Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3*S*,4*S*)-3-Ethyl-4-hydroxy-3-(3-methoxyphenyl)-1-methylazepan-1-ium D-tartrate dihydrate

Xing-Hai Wang, Bo Chao and Zhui-Bai Qiu*

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, People's Republic of China Correspondence e-mail: zbgiu@shmu.edu.cn

Received 25 February 2008; accepted 3 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.062; wR factor = 0.163; data-to-parameter ratio = 8.9.

In the title compound, $C_{16}H_{26}NO_2^+ \cdot C_4H_5O_6^- \cdot 2H_2O$, a meptazinol derivative, three C atoms of the azepane ring are disordered over two positions, with site-occupancy factors of 0.80 and 0.20; the major disorder component adopts a twistchair conformation, while the minor component has a chair conformation. The benzene ring is axially substituted on the heterocyclic ring, resulting in a folded conformation of the cation. The absolute configuration was determined with reference to D-tartaric acid. The crystal structure is stabilized by an extensive network of intra- and intermolecular O- $H \cdot \cdot \cdot O$ hydrogen bonds.

Related literature

For the synthesis of the racemate of the title compound, see: Hao *et al.* (2005). For conformational studies of sevenmembered rings, see: Eliel *et al.* (1994); Entrena *et al.* (2005). For the analgesic activity and clinical use of meptazinol, see: Holmes (1985). For related literature, see: Bill *et al.* (1983).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{26}\text{NO}_{2}^{+}\cdot C_{4}H_{5}\text{O}_{6}^{-}\cdot 2H_{2}\text{O}\\ M_{r}=449.49\\ \text{Orthorhombic, }P_{21}2_{1}2_{1}\\ a=7.146 \ (3) \ \text{\AA}\\ b=10.812 \ (4) \ \text{\AA}\\ c=29.338 \ (11) \ \text{\AA} \end{array}$

 $V = 2266.7 (15) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.979, T_{\rm max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.163$ S = 1.042855 reflections 319 parameters 19 restraints 11334 measured reflections 2855 independent reflections 2173 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5···O4	0.82	2.15	2.623 (5)	116
O6−H6···O9	0.82	1.91	2.641 (5)	149
$O9 - H9X \cdots O2$	0.83 (2)	2.00 (2)	2.823 (5)	171 (6)
$O10 - H10X \cdots O5$	0.82(2)	1.98 (2)	2.790 (5)	173 (6)
$C7A - H7A \cdots O1$	0.97	2.56	3.149 (8)	119
$C6B - H6B1 \cdots O1$	0.97	1.91	2.46 (3)	113
$O9 - H9Y \cdots O7^{i}$	0.83(2)	1.85 (2)	2.680 (5)	171 (7)
$O3 - H3 \cdots O8^{i}$	0.82	1.73	2.516 (4)	160
$O5-H5\cdots O10^{ii}$	0.82	2.27	2.983 (5)	145
$O10-H10Y \cdots O4^{iii}$	0.82(2)	2.02 (4)	2.739 (5)	145 (6)
C16−H16···O7 ^{iv}	0.93	2.50	3.417 (6)	171
$C7B - H7B1 \cdots O6^{iv}$	0.97	2.51	3.176 (7)	126
$C6B - H6B2 \cdots O1^{v}$	0.97	2.39	3.056 (17)	125
Symmetry codes: (i)	x - 1, y, z:	(ii) $x - \frac{1}{2} - y$	$+\frac{1}{2}$, -7; (iii) x	+1, v, z: (iv)

Symmetry codes: (i) x = 1, y, z; (ii) $x = \frac{1}{2}, -y = \frac{1}{2}, -z;$ (iii) x = 1, y, z; (iv) $-x = 1, y = \frac{1}{2}, -z = \frac{1}{2};$ (v) $x = \frac{1}{2}, -y = \frac{1}{2}, -z = 1.$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* and local programs.

This work is funded in part by the National Natural Science Foundation of China (grant No. 30472088).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2243).

