullivan, J., Holton, M. D.,
Shepard, E. L. C., & King, A. J. (2017). Identification of behaviours
from accelerometer data in a wild social primate. Animal Biotelemetry,
5(1), 6. https://doi.org/10.1186/s4031 7- 017- 0121- 3

Gilbert, N. I., Correia, R. A., Silva, J. P., Pacheco, C., Catry, I., Atkinson, P.
W., Gill, J. A., & Franco, A. M. A. (2016). Are white storks addicted to
junk food? Impacts of landfill use on the movement and behaviour of
resident white storks (Ciconia ciconia) from a partially migratory pop-
ulation. Movement Ecology, 4(1), 7. https://doi.org/10.1186/s4046
2- 016- 0070- 0

Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella- Trullas, S., &
Basille, M. (2020). Navigating through the r packages for move-
ment. Journal of Animal Ecology, 89(1), 248– 267. https://doi.
org/10.1111/1365- 2656.13116

Kölzsch, A., Neefjes, M., Barkway, J., Müskens, G. J. D. M., van Langevelde,
F., de Boer, W. F., Prins, H. H. T., Cresswell, B. H., & Nolet, B. A. (2016).
Neckband or backpack? Differences in tag design and their effects
on GPS/accelerometer tracking results in large waterbirds. Animal
Biotelemetry, 4(1), 13. https://doi.org/10.1186/s4031 7- 016- 0104- 9

Konopka, T. (2020). umap: Uniform manifold approximation and projection.
Retrieved from https://CRAN.R- proje ct.org/packa ge=umap

Korpela, J., Suzuki, H., Matsumoto, S., Mizutani, Y., Samejima, M.,
Maekawa, T., Nakai, J., & Yoda, K. (2020). Machine learning en-
ables improved runtime and precision for bio- loggers on seabirds.
Communications Biology, 3(1), 633. https://doi.org/10.1038/s4200
3- 020- 01356 - 8

Kröschel, M., Reineking, B., Werwie, F., Wildi, F., & Storch, I. (2017).
Remote monitoring of vigilance behavior in large herbivores using
acceleration data. Animal Biotelemetry, 5(1), 1– 15. https://doi.
org/10.1186/s4031 7- 017- 0125- z

Kuhn, M. (2020). caret: Classification and Regression Training. Retrieved
from https://CRAN.R- proje ct.org/packa ge=caret

Ladds, M. A., Thompson, A. P., Kadar, J.- P., J Slip, D., P Hocking, D., & G
Harcourt, R. (2017). Super machine learning: Improving accuracy and re-
ducing variance of behaviour classification from accelerometry. Animal
Biotelemetry, 5(1), 8. https://doi.org/10.1186/s4031 7- 017- 0123- 1

McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform
manifold approximation and projection. Journal of Open Source
Software, 3, 861. https://doi.org/10.21105/ joss.00861

Nathan, R., Spiegel, O., Fortmann- Roe, S., Harel, R., Wikelski, M., & Getz,
W. M. (2012). Using tri- axial acceleration data to identify behavioral
modes of free- ranging animals: General concepts and tools illus-
trated for griffon vultures. Journal of Experimental Biology, 215(6),
986– 996. https://doi.org/10.1242/jeb.058602

Nuijten, R. J. M., Gerrits, T., Shamoun- Baranes, J., & Nolet, B. A. (2020).
Less is more: On- board lossy compression of accelerometer data in-
creases biologging capacity. Journal of Animal Ecology, 89(1), 237– 247.
https://doi.org/10.1111/1365- 2656.13164

Pokrovsky, I., Kulikova, O., & Wikelski, M. (2021). Data from: Longer days
enable higher diurnal activity for migratory birds [rough- legged buz-
zards]. Retrieved from https://doi.org/10.5441/001/1.dg3sm625

Resheff, Y. S., Rotics, S., Harel, R., Spiegel, O., & Nathan, R. (2014).
AcceleRater: A web application for supervised learning of behavioral
modes from acceleration measurements. Movement Ecology, 2(1), 27.
https://doi.org/10.1186/s4046 2- 014- 0027- 0

http://accapp.move-ecol-minerva.huji.ac.il/
http://accapp.move-ecol-minerva.huji.ac.il/
https://doi.org/10.5061/dryad.dz08kprxv
https://doi.org/10.5061/dryad.dz08kprxv
https://orcid.org/0000-0001-9151-5250
https://orcid.org/0000-0001-9151-5250
https://doi.org/10.1371/journal.pone.0139351
https://doi.org/10.1186/2051-3933-2-6
https://doi.org/10.1186/2050-3385-1-20
https://doi.org/10.1186/2050-3385-1-20
https://doi.org/10.1111/2041-210X.13172
https://doi.org/10.1111/2041-210X.13172
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1186/s40317-017-0121-3
https://doi.org/10.1186/s40462-016-0070-0
https://doi.org/10.1186/s40462-016-0070-0
https://doi.org/10.1111/1365-2656.13116
https://doi.org/10.1111/1365-2656.13116
https://doi.org/10.1186/s40317-016-0104-9
https://CRAN.R-project.org/package=umap
https://doi.org/10.1038/s42003-020-01356-8
https://doi.org/10.1038/s42003-020-01356-8
https://doi.org/10.1186/s40317-017-0125-z
https://doi.org/10.1186/s40317-017-0125-z
https://CRAN.R-project.org/package=caret
https://doi.org/10.1186/s40317-017-0123-1
https://doi.org/10.21105/joss.00861
https://doi.org/10.1242/jeb.058602
https://doi.org/10.1111/1365-2656.13164
https://doi.org/10.5441/001/1.dg3sm625
https://doi.org/10.1186/s40462-014-0027-0

