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1  | INTRODUC TION

Our understandings of animal movement patterns and behaviors 
continue to rapidly advance with the use of ever smarter and smaller 
tracking technologies (Ropert- Coudert & Wilson, 2005; Williams 
et al., 2019). Increasingly, the tracking of animals is also combined with 
accelerometer (ACC) data collection to study the free- roaming behav-
iors of animals across a wide range of taxa (Brown et al., 2013; Shepard 
et al., 2008). Compared with direct human observation, using ACC to 
study animal behaviors has the obvious advantage that it reduces the 
influence of human presence and also allows the recording of behaviors 
that would otherwise be hard to observe, away from the human eye 
(Brown et al., 2013). However, these obvious merits of ACC technology 
can only be achieved when a reliable behavior classification model is 
available that can convert ACC data into meaningful behavior types.

Many studies have already conducted behavior classification 
from ACC data (e.g., Nathan et al., 2012). In most cases, ACC data 
with corresponding behavioral field observations are used to train 
behavior classification models (e.g., Kölzsch et al., 2016; Kröschel 
et al., 2017). However, in some instances the developed classifiers 
that translate ACC data into behavior types yield only low classifi-
cation accuracy (Fehlmann et al., 2017). As a general remedy, using 
fewer behavior classes and aggregating behaviors usually yields bet-
ter classification performance (Ladds et al., 2017). Such grouping of 
behaviors is typically based solely on biological or ecological con-
siderations without the use of computational pattern recognition. 
Nevertheless, some behaviors whose discrimination may have little 
biological value might have very similar ACC recording patterns and 
grouping of these behaviors based on the observed patterns might 
potentially yield better classification models. It is this often iterative 
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process of grouping and splitting behaviors within the behavior set 
that the here presented rabc (r for animal behavior classification) 
package also endeavors to assist with. In this way, the rabc package 
allows the user to derive optimal and validated behavior classifiers 
suited to their specific research system and questions.

To help biologists translate ACC data into behaviors, this pack-
age uses XGBoost, which is currently one of the most promising 
supervised machine learning methods for this specific purpose 
(Yu et al., 2021). Unlike the web- based tool “AcceleRater” (Resheff 
et al., 2014), our rabc package does not focus on providing a “one- 
stop service” turning ACC data into behaviors. Rather, this package 
focuses on (a) providing interactive visualization tools to its user to 
assist in handling and interpreting the ACC input data, (b) deciding 
on appropriate behavior categories for classification as highlighted 
in the previous paragraph, and (c) reducing ACC data volume effi-
ciently and effectively (through the calculation and selection of a 
range of features) without compromising behavior classification 
performance. In brief, this package endeavors to open the lid of the 
machine learning "black- box", allowing the integration of the user's 
expert knowledge on their own research system in developing ad-
vanced behavior classification models.

2  | rabc WORKFLOW

The general workflow of the rabc package to transform ACC data 
using supervised machine learning methods into behaviors is outlined 
in Figure 1, Table 1. The data flow is composed of the following ele-
ments (where the numbering refers to the sections where these are 
being described in detail): 2.1 ACC dataset preparation with behavior 
labels; 2.2 ACC visualization; 2.3 Feature calculation; 2.4 Feature se-
lection; 2.5 Feature visualization; 2.6 Model training and validation; 
and 2.7 Classification result check. Each section includes details on 
the use of the rabc package, including example code and results. 
The rabc package can be installed in Rstudio by “devtools::install_
github(“YuHuiDeakin/rabc”, build_vignette=TRUE)”.

2.1 | ACC dataset preparation and behavior labels

Segments of continuous ACC data will need to be translated into 
meaningful behaviors. For ACC data segmentation, there are two 
choices: even- length segmentation and variable- length segmenta-
tion (Bom et al., 2014). Variable- length segmentation requires an 

F I G U R E  1   The general workflow of the rabc package to develop classifiers for adequately transforming ACC data into behaviors. The 
various elements in the diagram are numbered according to the paragraphs where these are being described in detail
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algorithm to detect behavior change points and may thus be prone 
to error. Even- length segmentation does not require these additional 
calculations and is therefore much easier to implement. However, 
even- length ACC segments will inevitably contain behavior change 
points (and thus multiple behaviors) affecting down the line pro-
cessing and behavior classification. An ACC segment should be 
sufficiently long to contain enough data to be representative of a be-
havior (and, thus, interpretable as a specific behavior type), whereas 
its length should be limited to avoid inclusion of multiple behaviors 
as much as possible. Regarding the inevitable segments where be-
havior transitions take place, we recommend retaining these seg-
ments in the model training. Although these data might decrease the 
accuracy of the classification model, they will make the model more 
robust and avoid overestimating model performance.

