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Abstract

The impacts of COVID-19 on travel demand, traffic congestion, and traffic safety are attract-

ing heated attention. However, the influence of the pandemic on electric bike (e-bike) safety

has not been investigated. This paper fills the research gap by analyzing how COVID-19

affects China’s e-bike safety based on a province-level dataset containing e-bike safety met-

rics, socioeconomic information, and COVID-19 cases from 2017 to 2020. Multi-output

regression models are adopted to investigate the overall impact of COVID-19 on e-bike

safety in China. Clustering-based regression models are used to examine the heteroge-

neous effects of COVID-19 and the other explanatory variables in different provinces/munic-

ipalities. This paper confirms the high relevance between COVID-19 and the e-bike safety

condition in China. The number of COVID-19 cases has a significant negative effect on the

number of e-bike fatalities/injuries at the country level. Moreover, two clusters of provinces/

municipalities are identified: one (cluster 1) with lower and the other (cluster 2 that includes

Hubei province) higher number of e-bike fatalities/injuries. In the clustering-based regres-

sions, the absolute coefficients of the COVID-19 feature for cluster 2 are much larger than

those for cluster 1, indicating that the pandemic could significantly reduce e-bike safety

issues in provinces with more e-bike fatalities/injuries.

Introduction

Since the declaration of the COVID-19 pandemic by the World Health Organization (WHO)

in February 2020 [1], the implementation of lockdown policies has been a global trend. The

accompanying non-pharmaceutical interventions, such as travel restrictions and social dis-

tance policies, raise negative influences on productivity, cause large social costs, and shock the

global financial market and social economy. Furthermore, the COVID-19 pandemic has been

reshaping the way people travel such that human mobility patterns in the coming years could

be notably different from the past. As a result, people are paying more and more attention to

the impact of COVID-19 on travel demand, traffic congestion, and traffic safety. Evidence has
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been found all around the world on how the pandemic affects urban mobility. For instance,

the vehicle miles traveled and driving frequency dropped over 30% in Alabama, US [2], the

speed of traffic flow increased due to lower congestion level in New York City [3], and the

number of car crashes dropped [4], the usage of public transit fell at the beginning of the pan-

demic and then recovered in the UK [5], and people made fewer walk/bike trips in densely

populated cities but more in less densely populated cities in the US [6]. Yet, no effects have

been conducted on the influence of COVID-19 on an indispensable mobility mode—the elec-

trical bike (e-bike).

The e-bike, a type of powered two-wheeled vehicle that is inexpensive, fast, and environ-

mentally friendly (compared with motor vehicles), is widely used in many places such as Aus-

tralia [7], Europe [8], the US [9], and China [10]. With a tremendous grown in usage over the

past two decades, the e-bike has become a major nonmotorized travel mode in China. In 1998,

there were only several thousand e-bikes produced and sold in China, and this number grew

to over 20 million in 2009. From 2013, China became the largest e-bike producer and exporter.

Now the yearly production and sales are over 350 million. Generally, e-bikes are popular in

China because they allow people to commute longer distances and are serving as a high-quality

mobility alternative to public transit and conventional bikes. Furthermore, China has been

promoting the shared economy, and most on-demand (food) delivery men who are working

for companies such as Meituan and Ele.me rely on e-bikes to finish jobs on time. However, e-

bikes also raise road safety issues because of the fast speed and the less protected riding envi-

ronment compared with cars. Researchers have found that many e-bike riders have risky

behaviors such as speeding, riding on motorized roadways, not wearing helms, or disobeying

traffic signals [11–14]. As a result, the number of fatalities/injures in e-bike accidents has

become a major component in road traffic fatalities/injures in China; in 2019, nearly 30% of

road traffic fatalities/injures were caused by e-bike accidents (see Fig 1 that illustrates the num-

ber of fatalities/injures of different travel modes in 36 major cities in mainland China). The

pros and cons of e-bikes could be more significant during the COVID-19 pandemic. On one

hand, e-bikes naturally meet the requirement of social distance for preventing the epidemic

from spreading and would be more preferable than public transit and cars among commuters.

On the other hand, high e-bike usage during the pandemic could continuously cause traffic

safety issues.

This paper fills a research gap by quantifying the impact of the COVID-19 pandemic on e-

bike safety in China. We conduct two analyses based on a province-level dataset with e-bike

safety, COVID-19, and socioeconomic metrics from 2017 to 2020. First, we examine the over-

all impact of COVID-19 on e-bike safety at the country level. Second, we conduct clustering-

based regressions to investigate the heterogeneous influence of COVID-19 and other explana-

tory variables on e-bike safety conditions at the province level. The results demonstrate the

high relevance between COVID-19 and e-bike fatalities/injuries in China. On the province

level, the pandemic has a larger negative impact on the number of e-bike fatalities/injuries for

provinces with more serious e-bike safety issues. Since e-bikes provide a comfortable mode for

preventing the epidemic from spreading, our analyses provide good references for the study of

mobility and traffic safety during-and-post the pandemic.