References

- Bill, D. J., Hartley, J. E., Stephens, R. J. & Thompson, A. M. (1983). Br. J. Pharm. 79, 191–199.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eliel, E. L., Wilen, S. H. & Mander, L. N. (1994). Stereochemistry of Organic Compounds, pp. 762–769. New York: Wiley.
- Entrena, A., Campos, J. M., Gallo, M. A. E. & Spinosa, A. (2005). Arkivoc, 6, 88-108.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hao, J. L., Li, W., Xie, Q., Chen, Y. & Qiu, Z. B. (2005). J. Fudan Univ. (Med. Sci.), **32**, 173–177.
- Holmes, B. (1985). Drugs, 30, 285-312.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, 0784 [doi:10.1107/S1600536808005898]

(3S,4S)-3-Ethyl-4-hydroxy-3-(3-methoxyphenyl)-1-methylazepan-1-ium D-tartrate dihydrate

X.-H. Wang, B. Chao and Z.-B. Qiu

Comment

Meptazinol is a selective μ agonist with additional central anticholinergic activity, which has been used for treating pain associated with labour and kidney problems (Holmes, 1985). Many studies have shown meptazinol to have an advantage over other opioid analgesics because of its lack of adverse cardiorespiratory effects and low addiction liability (Bill *et al.*, 1983); this makes it an ideal precursor for further investigation. During the course of our structural optimization of meptazinol, the title compound was synthesized by introducing an OH group at the 4-position, followed by resolution with D-tartaric acid.

The absolute configuration of the azepane ring atoms is N1(R), C3(S) and C4(S), according to the reference molecule D-tartaric acid. The O—H functionalities, carboxyl group and H₂O are known to be efficient donor and acceptor groups for hydrogen bonding, and they form an extensive hydrogen-bond network, which stabilizes the structure. The 3-methoxyphenyl substituent at C3 is *trans* to the OH group at C4 and *cis* to the N—H bond, resulting in a folded conformation of the cation.

The major disorder component adopts a twist-chair conformation, while the minor component has a chair conformation. The twist-chair conformation of seven-membered rings is known to be more stable than the chair conformation (Entrena *et al.*, 2005). Thus, the relative proportion of both conformers observed within the crystal structure may reflect the statistical partitioning of the two populations of azepane structures corresponding to different energetic states.

Experimental

The title compound was prepared by standard procedures upon optical resolution of the racemate with D-tartaric acid. The synthesis of the racemic compound was described by Hao *et al.* (2005).

Refinement

The H atoms bonded to N and O in the azepane ring, also the water hydrogen atoms were located in difference maps and refined with restraints: N—H = 0.89 (2) Å and O—H = 0.82 (2) and 0.83 (2) Å. The H atoms attached to O in the anion and all carbon-bound H atoms were placed in calculated positions and refined as riding; O—H = 0.82 and C—H = 0.93 – 0.98 Å; $U_{iso}(H) = xU_{eq}(\text{parent atom})$ where x = 1.5 for O and 1.2 for C. In the cation, three C atoms with attached H atoms are disordered over two positions; the site occupancy factors are 0.80 and 0.20.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 20% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Both azepane ring conformations are depicted; the minor chair conformation is drawn with open bonds. H atoms bonded to the C atoms of the azepane unit have been omitted for clarity.

Fig. 2. A view of the crystal packing, showing the hydrogen-bonding network (dashed lines). Only the twist-chair conformation of the azepane ring is shown.

(35,45)-3-Ethyl-4-hydroxy-3-(3-methoxyphenyl)-1-methylazepan-1-ium D-tartrate dihydrate

$C_{16}H_{26}NO_2^+ \cdot C_4H_5O_6^- \cdot 2H_2O$	$F_{000} = 968$
$M_r = 449.49$	$D_{\rm x} = 1.317 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1000 reflections
a = 7.146 (3) Å	$\theta = 2.8 - 22.5^{\circ}$
b = 10.812 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 29.338 (11) Å	T = 293 (2) K
$V = 2266.7 (15) \text{ Å}^3$	Prismatic, colorless
Z = 4	$0.20 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2855 independent reflections
Radiation source: fine-focus sealed tube	2173 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.076$
T = 293(2) K	$\theta_{max} = 27.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 4$
$T_{\min} = 0.979, \ T_{\max} = 0.988$	$k = -13 \rightarrow 13$
11334 measured reflections	$l = -37 \rightarrow 37$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.163$	$w = 1/[\sigma^2(F_o^2) + (0.0771P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
2855 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
319 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