The rabc package only supports even- length segmentation data 
with corresponding behavioral data, that is, the key behavior scored 
for the duration of the segment. These behavioral data are essential 
for supervised machine learning methods. ACC data collection with 
associated behavioral observations can be made both in the wild 
(e.g., Kröschel et al., 2017) and in captivity (e.g., Kölzsch et al., 2016). 
Obviously great care should be taken that observations (video re-
cording) are accurately synchronized with ACC data collection (e.g., 
Kröschel et al., 2017). Although not provided by the rabc package, to 
reduce signal noise raw ACC data can potentially be preprocessed 
(Brown et al., 2013) before entering the data into the rabc package. 

Such “filtered” data would however require that any behavioral clas-
sification model generated by the rabc package is used to predict 
behaviors on filtered ACC data exclusively.

The input data should be a data.frame or tibble containing data 
including the behavior associated with the ACC data. For triaxial 
ACC data, each row of equal length should be arranged as "x, y, z, 
x, y, z, …, behavior", where “behavior” is the (primary) behavior ob-
served during that segment. For dual- axial ACC data, it should be 
arranged as "x, y, x, y, …,behavior" and for single- axial ACC data as "x, 
x, …, behavior". A range of ACC data formats exist that are different 
to the format required by the rabc package. For instance, ACC data 
from triaxial trackers developed by e- obs GmbH (Munich, Germany) 
are arranged as “x y z x y z … ”. At the end of this section, we provide 
an example for reading data recorded by e- obs trackers (Pokrovsky 
et al., 2021) and transforming these into a format suitable for the 
rabc package. Data provided by Ornitela (Vilnius, Lithuania) and 
Druid Technology (Chengdu, China) ACC trackers are arranged in 
a four column table format, where each row contains “timestamp, 
x, y, z”. Thus, 10 rows of data make one second of ACC recordings 
when the sampling frequency is 10 Hz. In the vignette of the rabc 
package, which can be accessed by using the function “browseVi-
gnettes(‘rabc’)”, we provide an example on converting this specific 
format to the format required by the rabc package.

The here used triaxial ACC demo dataset from white stork (Ciconia 
ciconia) (data accessible from the AcceleRater website: http://

TA B L E  1   Summary of rabc functions. In the “Wrapper” field, functions from other R packages that are being used in the rabc package are 
being listed

Functions Arguments Description Wrapper

order_acc() df_raw = NULL Arrange the rows according to behavior 
labels

dplyr::arrange

plot_acc() df_raw = NULL, axis_num = 3 Use dygraph to plot all accelerometer data 
grouped by behavior types

dygraphs::dygraph

calculate_feature_time() df_raw = NULL, winlen_dba, axis_num = 3 Calculate accelerometer data into time 
domain mathematical features

calculate_feature_freq() df_raw = NULL, samp_freq, axis_num = 3 Calculate accelerometer data into 
frequency domain features

feature_selection() df_feature = NULL, vec_label = NULL, 
filter = FALSE, cutoff = 0.9, 
wrapper = "XGBoost", no_features = 5

Select a subset of relevant features for use 
in behavior classification

caret::train

plot_selection_accuracy() results = NULL Plot accuracies of selected features during 
feature selection procedures

ggplot2::ggplot

plot_feature() df_feature = NULL, vec_label = NULL Use dygraph to plot feature(s) in sequence 
grouped by behavior types

dygraphs::dygraph

plot_grouped_feature() df_feature = NULL, vec_label = NULL, 
geom = "boxplot"

Plot feature distributions grouped by 
behavior types

ggplot2::ggplot

plot_UMAP() df_time = NULL, df_freq = NULL, 
label_vec = NULL

Plot two- dimensional UMAP that 
embedding high dimensional features

umap::umap; 
ggplot2::ggplot

train_model() df_feature = NULL, vec_label = NULL, 
hyper_choice = "defaults", 
train_ratio = 0.75