Literature review

Before discussing the data, methodology, and analysis results, we present a review of the

impact of COVID-19 on travel demand and traffic safety, as well as the key features/covariates

used for traffic safety regression studies. The review identifies the contributions of this paper

as a supplement to the existing literature on COVID-19 and traffic safety-related studies.

PLOS ONE Quantifying the impact of COVID-19 on e-bike safety in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0256610 August 20, 2021 2 / 15

GDP, electric power consumption, and the profit

from express and logistics. 2) The province-level

COVID-19 data of China, which is public (open

access) and can be downloaded from the link

https://en.wikipedia.org/wiki/Statistics_of_the_

COVID-19_pandemic_in_mainland_China. The

data includes the number of COVID-19 cases,

recoveries, and deaths for each month and

province. 3) The monthly and province-level China

e-bike safety data is not public. The dataset is

owned by the Research Institute for Road Safety

(RIRS) of the China Ministry of Public Security

(MPS). The data includes e-bike safety information,

such as the number of fatalities, the number of

injuries, property damage, the distribution of

accident causes. The authors of this paper do not

have special privileges in accessing the data. For

other researchers interested in this dataset, please

contact zhuxinyu@122.cn (Mr. Xinyu Zhu,

assistant researcher at RIRS, “122.cn” is the

official email domain for the China government) for

permission/availability of the dataset; any academic

use of the dataset will be welcomed, but it could

take weeks for processing/delivery of the data due

to authority processes from China MPS. Since data

3) is owned by the RIRS, we cannot release the

original raw data. However, we have contacted the

data owner who allowed us to publicize some

processed data used in this paper. In this manner,

we share the data from 2019 to 2020 as a minimal

anonymized data set. Please find the data and

introduction in the Supporting Information.

Funding: The research is supported by Central

Public-Interest Scientific Institution Basal Research

Fund (Grant No. 111041000000180001210102).

Competing interests: No authors have competing

interests.

https://doi.org/10.1371/journal.pone.0256610
https://en.wikipedia.org/wiki/Statistics_of_the_COVID-19_pandemic_in_mainland_China
https://en.wikipedia.org/wiki/Statistics_of_the_COVID-19_pandemic_in_mainland_China
mailto:zhuxinyu@122.cn


Since the breakout of COVID-19 in Hubei, China in late 2019, there have been three world-

wide infection waves of the epidemic: 1) the first wave peaked between early spring and sum-

mer in 2020 when countries started to implement lockdown strategies; 2) the second wave wit-

nessed the rebounding of infection during October to the end of 2020 as some countries

relaxed social distance policies; 3) the third wave began in early 2021 along with the start of

vaccination campaigns since some countries loosed lockdowns and travel restrictions [15].

The threat from the virus and lockdown policies have significantly changed people’s travel

demand and travel patterns. The most heavily damaged transportation sector is air transport,

which suffered from a decline of 50% seats (around 2.9 billion passengers and 390 billion

USD) [16]. Similarly, rail transport, another essential long-distance travel mode, has experi-

enced 20% to 30% annually passenger loss in different regions such as Europe, the US, and

Asia [17, 18]. Apart from long-distance mobility, it is worth noting that both land-borne and

maritime freight transport have met certain degrees of financial crisis in the phase of the pan-

demic; while e-commerce companies, which focus on business-to-consumer sections, such as

UPS, FedEx, and Amazon, became the winner [15]. Overall, the findings indicate a notable

decline in people’s travel/social/shopping activities.

We examine how the pandemic has been changing people’s daily travel patterns in terms of

the overall trip demand and the usage of different ground transport modes. Based on long-

term mobile device location data in the US, the University of Maryland research team showed

that the pandemic itself has dramatically reduced people’s number of trips and trip mileages,

especially in states in a serious infection situation; while the pure impact of lockdown policies

signed by governments was much smaller [19–21]. Using the same dataset, Xiao et al. found

that people’s trip duration has notably decreased after the national call [22]. Similar evidence

on the decline of travel frequency and duration was found in other regions, such as Asia and

Europe [23, 24]. Besides changes in travel frequency and duration, it was observed that people

tend to choose private cars or bikes rather than the subway, buses, taxis, or ride-hailing services

to stay away from the gathering in many places, such as Germany, Canada, Scotland, and

China [25–28].