19 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
01	-1.0175 (7)	0.3641 (4)	0.46124 (12)	0.0684 (12)	
H1X	-1.114 (7)	0.405 (6)	0.457 (2)	0.14 (4)*	
02	-0.7001 (6)	0.4436 (3)	0.25255 (10)	0.0628 (11)	
O3	-0.6276 (4)	0.1543 (3)	0.13391 (10)	0.0425 (7)	
H3	-0.7400	0.1418	0.1307	0.064*	
O4	-0.6399 (5)	0.2140 (4)	0.06130 (12)	0.0626 (10)	
05	-0.2757 (4)	0.2069 (3)	0.05050 (10)	0.0487 (8)	
Н5	-0.3605	0.2365	0.0352	0.073*	
O6	-0.3086 (4)	0.3996 (3)	0.11490 (10)	0.0430 (7)	
Н6	-0.3766	0.4310	0.1342	0.065*	
07	0.0443 (4)	0.3653 (3)	0.13158 (11)	0.0480 (8)	
08	0.0205 (4)	0.1619 (3)	0.13574 (10)	0.0391 (7)	
09	-0.6223 (5)	0.4527 (3)	0.15827 (12)	0.0473 (8)	
H9X	-0.651 (9)	0.457 (5)	0.1855 (9)	0.066 (17)*	
H9Y	-0.721 (6)	0.424 (7)	0.147 (2)	0.11 (3)*	
O10	0.0604 (5)	0.1148 (3)	0.01603 (11)	0.0472 (8)	
H10X	-0.033 (5)	0.142 (5)	0.0284 (18)	0.067 (18)*	
H10Y	0.121 (8)	0.135 (6)	0.0387 (14)	0.08 (2)*	
N1	-0.9584 (7)	0.0649 (3)	0.42832 (11)	0.0451 (10)	
H1	-0.925 (6)	0.018 (3)	0.4048 (10)	0.029 (11)*	
C2	-1.0991 (6)	0.1554 (4)	0.41055 (14)	0.0381 (9)	
H2A	-1.1746	0.1816	0.4363	0.046*	
H2B	-1.1814	0.1103	0.3902	0.046*	
C3	-1.0364 (6)	0.2740 (4)	0.38507 (13)	0.0340 (9)	
C4	-0.9242 (8)	0.3610 (4)	0.41797 (14)	0.0480 (12)	
H4	-0.9289	0.4447	0.4052	0.058*	
C5A	-0.7183 (8)	0.3276 (5)	0.42468 (16)	0.0575 (13)	0.80
H5A	-0.6738	0.3677	0.4522	0.069*	0.80
H5B	-0.6473	0.3609	0.3993	0.069*	0.80
C6A	-0.6754 (8)	0.1822 (6)	0.42849 (18)	0.0489 (15)	0.80