XGBoost model training and validation caret::train

plot_confusion_matrix() df_feature = NULL, vec_label = NULL Plot classification- result confusion table caret::train

plot_wrong_
classifications()

df_raw = NULL, axis_num = 3, 
df_result = NULL

Use dygraph to plot wrong classification 
bouts on all acceleration data

dygraphs::dygraph

http://accapp.move-ecol-minerva.huji.ac.il/


     |  12367YU and KLaaSSEn

accapp.move- ecol- miner va.huji.ac.il/, see Resheff et al., 2014) was 
measured at 10.54 Hz. Forty triaxial measurements, totaling 3.8 s, 
were used to form a behavior segment. The dataset includes 1,746 
segments each forming a row in the dataset. Each row contains 121 
columns. The first 120 columns are ACC measurements from three 
orthogonal axes, arranged as x, y, z, x, y, z, …,x, y, z. The final column 

is of type character containing the corresponding behavior. The 
dataset contains 5 different behaviors including "A_FLIGHT" -  active 
flight (77 cases), "P_FLIGHT" -  passive flight (96), "WALK" -  walking 
(437), "STND" -  standing (863), "SITTING" -  sitting (273).

In the following the relevant R code reading and converting ACC 
data:

# read the first 100 rows of an example dataset recorded by e-obs trackers 

to illustrate data conversion to rabc format

eobs_example <- read.csv("~/Downloads/LifeTrack Rough-legged buzzards-

acceleration.csv", stringsAsFactors = FALSE, nrows = 100)

# convert raw ACC data from character strings to numbers

eobs_acc_mat<-

t(matrix(as.numeric(unlist(strsplit(eobs_example$eobs.accelerations.raw, 

" "))), nrow = 120))

# create dummy behaviour labels for the example ACC data

eobs_labels <- c(rep("behaviour_one", 50), rep("behaviour_two", 50))

# convert to the format required by the rabc package

eobs_df <- data.frame(eobs_acc_mat, label = eobs_labels)

# ….end of example reading and converting e-obs dataset

# load the example dataset that will be used in the following sections

data(“whitestork_acc”)

head(whitestork_acc[, c(1:6, 121)], n = 2)  # show first six columns and 

first two rows

[]  V1        V2        V3        V4       V5       V6         …   V121

[]1 -4.053191 -2.749085 -11.34304 2.452568 3.746303 -20.660534 … A_FLIGHT

[]2  4.599146  6.914143 -20.80166 1.427321 4.714189 0.691159   … A_FLIGHT

http://accapp.move-ecol-minerva.huji.ac.il/
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2.2 | ACC visualization

The rabc package offers two types of graphs, that is, dynamic graphs 
and static graphs. Dynamic graphs produced by the “dygraphs” 
package (Vanderkam et al., 2018) allow users to zoom in and out and 
scroll through the depicted ACC data to facilitate data examination. 
Static graphs produced by the “ggplot2” package (Wickham, 2016) 
help users to examine feature distributions and to check behavior 
classification results.

Prior to visualizing the ACC data, the dataset needs to be sorted 
by behavior using the order_acc function. The purpose of this func-
tion is to ease comparison of ACC patterns among segments shar-
ing the same behavior labels. For ACC data visualization, the rabc 
package uses the function dygraph from the “dygraphs” package to 
plot all ACC segments grouped by behavior. This dynamic mode of 
presentation provides the user with a visual impression of how the 
ACC signal generally relates to the different behaviors and can also 
be used for data quality control (i.e., identifying potentially incorrect 
segments where ACC and behavioral data do not conform to the 
general pattern otherwise observed due to, for instance, incorrect 
behavioral observation). The x- axis of this dygraph indicates the row 
sequence number (i.e., the segment number) of the sorted data.

Plotting the complete white stork ACC dataset using function 
plot_acc (Figure 2a) and next zooming in on the area around seg-
ments 55– 80 (Figure 2b), it can be seen that the ACC data between 
segments 60 and 70 is very different from neighboring segments. 
Albeit all being labeled as “A_FLIGHT”, the ACC data in this range 
resemble more static behaviors, warranting their scrutiny and, po-
tentially, their relabeling or removal from the dataset.