In addition to reshaping people’s travel demand and habits, the pandemic and lockdown

policies also affect traffic safety. It was found that the number of roadway accidents decreased

significantly in the US [29–31]; however, the fatality rate during traffic accidents increased by

around 14% in early 2020 compared with 2019 [32]. Using traffic flow and incident data in

Greece, Katrakazas et al. found that the lockdown policy caused more vehicle accidents since

Fig 1. Statistics of traffic accidents in 36 major cities in mainland China in 2019. (a) The number of fatalities. (b)

The number of injuries.

https://doi.org/10.1371/journal.pone.0256610.g001
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people drove faster with fewer vehicles on roadways [33]; speeding behaviors during the epi-

demic were also found in the UK and France [34]. The ETSC reported a notable decrease in

the number of incidents/fatalities during the pandemic in some European countries, such as

Spain, Italy, Finland, and Germany, which was largely due to the reduction of trips [33, 34].

According to the aforementioned review, there are still insufficient studies about the impact

of COVID-19 on roadway safety; and most safety analyses were conducted based on car-

related crashes, while nonmotorized travel modes (e.g., walk, bike, and e-bike) have drawn lit-

tle attention. It was estimated that cyclists and pedestrians would enjoy a much safer trip since

the pandemic has led to certain reductions in vehicle volume on roadways [35]. With e-bike

accident data before and during the pandemic, we try to fill a research gap by analyzing how

COVID-19 impacts e-bike safety in China. To conduct a solid empirical study, we fuse the

accident dataset with public socioeconomic features that are highly correlated with traffic/

bike/e-bike safety based on the literature. For example, population and population density gen-

erally indicate the overall travel demand, and they can be positively related to the number of

accidents [36, 37], GDP and economic-related features reflect people’s activity and travel fre-

quency [36, 37], income tends to have positive effects on car travel demand [38], age group

and gender are associated with travel mode and driving/riding behavior [39, 40], urbanization

level partially shows travel density in the study area [37, 41].

E-bike safety data of mainland China

The dataset used in this case study is fused based on province-level e-bike accident statistics

from the Research Institute for Road Safety of Ministry of Public Security, province-level

socioeconomic metrics from the China National Bureau of Statistics, and province-level

COVID-19 cases data from Wikipedia (please refer to the S1 File online for the web links of

the dataset). Detailed e-bike accident and socioeconomic information for all the 31 provinces

and municipalities from the year 2017 to 2020 is recorded in the dataset, including the

monthly number of fatalities, monthly number of injuries, monthly property damage, the dis-

tribution of accident causes, annual population, seasonal GDP, monthly electric power con-

sumption, monthly profit from express and logistics, annual urbanization rate, average annual

income, and annual age distribution. There are 1,488 data records in total for 48 months and

31 provinces/municipalities. The map of provinces is shown in Fig 2 (created based on the

USGS National Map Viewer): 1 Beijing, 2 Tianjin, 3 Hebei, 4 Shanxi, 5 Nei Menggu, 6 Liao-

ning, 7 Jilin, 8 Heilongjiang, 9 Shanghai, 10 Jiangsu, 11 Zhejiang, 12 Anhui, 13 Fujian, 14

Jiangxi, 15 Shangdong, 16 Henan, 17 Hubei, 18 Hunan, 19 Guangdong, 20 Guangxi, 21 Hai-

nan, 22 Chongqing, 23 Sichuan, 24 Guizhou, 25 Yunnan, 26 Tibet, 27 Shaanxi, 28 Gansu, 29

Qinghai, 30 Ningxia, 31 Xinjiang.

Table 1 presents the statistics of variables used in this paper. Note that we are not fitting a

panel data model so that the annual/monthly linear trend is not considered. Property damage

is not considered in our study because the costs/prices of e-bikes are much lower than motor

vehicles. The majority of statistics are summarized based on province and month except for

variables “seasonal GDP”, “population”, “urbanization rate”, “average annual income”, “per-

centage of age group 1” and “percentage of age group 2”. For 3 months in the same season, the

values of GDP are identical to the seasonal GDP of the province. For instance, if the GDP for

Beijing during spring 2017 is 500 billion CNY, then we set the GDP for Beijing in January, Feb-

ruary, and March to be 500 billion CNY. It is unnecessary to divide the value by 3 (months)

since we are developing linear regression models. For 12 months in the same year, the values

of average income, urbanization rate, population, and age distributions are the same for spe-

cific provinces and are regarded as annual fixed effects for regressions. The total numbers of e-
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bike fatalities and injuries during the four years in China are 11,137 and 88,331, respectively.

Generally, injuries are recorded by the police upon incident calls, but provinces may have dif-

ferent counting standards. For 840 out of the 1,488 data records (56.5%), the number of e-bike

fatalities is less or equal to 5 per province per month; for 54 out of the records (3.6%), the num-

ber of fatalities is over 30 per province per month and such records are observed in Jiangsu,

Zhejiang, and Guangxi (point 10, 11, and 20 in Fig 2); the highest number of fatalities is 62,

which happened in Jiangsu. The spatial heterogeneity of e-bike fatalities could be caused by

the differences in policy supports for using e-bikes, economic levels, and people’s travel prefer-

ences. The maximum number of COVID-19 cases is 59,754 (reported by Hubei province in

February 2020), which is extremely larger than any other record (the second large record is

7,153 for Hubei in January 2020). To develop sound linear models that ascertain the true effect

of COVID-19, we make a nonlinear transformation of the number of COVID-19 cases by

Fig 2. Map of provinces and municipalities in mainland China.

https://doi.org/10.1371/journal.pone.0256610.g002

Table 1. Variables and statistics.