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H6A	-0.6734	0.1480	0.3979	0.059*	0.80
H6B	-0.5509	0.1721	0.4412	0.059*	0.80
C7A	-0.8041 (9)	0.1098 (5)	0.4556 (2)	0.0691 (15)	0.80
H7A	-0.8522	0.1602	0.4803	0.083*	0.80
H7B	-0.7382	0.0401	0.4689	0.083*	0.80
C5B	-0.7183 (8)	0.3276 (5)	0.42468 (16)	0.0575 (13)	0.20
H5B1	-0.6630	0.2960	0.3968	0.069*	0.20
H5B2	-0.6463	0.3980	0.4353	0.069*	0.20
C6B	-0.730 (4)	0.2392 (14)	0.4568 (5)	0.049 (6)	0.20
H6B1	-0.7994	0.2782	0.4814	0.058*	0.20
H6B2	-0.6033	0.2304	0.4680	0.058*	0.20
C7B	-0.8041 (9)	0.1098 (5)	0.4556 (2)	0.0691 (15)	0.20
H7B1	-0.6980	0.0580	0.4477	0.083*	0.20
H7B2	-0.8358	0.0895	0.4869	0.083*	0.20
C8	-1.0659 (12)	-0.0250 (5)	0.45936 (18)	0.082 (2)	
H8A	-0.9931	-0.0986	0.4638	0.123*	
H8B	-1.1831	-0.0462	0.4454	0.123*	
H8C	-1.0888	0.0136	0.4883	0.123*	
C9	-1.2199 (7)	0.3436 (5)	0.37375 (18)	0.0567 (13)	
H9A	-1.2956	0.3471	0.4012	0.068*	
H9B	-1.1882	0.4280	0.3656	0.068*	
C10	-1.3354 (9)	0.2906 (7)	0.3367 (2)	0.0770 (18)	
H10A	-1.2604	0.2814	0.3097	0.116*	
H10B	-1.4386	0.3448	0.3303	0.116*	
H10C	-1.3821	0.2112	0.3459	0.116*	
C11	-0.9309 (6)	0.2535 (4)	0.34049 (13)	0.0338 (9)	
C12	-0.8603 (6)	0.3570 (4)	0.31824 (13)	0.0388 (10)	
H12	-0.8704	0.4346	0.3317	0.047*	
C13	-0.7751 (7)	0.3450 (5)	0.27617 (14)	0.0442 (10)	
C14	-0.7607 (8)	0.2313 (5)	0.25529 (15)	0.0528 (13)	
H14	-0.7037	0.2241	0.2269	0.063*	
C15	-0.8316 (8)	0.1289 (5)	0.27677 (14)	0.0523 (13)	
H15	-0.8234	0.0519	0.2628	0.063*	
C16	-0.9167 (6)	0.1400 (4)	0.31989 (13)	0.0412 (10)	
H16	-0.9634	0.0701	0.3344	0.049*	
C17	-0.6939 (10)	0.5617 (5)	0.27368 (17)	0.0643 (15)	
H17A	-0.8170	0.5840	0.2839	0.096*	
H17B	-0.6501	0.6220	0.2521	0.096*	
H17C	-0.6104	0.5590	0.2993	0.096*	
C18	-0.5553 (6)	0.1854 (4)	0.09532 (14)	0.0357 (9)	
C19	-0.3405 (5)	0.1845 (4)	0.09492 (14)	0.0348 (9)	
H19	-0.2979	0.1022	0.1042	0.042*	
C20	-0.2607 (5)	0.2792 (4)	0.12837 (13)	0.0311 (8)	
H20	-0.3144	0.2636	0.1586	0.037*	
C21	-0.0461 (6)	0.2685 (3)	0.13173 (12)	0.0304 (8)	