In the following, the relevant R code plotting ACC data:

2.3 | Feature calculation

The next step is to calculate features from the ACC data. A feature 
is a specific mathematical description (such as the mean and the 

standard deviation) of the ACC signal within a segment, which will 
form the input to the machine learning models (Brown et al., 2013). 
Using functions calculate_feature_time and calculate_feature_freq, 
two basic feature sets are calculated. The first, time- domain feature 
set, includes mean, variance, standard deviation, max, min, range, and 
ODBA, where ODBA is short for Overall Dynamic Body Acceleration. 
This value has been proven to be correlated with the animal's energy 
expenditure (Wilson et al., 2019). These features are calculated for 
each ACC axis separately (denoted with prefix x, y, z in the output data 
frame), except for ODBA, which is calculated using all available axes. 
The frequency- domain feature set includes main frequency, main am-
plitude, and frequency entropy. Also, these features are calculated 
for each ACC axis separately (denoted with prefix x, y, z). Calculations 
of these features are based on Fast Fourier Transformation (FFT) 
of ACC data. Frequency entropy here measures unpredictability of 
the signal. It is worth noting that some ACC datasets may not have a 
high enough sampling frequency to log useful frequency information 
(Nathan et al., 2012). For example, Gilbert et al. (2016) studied white 
storks using ACC data with a 1 Hz sampling rate, which is insuffi-
cient to accurately register the stork's wingbeat frequency, while in 
our white stork example the sampling frequency of 10.54 Hz could 
accurately assess wingbeat frequency at 3.1 Hz. Thus, if sampling fre-
quency is low, it is better not to use frequency- domain features for 
behavior classification. In addition, it should be considered that the 
functions calculate_feature_time and calculate_feature_freq provide 
an essential but not an exhaustive list of potential features. Since it 
has been asserted that feature engineering can improve the perfor-
mance of machine learning models (Boehmke & Greenwell, 2019), 
users may consider calculation of custom features. All functions in 
the rabc package are also able to process custom features after the 

user has included these in the feature data frame using functions 
cbind or bind_cols from the “dplyr” package (Wickham et al., 2021).

In the following, we present the relevant R code calculating fea-
tures from ACC data:

whitestork_acc_sorted <- order_acc(df_raw = whitestork_acc)

plot_acc(df_raw = whitestork_acc_sorted, axis_num = 3)  # produces Figure 2

# calculation of time domain features

df_time <- calculate_feature_time(df_raw = whitestork_acc_sorted,

            winlen_dba = 10) # length of running window ODBA calculation

# calculation of frequency domain features

df_freq <- calculate_feature_freq(df_raw = whitestork_acc_sorted, 

            samp_freq = 10.54)  
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2.4 | Feature selection

Feature selection is the process of selecting a subset of relevant 
features for use in model building (Chakravarty et al., 2019). In 
animal behavior studies using ACC, dozens of features are typi-
cally used in model building (e.g., Shamoun- Baranes et al., 2012). 
Although a relatively small number compared to often hundreds of 
features were used in human behavior classification models (Zhu 
et al., 2017), there may still be redundancy in the feature set. This 
redundancy may for instance be caused by features that show high 
correlation with other features and are thus likely to contribute 
similarly to the behavior classification model. Additionally, irrel-
evant features may exist that hardly contribute to the classifica-
tion model. Three aims are being served with feature selection in 
this package. Firstly, less features will make the model easier to 
interpret. Indeed, there may for instance be biomechanical con-
nections between features and the ultimate classification model 
(e.g., Chakravarty et al., 2019). Secondly, fewer features reduce 
the risk of overfitting and may therewith lead to better behavior 

classification from ACC data. Thirdly and finally, because of lower 
computational requirements in assessing behavior from ACC data, 
reduced feature sets have greater potential to be calculated on- 
board the ACC devices themselves, for example, on- board of 
light- weight tracking devices (e.g., Korpela et al., 2020; Nuijten 
et al., 2020) on which they can either be stored or relayed to re-
ceiving stations.

The rabc package's select_features function uses a combination 
of a filter and a wrapper feature selection method. The filter part 
removes any redundant features based on the absolute values of the 
pair- wise correlation coefficients between features. If two features 
have a high correlation, the function looks at the absolute correla-
tion of each of the two features with all other features and removes 
the feature with the largest mean absolute correlation value. The 
threshold correlation coefficient (cutoff) is user- defined with a de-
fault "cutoff = 0.9". The select_features function will result in a list of 
features where all feature correlations fall below the threshold cor-
relation coefficient. In the default constellation, the filter function is 
turned off (i.e., "filter = FALSE").