Variables Statistics

Min. Med. Max. Avg.

# of fatalities for e-bike accidents 0.000 5.000 62.00 7.481

# of injures for e-bike accidents 0.000 30.00 520.0 59.37

# of COVID-19 cases 0.000 0.000 59754.0 58.52

log-transformed # of COVID-19 cases 0.000 0.000 4.776 0.232

population (million people) 3.490 39.38 126.0 45.31

seasonal GDP (trillion CNY) 0.027 0.595 3.236 0.760

profit from express/logistics (billion CNY) 0.009 0.663 22.25 1.834

power consumption (billion KWH) 0.406 14.85 116.9 18.74

urbanization rate 29.80 60.03 86.62 60.46

average annual income 15.46 25.06 72.23 29.22

percentage of age group 1 (15 to 64) 63.37 71.16 78.81 71.24

percentage of age group 2 (over 64) 5.670 11.97 17.42 11.78

https://doi.org/10.1371/journal.pone.0256610.t001
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using log10(xt+1), where xt denotes the monthly province-level confirmed cases; therefore, the

lowest value of “log-transformed # of COVID-19 cases” equals zero for 0 cases, and the maxi-

mal value equals 4.776 with 59,754 cases. For all these variables, the average values are greater

than the medium values, indicating that there are “metropolitan” provinces/municipalities in

China. The large range of socioeconomic variables, such as 0.027 T to 3.236 T CNY for sea-

sonal GDP and 0.406 to 116.921 B KWH for power consumption, 15.46 K CNY to 72.23 K

CNY for average annual income, and 29.80% to 86.62% for urbanization rate, illustrates the

unbalance in development, which largely depends on the location of the provinces/municipali-

ties and the national economic policy.

Fig 3 displays the trend of e-bike safety in China from 2017 to 2020; the time series data is

obtained by summing monthly numbers of fatalities and injuries across the 31 provinces/

municipalities. We also show the log-transformed total number of COVID-19 cases (i.e.,

log
10
ð
P31

j¼1
xjt þ 1Þ, where xjt denotes the number of COVID-19 cases for province j during

month t), which refers to the right vertical axis of the figures. As depicted in the figures, the

numbers of fatalities and injuries show a notable yearly (i.e., 12-monthly) periodic trend; for

each year, the number of fatalities/injuries researched the bottom during January and February

due to cold weather and the Chinese New Year. Furthermore, the number of fatalities/injuries

gradually increased from 2017 to 2019; while the outbreak of COVID-19 in January and Feb-

ruary 2020 remarkably slowed down the increase of e-bike fatalities/injuries cases.

Methodology

To provide an in-depth examination of the impact of COVID-19 on e-bike safety in China, we

perform an aggregate country-level analysis and a province-level analysis. In the former task,

we develop two multi-output regression models based on country-level time-series data: one

considers but the other ignores the COVID-19 variable; the similarity/difference of results and

the goodness-of-fit tell whether COVID-19 has a major/minor influence on e-bike safety. The

latter task utilizes clustering-based multi-output regression models, in which provinces with a

similar data pattern are grouped into clusters, and regressions are conducted within each clus-

ter; therefore, we ascertain the heterogeneity of COVID-19’s impacts across different clusters.

All statistical analyses were carried out using the programming language python.

Multi-output regression models

In the country-level analysis, we consider the following time series linear regression model:

yt ¼ xtwþ et ð1Þ

Fig 3. The trend of e-bike safety in China. (a) the number of fatalities. (b) the number of injuries.

https://doi.org/10.1371/journal.pone.0256610.g003
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where t2{1,2,. . .,T} denotes the time index, T is the number of total time periods, xt = (xt,1,

xt,2,. . .xt,M) is the vector of M explanatory variables and yt = (yt,1, yt,2,. . .yt,D) denotes the vector

of D dependent variables, w denotes a M×D coefficient matrix, and et denotes a 1×D residual

vector.