     |  12377YU and KLaaSSEn

Ropert- Coudert, Y., & Wilson, R. P. (2005). Trends and perspectives
in animal- attached remote sensing. Frontiers in Ecology and the
Environment, 3(8), 437– 444. https://doi.org/10.2307/3868660

Rückstieß, T., Osendorfer, C., & van der Smagt, P. (2011). Sequential
feature selection for classification. Paper presented at the AI 2011:
Advances in Artificial Intelligence, Berlin, Heidelberg.

Sainburg, T., Theilman, B., Thielk, M., & Gentner, T. Q. (2019). Parallels in
the sequential organization of birdsong and human speech. Nature
Communications, 10(1), 3636. https://doi.org/10.1038/s4146 7- 019-
11605 - y

Shamoun- Baranes, J., Bom, R., van Loon, E. E., Ens, B. J., Oosterbeek, K.,
& Bouten, W. (2012). From sensor data to animal behaviour: An oys-
tercatcher example. PLoS One, 7(5), e37997. https://doi.org/10.1371/
journ al.pone.0037997

Shepard, E., Wilson, R. P., Quintana, F., Gómez Laich, A., Liebsch, N.,
Albareda, D. A., Halsey, L. G., Gleiss, A., Morgan, D. T., Myers, A.
E., Newman, C., & McDonald, D. W. (2008). Identification of animal
movement patterns using tri- axial accelerometry. Endangered Species
Research, 10, 47– 60. https://doi.org/10.3354/esr00084

Vanderkam, D., Allaire, J., Owen, J., Gromer, D., & Thieurmel, B. (2018). dy-
graphs: Interface to 'Dygraphs' Interactive Time Series Charting Library.
Retrieved from https://CRAN.R- proje ct.org/packa ge=dygraphs

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
Springer- Verlag.

Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A grammar
of data manipulation. Retrieved from https://CRAN.R- proje ct.org/
packa ge=dplyr

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A.,
Grissac, S., Demšar, U., English, H. M., Franconi, N., Gómez- Laich,

A., Griffiths, R. C., Kay, W. P., Morales, J. M., Potts, J. R., Rogerson,
K. F., Rutz, C., Spelt, A., Trevail, A. M., Wilson, R. P., & Börger, L.
(2019). Optimizing the use of biologgers for movement ecology
research. Journal of Animal Ecology, 89(1), 186– 206. https://doi.
org/10.1111/1365- 2656.13094

Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez-
Laich, A., Quintana, F., Rosell, F., Graf, P. M., Williams, H., Gunner, R.,
Hopkins, L., Marks, N., Geraldi, N. R., Duarte, C. M., Scott, R., Strano,
M. S., Robotka, H., Eizaguirre, C., Fahlman, A., & Shepard, E. L. C.
(2019). Estimates for energy expenditure in free- living animals using
acceleration proxies: A reappraisal. Journal of Animal Ecology, 89(1),
161– 172. https://doi.org/10.1111/1365- 2656.13040

Yu, H., Deng, J., Nathan, R., Kroschel, M., Pekarsky, S., Li, G., & Klaassen,
M. (2021). An evaluation of machine learning classifiers for next-
generation, continuous- ethogram smart trackers. Movement Ecology,
9(1), 15. https://doi.org/10.1186/s4046 2- 021- 00245 - x

Zhu, J., San- Segundo, R., & Pardo, J. M. (2017). Feature extraction for
robust physical activity recognition. Human- centric Computing
and Information Sciences, 7(1), 16. https://doi.org/10.1186/s1367
3- 017- 0097- 2

How to cite this article: Yu, H., & Klaassen, M. (2021).
R package for animal behavior classification from
accelerometer data— rabc. Ecology and Evolution, 11,
12364– 12377. https://doi.org/10.1002/ece3.7937

https://doi.org/10.2307/3868660
https://doi.org/10.1038/s41467-019-11605-y
https://doi.org/10.1038/s41467-019-11605-y
https://doi.org/10.1371/journal.pone.0037997
https://doi.org/10.1371/journal.pone.0037997
https://doi.org/10.3354/esr00084
https://CRAN.R-project.org/package=dygraphs
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1111/1365-2656.13094
https://doi.org/10.1111/1365-2656.13094
https://doi.org/10.1111/1365-2656.13040
https://doi.org/10.1186/s40462-021-00245-x
https://doi.org/10.1186/s13673-017-0097-2
https://doi.org/10.1186/s13673-017-0097-2
https://doi.org/10.1002/ece3.7937