F I G U R E  2   ACC data visualization 
using a dynamic graph. Panel a shows 
the complete white stork ACC dataset, 
sorted by behavior type. The x- axis shows 
the segment numbers of the dataset 
ordered by behavior. Vertical dashed 
lines separate different behavior types. 
Panel b demonstrates how one can zoom 
in on specific segment ranges, here from 
segment 55 to 80
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The purpose of the wrapper is to select most relevant fea-
tures. The wrapper part applies stepwise forward selection (SFS) 
(Rückstieß et al., 2011) using the extreme gradient boosting 
(XGBoost) model, which is not only used for feature selection but 
also for the final classification model (see below). XGBoost is a scal-
able tree boosting method that proved to be faster and have a better 
performance than other currently available tree boosting methods 
(Chen & Guestrin, 2016). In a comparison with three other super-
vised machine learning methods (support vector machine, artificial 
neural network, and random forest models), XGBoost classified 
behavior from ACC data similarly well to the alternative methods. 
However, XGBoost had the fastest runtime and the second smallest 
memory usage (Yu et al., 2021). The default limit to the number of 
features (no_features) is 5 but can be user defined. The no_features 
also determines how many rounds of SFS are being conducted. In the 
first round, each feature is individually used to train a classification 
model by XGBoost. The feature with highest overall accuracy will be 
kept into the selected feature set. Then, in the second round, each 
remaining feature will be combined with the first selected feature 

to train a classification model and the pair with the highest accuracy 
will be kept into the selected feature set. This process continues, 
each round yielding an additional feature on top of the features al-
ready selected in previous rounds. This process will stop when the 
number of rounds equals the no_features setting.

The select_features function will return a list, of which the first 
member (i.e.,.[[1]]) contains a matrix providing the classification 
accuracy for each of the features (columns) across all steps (rows, 
top row being the first step) of the SFS process. Once a feature is 
selected into the selected feature set, the remaining values in this 
feature's column are set to zero. The second member of the list 
(i.e.,.[[2]]) contains the names of the selected features in the order 
in which they were selected in the SFS process. The development 
of the classification accuracy with each step in the SFS process is 
plotted with function plot_selection_accuracy (Figure 3). In the case 
of the white stork dataset, we can see that after the sixth selected 
feature, “z_variance”, there is almost no further improvement in clas-
sification accuracy with the addition of more features.

The relevant R code for feature selection:

F I G U R E  3   Classification accuracy plot 
providing an overview of the individual 
(gray bars) and cumulative (red line and 
circles) contribution of each feature (in 
which they were selected in the stepwise 
forward selection (SFS) process)
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labels <- whitestork_acc_sorted[ , 121]

selection <- select_features(df_feature = cbind(df_time, df_freq), filter = 

FALSE, cutoff = 0.9, vec_label = labels, no_features = 10) # filter not 

used in this example

plot_selection_accuracy(results = selection)   # produces Figure 3
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2.5 | Feature visualization

Above, under “Feature selection” we already mentioned the three 
objectives with feature selection: improving interpretability, re-
ducing overfitting, and reducing computational requirements. 
Visualization of the features can further assist in deciding on the fea-
tures to use in the ultimate behavior classification model, yet its main 
use is in deciding if any behavior types should be combined to ulti-
mately improve behavior classification performance. Alternatively, 
the visualization may also lead to considering splitting up existing 
behavior types into multiple behaviors. In other words, this visualiza-
tion aids in evaluating the behavior set.

The rabc package offers three ways to visualize features. The first 
two visualize the features in isolation whereas the third is an integrative 

approach where entire feature domains are analyzed collectively. The 
first of the visualization methods, plot_feature, draws individual values of 
features ordered by behavior (Figure 4). The second, plot_grouped_fea-
ture, produces a boxplot of a selected feature for all behavior types, as 
demonstrated for the ODBA feature in Figure 5. In the case of the white 
stork dataset, it suggests clear differentiation of behaviors by ODBA 
with a trend of ODBA decreasing from active flight via walking to passive 
flight, standing, and sitting. The third and most important, integrative ap-
proach uses Uniform Manifold Approximation and Projection (UMAP).