We call the model in Eq (1) a multi-output regression model since its dependent variable

has multiple dimensions, which has been used in transportation regression problems such as

travel behavior prediction [42] and traffic safety analyses [36]. Comparing with fitting several

single-output regression models, the training of a multi-output model takes advantage of cor-

relations among the dependent variables and improves prediction accuracy, especially when

dependent variables are significantly correlated with each other [36, 43]. In this paper, the

aforementioned correlations are modeled via the regularized linear structure that utilizes the

following objective function:

min
w

1

2T

XT

t¼1

kyt � xtwk
2

F þ l1FðwÞ þ l2kwk
2

F ð2Þ

where term 1

2T

PT
t¼1
ðyt � xtwÞ

2
represents the least square loss for linear models, terms λ1F(w)

and l2kwk
2

F are used for model regularization to enhance the prediction accuracy and

interpretability as well as reduce the collinearity between explanatory variables. λ1�0 and

λ2�0 are complexity parameters for the cross-task regularization penalty F(w) and the l2-

norm penalty kwk2

F , respectively. The cross-task regularization penalty can take different

forms, such as a l2−1-norm (F(w) = kwk2,1), or a trace form (F(w) = tr(w), where tr(�) denotes

the trace operator of a matrix). Note that λ1 = 0 indicates a ridge regression [44], λ2 = 0 repre-

sents a lasso regression [45] and λ1 = λ2 = 0 means a conventional linear regression.

Based on the dataset discussed in Section 3, we train two multi-output regression models

for comparison:

• Non-COVID-19 Model. In this model, yt is a two-dimensional variable that contains the

number of monthly fatalities and number of monthly injuries, xt (7 dimensions) contains

the 12-month lagged number of fatalities, the 12-month lagged number of injuries, seasonal

GDP, express/logistics profit, power consumption, average annual income, and the percent-

age of age group 2. All these variables are summations of province-level metrics.

• COVID-19 Model. This model uses the same yt as the non-COVID-19 model. Vector xt (8

dimensions) includes all the variables in non-COVID-19, and we add the log-transformed

total number of COVID-19 cases (defined in Section 2, i.e., log
10
ð
P31

j¼1
xjt þ 1Þ, where xjt is

the monthly cases for a specific province).

Note that population, urbanization rate, and the percentage of age group 1 are not included

in the two models because the variances of these variables are tiny after summarizing at the

country level. The 12-month lagged fatality and injury metrics are utilized because e-bike

safety in China shows a yearly periodicity (see Fig 3). Since the two models use the 12-month

lagged variable, only 3 years’ monthly data with a total of 36 records are utilized for training

the models.

Clustering-based multi-output regression models

For the province-level analysis, we continue with the multi-variate and multi-output settings.

The time-series dataset W is collected from J disjoint subpopulations (i.e., provinces and

municipalities in this paper) and there are T records (i.e., time periods) for each
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subpopulation, i.e., W ¼
SJ

j¼1

W j and W j ¼ fðxj1; y
j
1Þ; ðx

j
2; y

j
2Þ; . . . ; ðxjT; y

j
TÞg for j2{1,2,. . .,J}. We

group subpopulations into K (K�J) clusters such that records from one subpopulation shall

belong to the same cluster. Let Ck, k2{1,2,. . .,K}, denote the subset of data records that belong

to cluster k. Any two clusters k and k0 are disjoint, i.e., Ck\Ck0 = ;, for k6¼k0 and k, k02{1,2,. . .,

K}; the union of all clusters is the full dataset, i.e.,
SK

k¼1
Ck ¼W. In this manner, we cluster

provinces based on their similarity in e-bike safety and socioeconomic metrics and the cluster

labels of data records from the same province are identical. Furthermore, yjt is a two-dimen-

sional vector containing the number of fatalities and number of injuries, xjt is an 11-dimen-

sional vector that contains the 12-month lagged number of fatalities, the 12-month lagged

number of injuries, population, seasonal GDP, express/logistics profit, and power consump-

tion, average income, urbanization rate, percentage of age group 1, percentage of age group 2,

and the log-transformed number of COVID-19 cases. All these variables are directly obtained

from the dataset according to specific months and provinces/municipalities.

The clustering task is conducted via the K-means algorithm [36]. Before clustering, one

needs to normalize xjt and yjt based on the general 0–1 approach, i.e.,

~xj
t;m ¼

xjt;m � minj0 ;t0 ðx
j0

t0 ;m
Þ

maxj0 ;t0 ðx
j0

t0 ;m
Þ� minj0 ;t0 ðx

j0

t0 ;m
Þ
. Let ~x j

t; ~y j
t, and ~W j denote the normalized variables and datasets,

and let (pk, qk) denote the centroid of these normalized data records, where pk and qk represent

centroids of explanatory variables and dependent variables, respectively. By randomly taking

K centroids {(p1, q1), (p2, q2),. . .,(pK, qK)} for initialization, the K-means algorithm iteratively

proceeds the following two steps and will terminate once the centroids converge.

• Assignment Step. Traverse the subpopulations, i.e., j2{1,2,. . .,J}, for ~W j, assign all the rec-

ords to class k if the sum of the squared Euclidean distances to centroid (pk, qk) is the mini-

mum for k2{1,2,. . .,K}:

Lðj; kÞ ¼
XT

t¼1

kð~x j
t; ~y

j
tÞ � ðpk; qkÞk

2
ð3Þ

Ck ¼ fð~x
j
t; ~y

j
tÞ 2

~W j : Lðj; kÞ � Lðj; k0Þ; k0 2 f1; 2; . . . ;Kg; j 2 f1; 2; . . . ; Jgg ð4Þ

where L(j,k) denotes the sum of squared Euclidean distances from each record in subpopula-

tion j to the centroid of cluster k.

• Updating Step. Traverse the clusters, i.e., k2{1,2,. . .,K}, compute the new centroids based

on the current clustering results:

pk ¼

P
~W j2Ck

PT
t ~x j

t
P

~W j2Ck
Nj

; qk ¼

P
~W j2Ck

PT
t ~y j

t
P

~W j2Ck
Nj

ð5Þ

After clustering, the original dataset is divided into K disjointed datasets and data records

in the same cluster share a more similar pattern to each other than to those in other clusters.

Multi-output regression models are fitted for each specific dataset, which has the following

model formulation:

yjt ¼ xjt
XK

k¼1

Ij;kwk þ et ð6Þ
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where Ij,k denotes the indicator whether subpopulation j belongs to cluster k (i.e., if Dj�Ck, Ij,k
= 1; else, Ij,k = 0), wk denotes the coefficient matrix for cluster k. For each cluster, we estimate

wk by minimizing its regression loss (i.e., Eq (2)).

This novel approach of clustering-based regression will be beneficial in both capturing the

heterogeneous effects of explanatory variables on the dependent variables and keep the sim-

plicity of the model. Therefore, we can ascertain the impact of COVID-19 on different clusters

of provinces.

Analysis results

The overall impact of COVID-19 on e-bike safety in China

We use the multi-output Lasso model (i.e., λ2 = 0) for the first research task due to its capability

of eliminating collinearity among explanatory variables. For both model non-COVID-19 and

model COVID-19, we attempt different values of λ1. The results for coefficients and goodness-

of-fit are shown in Table 2, in which we test the significance of coefficients based on [46] and

find that the explanatory variables are significant at 1% to 10% levels. First, we note as λ1

increases, the coefficients of more features become zero and the model tends to be simpler due

to the elimination of features with a highly collinear relationship; while the goodness-of-fit

(i.e., R-Squared, MAE, and RMSE) becomes worse. Second, comparing COVID-19 models

with non-COVID-19 models, we observe that the goodness-of-fit notably improves after add-

ing COVID-19 metrics into the model. Consequently, we conclude that COVID-19 signifi-

cantly affects e-bike safety in China.

Concerning both goodness-of-fit and simplicity (i.e., less collinearity among explanatory

variables), we select the COVID-19 model with λ1 = 1.0 for quantitative analysis. The lagged

number of fatalities and lagged number of injuries are positively related to the outputs, which

is consistent with the profile plot in Fig 3. The log-transformed number of COVID-19 cases

has a strong negative impact on the numbers of fatalities (a coefficient of -11.77) and injuries

(a coefficient of -50.85). An intuitive explanation could be that people tend to make fewer trips

during the pandemic. Although there are no direct observations on e-bike travel demand, the

results are consistent with findings in other modes [29, 33, 35]. Power consumption and sea-

sonal GDP, which reflect living, social, and productivity levels, have positive influences on the

Table 2. Results of different country-level models.

Variables Non-COVID-19 Model COVID-19 Model

λ1 = 0.2 λ1 = 1.0 λ1 = 5.0 λ1 = 0.2 λ1 = 1.0 λ1 = 5.0

# fata. # inju. # fata. # inju. # fata. # inju. # fata. # inju. # fata. # inju. # fata. # inju.

intercept 557.9 4925.5 462.4 4481.0 370.2 3387.8 402.1 558.7 198.1 3562.1 209.5 2455.0

lagged # of fatalities 0.217 4.893 0.238 4.558 0.199 3.456 0.205 4.661 0.269 4.832 0.240 3.943

lagged # of injuries 0.060 0.693 0.060 0.681 0.054 0.639 0.057 0.674 0.056 0.664 0.052 0.618

trans. # of COVID-19 - - - - - - -8.09 -158.2 -11.77 -50.85 -8.562 -53.98

seasonal GDP 0.588 3.715 1.045 3.798 0.549 4.008 -0.498 7.130 0.340 0.814 0.015 0.102

expr./logi. profit 0.613 -0.085 0.000 0.000 0.000 0.000 0.955 -3.145 0.000 0.000 0.000 0.000

power consumption 0.005 1.261 0.051 1.202 0.053 1.030 -0.022 1.221 0.042 1.183 0.049 1.033

avg. annual income 5.380 -134.8 -2.319 -123.6 -4.848 -86.976 1.320 -304.2 -4.152 -144.4 -4.087 -95.50

percentage age 2 -53.79 -148.9 -28.07 -138.9 -12.35 -100.1 -28.76 635.4 0.000 0.000 0.000 0.000