In the rabc package, we use UMAP (Konopka, 2020) to plot the 
different behaviors, represented by differently colored symbols 
in the two- dimensional space. UMAP is a very powerful nonlinear 
dimensionality- reduction technique, which is also highly suitable for 
high- dimensional data visualization (McInnes et al., 2018) and we will 

F I G U R E  4   Feature data visualization 
using a dynamic graph. The feature ODBA 
in this plot is calculated by function 
calculate_feature_time. The x- axis shows 
the segment numbers of the features 
ordered by behavior. Vertical dashed lines 
separate different behavior types

F I G U R E  5   Boxplot of the feature 
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here use it to transform and visualize collections of features in a two- 
dimensional plot. UMAP has already found its niches in bioinformatics, 
material sciences, and machine learning (McInnes et al., 2018). Within 
the broad field of biology, it has been used in bioacoustics studies (e.g., 
Sainburg et al., 2019), but it has rarely been used in animal behavior 
studies. The optimal scenario to which one strives is to obtain a rep-
resentation where each behavior forms an isolated cluster of symbols 
within this two- dimensional space. In this way, UMAP provides an 
indication of how the final classification model will perform, isolated 
behavior clusters indicating high classification accuracy. If overlaps 
in clusters exists, researchers may wish to consider grouping certain 
behaviors because they may not be adequately separated using ACC 
data. Conversely, if behaviors are spread out over a plot, having those 
behaviors reclassified in multiple behavior types may be a possibility.

We made the UMAP visualization into a Shiny App to facilitate 
user interaction. The Shiny App was built with the “shiny” R pack-
age (Chang et al., 2021). The Shiny App offers an interactive way 
for users to adjust parameters and update results without the need 
to rerun code from the R console. There are three tabs in the Shiny 
App, representing three functions. Tab 1: "UMAP calculation and 
tuning"— assists with evaluating whether ACC features adequately 
represent behaviors. Tab 2: "Feature visualization through UMAP"— 
can show how feature values vary across the two- dimensional 
UMAP plot. Tab 3: "Selected features"— assists with evaluating the 
performance of selected features in differentiating between the 
different behaviors. In Figure 6, we show screenshots of the three 
UMAP tabs, loaded with the time and frequency- domain features 
from the white stork dataset. It shows that the different behaviors 
separate generally well (Figure 6a), suggesting that there is good po-
tential to develop a satisfactory performance behavior classification 
model. In the next tab (Figure 6b), we selected the ODBA feature, 
the plot showing how its value varies across the different behavior 
types with active flight having distinguishably high ODBA values fol-
lowed by walking, then passive flight, standing, and sitting. Finally, 
in the third tab (Figure 6c), we only selected the six features identi-
fied by function select_features to form a new UMAP plot. We can 
see that these features can preserve the manifold structure of the 
different behaviors. The demo of this Shiny App can be accessed 
through <https://huiyu - deakin.shiny apps.io/rabc_UMAP/>.

Presenting the relevant R code for the plotting of features:

plot_feature(df_feature = df_time[, “ODBA”, drop = FALSE], vec_label = 

labels)  # produces Figure 4

plot_grouped_feature(df_feature = df_time[, “ODBA”, drop = FALSE], 

vec_label = labels, geom = “boxplot”)  # produces Figure 5

plot_UMAP(df_time = df_time, df_freq = df_freq, label_vec = labels)  # 

produces Figure 6

2.6 | Model training and validation

After feature selection and visualization (including potential group-
ing and/or splitting of behavior types in the original behavior set), the 
user can train a supervised machine learning model (XGBoost in this 
package) with the selected, most relevant features through function 
train_model. Usually, the construction and evaluation of supervised 
machine learning models includes three steps: (a) machine learning 
model hyperparameter tuning by cross- validation, (b) model train-
ing with the optimal hyperparameter set, and (c) evaluating model 
performance through validation with a test dataset. Function train_
model is a wrapper function that utilizes relevant functions from the 
“caret” (Kuhn, 2020) and “xgboost” packages (Chen et al., 2021) to 
automatically conduct the three above steps for model construction 
and evaluation.

Four arguments can be set in the function train_model to con-
trol the training and validation processes. Which features to use 
for model building is set by "df", which in the following example is 
set to “selection$features[1:6]” (i.e., the first six selected features 
from the feature selection procedure). The “vec_label” argument is 
used to pass on a vector of behavior types. How to select the hy-
perparameter set is set by “hyper_choice”, which has two options. 
The first is "defaults" which will let XGBoost use its default hyper-
parameters with a fixed setting of “nrounds = 10”. The alternative 
“hyper_choice” option is "tune", which will run repeated cross- 
validations (main parameters: method = “repeatedcv”, number = 5, 
repeats = 3) to find a best set. Note that for four hyperparameters, 
a set of alternative values are provided which will be optimized in 
this procedure (nrounds = c(5, 10, 50, 100), max_depth = c(2, 3, 
4, 5, 6), eta = c(0.01, 0.1, 0.2, 0.3), gamma = c(0, 0.1, 0.5)), while 
for three hyperparameters we fixed the setting (colsample_bytree 
= 1, min_child_weight = 1, subsample = 1). The settings for these 
seven hyperparameters are based on our previous experience with 
a range of different ACC datasets (Yu et al., 2021). For details on 
the function of the hyperparameters, please refer to https://xgboo 
st.readt hedocs.io/en/lates t/param eter.html. Finally, “train_ratio” 
determines the percentage of data used to train the model, the re-
mainder of the data being used for model validation.

The ultimate output consists of four parts. The first is a confusion 
matrix, depicting how well the ultimate behavior classification model 

https://huiyu-deakin.shinyapps.io/rabc_UMAP/
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
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predicts the different behaviors based on the validation part of the 
dataset only (i.e., 25% of the dataset in our stork example using a 
train_ratio of 0.75). On the diagonal of this table, where the ob-
served behavior is organized in columns and the predicted behavior 
is organized in rows, the correct predictions are depicted, with all the 
wrong predictions being off the diagonal. The overall performance 

statistics are presented next, the meaning of which is explained in 
detail in <https://topepo.github.io/caret/ measu ring- perfo rmance.
html>. The third part of the output, statistics by class, presents a 
range of performance statistics for the individual behavioral cate-
gories, which are explained in detail in <https://topepo.github.io/
caret/ measu ring- perfo rmance.html>. Finally, the importance of the 

Image Missing

F I G U R E  6   Demonstrations of the 
three tabs generated by the plot_UMAP 
function. Tab a— UMAP calculation 
and tuning— evaluates whether ACC 
features represent behaviors. The 
“Features to input” section allows 
users to choose which feature groups 
to use as input to UMAP. The “UMAP 
hyperparameter tuning” section allows 
users to interactively adjust three 
hyperparameters within the UMAP 
function to control the two- dimensional 
clustering. Tab b— Feature visualization 
through UMAP— shows how feature 
values vary across the two- dimensional 
UMAP plot. Users can choose which 
feature to plot by selecting from the drop 
box. Tab c— Selected features— allows 
evaluating the performance of selected 
features in differentiating between the 
different behaviors. Users can choose 
which features to input into UMAP by 
ticking the checkboxes

https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html
https://topepo.github.io/caret/measuring-performance.html
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various features in producing the behavior classification model is 
being presented.

Another way of calculating and visualizing the performance of the 
behavioral classification model makes use of cross- validation using 
function plot_confusion_matrix. In this case, the entire dataset is ran-
domly partitioned into five parts. In five consecutive steps, each of 
the five parts is used as a validation set, while the remaining four parts 
are used for model training. This procedure thus resembles a fivefold 
“classification model training and validation” with a train_ratio of 0.8, 

be that in this case the dataset is systematically divided and each 
point in the dataset is being used for the validation process at some 
point (see function createFolds in “caret” for more details). Thus, after 
all five training and validation rounds, all behavioral observations will 
also have an associated predicted behavior, which are being stored 
in the data frame that is being returned by plot_confusion_matrix in 
addition to a plot of the confusion table (Figure 7).

The relevant R code for classification model training and 
validation:

F I G U R E  7   Confusion matrix plot of 
fivefold cross- validation results. The dots 
in the graph are colored according to 
the classification results, with blue and 
red symbols being correct and incorrect 
classifications, respectively. Sample size 
for each observation and prediction 
combination is provided
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model_output <- train_model(df = df_time[, selection$features[1:6]], 

vec_label = labels)  # train a model that can next be used for predicting 

behaviour from ACC data

df_time_prediction <- calculate_feature_time(df_raw = 

whitestork_acc_sorted[1:100,], winlen_dba = 10) # treat the first 100 bouts 

of the demo dataset as new dataset for demonstration of how to predict new 

dataset using the trained model 

predicted_behaviours <- predict(model_output, df_time_prediction[, 

selection$features[1:6]])

predictions <- plot_confusion_matrix(df_feature = df_time[, 

selection$features[1:6]], vec_label = labels)  # produces Figure 7
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2.7 | Classification result check