R-Squared 0.750 0.780 0.713 0.777 0.679 0.757 0.761 0.792 0.738 0.784 0.721 0.768

MAE 20.41 228.8 21.45 229.7 22.50 241.5 20.20 212.6 21.34 225.2 21.43 232.5

RMSE 24.91 291.1 26.71 292.1 28.25 305.8 24.39 283.1 25.50 288.9 26.35 298.8

https://doi.org/10.1371/journal.pone.0256610.t002
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numbers of fatalities and injuries [36]. Due to collinearity between socioeconomic features, we

find the coefficients of express/logistics profit and percentage of age group 2 are zero (i.e., the

later variable is negatively related to GDP because a higher percentage of aged people means a

lower labor level). The average income has small negative coefficients, which could result from

the negative relationship between income and e-bike usage (or positive relationship between

income and driving/taxi demand) [47]. Given the linear relationship between socioeconomic

and e-bike safety metrics, we are unclear whether unsafe riding habits are under control or not

during these years [48], so that more variables are needed to conduct further analyses. In sum-

mary, COVID-19 relieves e-bike safety issues in China, possibly due to the decline of overall

living and social activities and e-bike travel demand.

Cluster-based analyses of e-bike safety

After trying different numbers of clusters (K) in the subpopulation-based K-means clustering

task, we find that two clusters are the best suitable for the fused e-bike safety dataset. Cluster 1

contains 25 provinces/municipalities that are marked with orange dots and numbers in Fig 2;

while cluster 2 contains the remaining 6 provinces (including Hubei province, one major out-

break place of COVID-19) marked with blue dots and numbers. We show distinctive features

in socioeconomic, e-bike safety, and COVID-19 patterns of the two clusters in Table 3. The e-

bike safety issue concerning the number of fatalities/injuries in cluster 2 is significantly serious

than in cluster 1, and the variances of socioeconomic metrics in cluster 2 are smaller than in

cluster 1. Furthermore, the usage of e-bikes in provinces in cluster 2 is generally high. For

instance, people in Guangxi province have a large demand for e-bike travel because e-bikes are

more economical than other modes concerning the relatively low economic level; Jiangsu

province is the largest producer and solder for e-bikes in China. Such information can be

obtained by googling the keywords.

Following the clustering-based multi-output regression approach introduced in Section 4,

we try different combinations of λ1 and λ2 and select λ1 = 0.1 and λ2 = 0 after balancing good-

ness-of-fit and model simplicity. The regression results are shown in Table 4. First, the impact

of (the log-transformed) number of COVID-19 cases on cluster 2 (i.e., -1.660/-21.67 for fatal-

ity/injury) is notably higher than cluster 1 (i.e., -0.012/-0.325 for fatalities/injuries). Second, we

note the coefficients of population are negative for cluster 2, which is somehow different from

previous traffic safety analyses based on small scale (i.e., block-based or zip code-based) popu-

lations [37]. This could be caused by the collinearity between population and urbanization

Table 3. Statistics of two clusters of China provinces.

Variables Cluster 1 Cluster 2

Min. Avg. Max. Min. Avg. Max.

# of fatalities for e-bike accidents 0.000 4.927 33.00 0.000 20.95 62.00

# of injures for e-bike accidents 0.000 36.07 205.0 3.000 191.6 520.0

log-transformed # of COVID-19 cases 0.000 0.312 2.919 0.000 0.298 4.776

population (million people) 0.034 0.656 3.236 0.433 1.311 2.891

seasonal GDP (trillion CNY) 0.009 1.780 22.25 0.274 2.921 13.25

profit from express/logistics (billion CNY) 0.500 17.09 116.9 10.40 28.68 70.30

power consumption (billion KWH) 3.54 39.61 126.0 49.47 69.46 99.37

urbanization rate 17.48 29.96 72.23 21.49 31.78 52.40

average annual income 30.23 61.52 86.62 50.01 58.92 68.15

percentage of age group 1 (15 to 64) 64.47 71.30 78.81 63.37 69.10 73.32

percentage of age group 2 (over 64) 5.670 11.82 17.42 10.03 13.15 16.20

https://doi.org/10.1371/journal.pone.0256610.t003
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rate, which also has negative coefficients for cluster 2. Meanwhile, the two variables have zero

coefficients for cluster 1, indicating that e-bike safety is insensitive to rural and urban popula-

tions in provinces with a minor safety issue. Third, e-bike safety is found insensitive to the per-

centage of age group 2 in both clusters. According to the results in Table 2, we know the rate

of the aged population is negatively related to e-bike incidents, but the coefficients are dragged

to zero with the Lasso regularization. Last, the profit from express/logistics has negative coeffi-

cients for cluster 2, this could be caused by the huge online shopping demand in these prov-

inces (Zhejiang and Jiangsu are two giant provinces in China for online shopping) that would

reduce the demand for travel as well as for e-bike.

To this end, we have found significant negative impacts of COVID-19 on the numbers of e-

bike fatalities and injuries at both the country-level and the clustering-based province-level in

China. The fact could be caused by the decline of travel demand due to lockdown policies and

the people’s panic about the pandemic [19–24]. With the progress of vaccination campaigns,

people’s travel demand could recover together with e-bike safety issues in the post-pandemic

world. Concerning existing and upcoming safety issues, some provinces, such as Guangxi and

Jiangsu, have already implemented e-bike “safe-riding policies” (e.g., wearing a helmet is man-

datory) in middle and late 2020. Furthermore, the results in this paper could be helpful in pol-

icy implications. Our findings suggest that encouraging the express/logistics industry can be a

promising way to control e-bike safety accidents. E-bike safety problems could be relieved

when people get more income; alternatively, the promotion of other economical travel modes,

such as car sharing, could be an effective way for reducing e-bike demand. In addition, for

provinces in cluster 2, transportation agencies need to enhance safety enforcement in rural

areas.

Table 4. Regression results of two clusters.

Variables Cluster 1 Cluster 2

# fata. # inju. # fata. # inju.

Intercept 1.492��� 4.055��� 26.18��� 547.1���

lagged # of fatalities 0.250�� 0.038�� 0.468�� 0.611��

lagged # of injuries 0.025� 0.886�� 0.002� 0.301��

trans. # of COVID-19 -0.012�� -0.325�� -1.660�� -21.67���

Population 0.000 0.000 -0.188�� -0.900��

seasonal GDP 2.071��� 7.207�� 0.000 0.000

expr./logi. profit 0.000 0.000 -0.306� -0.045�

power consumption 0.007� 0.087�� 0.490� 2.376��

urbanization rate 0.000 0.000 -0.289� -5.724�

avg. annual income -0.005� -0.002� -0.002� -0.006�

% of age group 1 0.000 0.000 -0.106�� -1.138�

% of age group 2 0.000 0.000 0.000 0.000

R-Squared 0.454 0.720 0.621 0.421

MAE 2.610 12.29 6.223 42.54

RMSE 3.728 18.42 8.217 60.69

significant levels

� 10%

�� 5%

��� 1%

https://doi.org/10.1371/journal.pone.0256610.t004
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Conclusions

This study utilizes novel applications of multi-output linear regression and clustering-based

multi-output regression models on e-bike safety analyses. Based on a fused dataset with main-

land China’s province-level e-bike safety, economic, and COVID-19 metrics, we are particu-

larly interested in the impact of the COVID-19 pandemic on the numbers of e-bike fatalities

and injuries in China. We first adopt multi-output regression models to ascertain how

COVID-19 affects China’s e-bike safety at the country level. The modeling results demonstrate

that the pandemic has notably reduced e-bike fatalities and injuries. Second, we use clustering-

based multi-output regression models to capture different statistical patterns on the province

level. Two clusters of provinces/municipalities are identified: one (cluster 1) with a lower while

the other (cluster 2) with higher numbers of e-bike fatalities and injuries. Cluster 2 includes

Hubei provinces, which is one major outbreak place of COVID-19. The regression results indi-

cate that the pandemic has a greater negative impact on the number of e-bike fatalities/injuries

for provinces in cluster 2, while the influence for provinces/municipalities in cluster 1 is nega-

tive but weaker. The regression results can be helpful in policy implications that further reduce

e-bike safety issues; for instance, the government could encourage the express/logistics indus-

try to decrease e-bike demand and e-bike accidents.

There are several limitations in this study. First, we acknowledge that there is a lack of

monthly e-bike ownership and on-demand delivery information in the existing dataset. As a

result, the interplay between COVID-19 and the food (also grocery) delivery industry as well

as its impact on e-bike safety are not captured in this paper. Second, the horizon of the current

time-series data is short for a comprehensive understanding of how COVID-19 affects e-bike

(also other roadway traffic) safety, especially in the post-pandemic world. This is because the

pandemic could still coexist with people for a long time and one year’s data is not sufficient to

fully examine the fundamental changes in mobility and traffic safety patterns. Third, personal

travel habit data is not accessible in this paper, which could be important for ascertaining the

safe/unsafe driving/riding patterns during the COVID-19 pandemic. Fourth, we haven’t

involved policies and interventions related to COVID-19 and (or) e-bike regulations; social

events such as the “stay-at-home call” could have notable correlations between COVID-19

cases, e-bike travel demand, as well as the overall travel demand across different modes, which

also affects the level of safety [2]. The aforementioned limitations will be addressed in future

studies once more data becomes available.
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