Using the predictions from the behavior classification model, we can 
now return to the original ACC data to evaluate which ACC signals 
lead to correct and incorrect classifications using function plot_con-
fusion_matrix. This function basically uses the same digraph with 
near identical look to function plot_acc used earlier. The only devia-
tion is that all incorrect predictions (identified using the data frame 
from function plot_confusion_matrix) are now marked as such. The 
original behaviors are grouped and separated by dashed lines with 
the corresponding original behavior stated at the base of the dashed 
lines. The incorrect predictions are marked by dotted lines with the 
predicted behavior stated at the top (Figure 8).

The R code to visualize incorrect classifications

3  | DISCUSSION AND CONCLUSIONS

As demonstrated, the rabc package can assist researchers in devel-
oping good animal behavior classification models in an interactive 
fashion. ACC data visualization assists in the detection of aberrant 
associated behavior scores. Feature visualization helps researchers 
to understand how different features distribute across behaviors and 
whether the current behavior set potentially needs adjustments, ei-
ther by grouping or by splitting behaviors into new behavior types. 
Finally, classification- result visualization assists the understanding of 
misclassification patterns. Other than the visualization functionalities, 
this package provides complete functions to perform behavior classi-
fication through XGboost, including feature calculation, feature selec-
tion, model hyperparameter tuning, model training and validation, and 
an output classifier for future ACC data classification.

Given its unique aim and functionality, the rabc package will be a 
valuable addition to the growing array of R packages already available 
for behavior and movement analyses (Joo et al., 2020). There is one 
other R package, “m2b”, that shows some resemblance to the rabc 
package in that it uses supervised machine learning (random forest) 
to classify behaviors, be it from GPS rather than ACC data. The rabc 
package only supports classification in a supervised fashion, which 
requires users to label ACC data with the corresponding behavior 
types. However, in some cases behavioral data may not be available 
and for those circumstances users may want to resort to using the 
Ethographer package in Igor Pro (WaveMetrics Inc., USA) for process-
ing ACC data in an unsupervised fashion (e.g., Berlincourt et al., 2015).

A non- R tool designed for animal behavior classification that 
also uses ACC data in combination with behavioral observations 

is AcceleRater. Like rabc, AcceleRater trains behavior classifi-
cation models, yet, there are three major differences between 
AcceleRater and the rabc package. Firstly, the rabc package is writ-
ten in R and used in the R environment, which gives users ample 
freedom of preprocessing and postprocessing the data. Secondly, 
rather than offering a “black- box” training process, the visualiza-
tion tools within rabc assist users in building an understanding of 
the behavior classification process and why some behaviors can 
be better classified than others, providing avenues to modify or 
improve the behavior classification model. Finally, the classifica-
tion model trained in rabc can be exported and used on- board of 
trackers as for instance used in (Yu et al., 2021). It is worth not-
ing that the features calculated in the rabc package can be fur-
ther extended if deemed necessary. Users can develop additional 
features and include these in the here described analyses and the 

F I G U R E  8   ACC data visualization 
including behavior classification results 
using a dynamic graph. White stork ACC 
data are shown from segment 55 to 80 
(cf Figure 2b). Vertical black, dashed lines 
separate different originally observed 
behavior types, while vertical gray dotted 
lines mark incorrect predictions with 
predicted behavior type labeled at the top

plot_wrong_classifications(df_raw = whitestork_acc_sorted, df_result = 

predictions)  # produces Figure 8
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ultimate generation of a behavior classification model. Although 
we only use XGboost as the supervised machine learning model 
in this package, users can potentially use the output from the rabc 
package as input to the “caret” package. This will allow for the use 
of other machine learning models in generating behavior classifi-
cation models such as decision tree, support vector machine, and 
random forest. Finally, although ACC data from different animal 
species and under a variety of circumstances are increasingly be-
coming available, where possible, we encourage making these ac-
cessible with the associated behavior labels. Such data may not 
only be used to guide studies on new species with comparable be-
havioral repertoires, but also have the potential to ultimately gen-
erate cross- species behavioral classification models.
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