Atomia digplacement parameters	182)
Atomic displacement parameters	(A")	J

O3—H3

O4-C18

O5-C19

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.102 (3)	0.054 (2)	0.0493 (19)	-0.015 (2)	0.036 (2)	-0.0117 (16)
02	0.093 (3)	0.062 (2)	0.0337 (16)	-0.020(2)	0.0192 (19)	-0.0047 (14)
O3	0.0267 (13)	0.0508 (18)	0.0499 (17)	-0.0006 (14)	-0.0032 (13)	0.0072 (15)
O4	0.0358 (17)	0.102 (3)	0.0504 (19)	-0.001 (2)	-0.0073 (16)	0.0149 (19)
05	0.0355 (16)	0.071 (2)	0.0396 (16)	0.0106 (16)	0.0018 (14)	-0.0067 (15)
O6	0.0343 (16)	0.0337 (15)	0.0612 (19)	0.0056 (13)	0.0115 (15)	0.0052 (13)
07	0.0328 (15)	0.0357 (16)	0.076 (2)	-0.0038 (14)	-0.0019 (17)	0.0016 (15)
08	0.0268 (14)	0.0354 (15)	0.0550 (17)	0.0019 (12)	-0.0009 (13)	0.0041 (13)
09	0.0393 (18)	0.059 (2)	0.0433 (19)	-0.0009 (16)	0.0073 (16)	-0.0042 (16)
O10	0.0456 (19)	0.0567 (19)	0.0392 (17)	0.0046 (18)	0.0032 (17)	-0.0048 (15)
N1	0.070 (3)	0.0334 (18)	0.0320 (18)	0.006 (2)	-0.007 (2)	-0.0040 (14)
C2	0.042 (2)	0.032 (2)	0.040 (2)	-0.0049 (19)	0.0031 (19)	0.0004 (17)
C3	0.034 (2)	0.0302 (19)	0.038 (2)	0.0035 (18)	0.0068 (19)	0.0033 (16)
C4	0.077 (3)	0.033 (2)	0.034 (2)	-0.005 (2)	0.024 (2)	-0.0071 (17)
C5A	0.055 (3)	0.078 (4)	0.039 (2)	-0.020 (3)	-0.007 (2)	-0.008 (2)
C6A	0.039 (3)	0.079 (4)	0.029 (3)	0.018 (3)	-0.008 (2)	0.004 (3)
C7A	0.074 (4)	0.061 (3)	0.073 (3)	0.007 (3)	-0.020 (3)	-0.002 (3)
C5B	0.055 (3)	0.078 (4)	0.039 (2)	-0.020 (3)	-0.007 (2)	-0.008 (2)
C6B	0.086 (18)	0.046 (9)	0.014 (8)	0.022 (10)	-0.020 (11)	-0.001 (8)
C7B	0.074 (4)	0.061 (3)	0.073 (3)	0.007 (3)	-0.020 (3)	-0.002 (3)
C8	0.147 (7)	0.049 (3)	0.050 (3)	0.009 (4)	0.039 (4)	0.014 (2)
C9	0.048 (3)	0.061 (3)	0.062 (3)	0.016 (3)	0.009 (3)	0.011 (2)
C10	0.050 (3)	0.104 (5)	0.077 (4)	0.020 (4)	-0.010 (3)	0.003 (4)
C11	0.030 (2)	0.042 (2)	0.0300 (18)	0.0037 (18)	-0.0032 (17)	0.0003 (16)
C12	0.046 (2)	0.043 (2)	0.0281 (19)	-0.003 (2)	-0.0044 (18)	-0.0038 (17)
C13	0.043 (2)	0.056 (3)	0.033 (2)	-0.005 (2)	-0.0041 (19)	0.0015 (19)
C14	0.059 (3)	0.068 (3)	0.032 (2)	0.000 (3)	0.006 (2)	-0.009 (2)
C15	0.068 (3)	0.051 (3)	0.038 (2)	0.000 (3)	0.002 (2)	-0.011 (2)
C16	0.048 (3)	0.039 (2)	0.036 (2)	0.006 (2)	0.0024 (19)	0.0006 (17)
C17	0.083 (4)	0.060 (3)	0.050 (3)	-0.017 (3)	0.003 (3)	0.004 (2)
C18	0.0300 (19)	0.037 (2)	0.040 (2)	0.0026 (18)	-0.004 (2)	-0.0023 (17)
C19	0.028 (2)	0.036 (2)	0.040 (2)	0.0058 (17)	-0.0012 (18)	0.0007 (17)
C20	0.0279 (19)	0.0302 (19)	0.0351 (19)	0.0021 (16)	0.0045 (17)	0.0018 (16)
C21	0.0273 (18)	0.033 (2)	0.0313 (18)	-0.0011 (17)	0.0036 (17)	0.0027 (15)
Geometric pa	rameters (Å, °)					
01—C4		1.434 (5)	C6A-	—Н6А	0.9700	
01—H1X		0.83 (2)	C6A-	—Н6В	0.97	00
O2—C13		1.380 (6)	C7A-	—H7A	0.97	00
02—C17		1.420 (6)	C7A-	—H7B	0.97	00
O3—C18		1.289 (5)	C6B-	H6B1	0.97	00

C6B—H6B2

C8—H8A

C8—H8B

0.8200

1.207 (5)

1.404 (5)

0.9700

0.9599

0.9599

О5—Н5	0.8200	C8—H8C	0.9599
O6—C20	1.403 (5)	C9—C10	1.482 (8)
О6—Н6	0.8200	С9—Н9А	0.9700
O7—C21	1.230 (5)	С9—Н9В	0.9700
O8—C21	1.252 (5)	C10—H10A	0.9599
О9—Н9Х	0.83 (2)	C10—H10B	0.9599
О9—Н9Ү	0.83 (2)	C10—H10C	0.9599
O10—H10X	0.82 (2)	C11—C16	1.371 (6)
O10—H10Y	0.82 (2)	C11—C12	1.391 (6)
N1—C7A	1.447 (7)	C12—C13	1.383 (6)
N1—C2	1.496 (6)	C12—H12	0.9300
N1—C8	1.538 (7)	C13—C14	1.377 (7)
N1—H1	0.890 (19)	C14—C15	1.371 (7)
C2—C3	1.551 (5)	C14—H14	0.9300
C2—H2A	0.9700	C15—C16	1.409 (6)
C2—H2B	0.9700	C15—H15	0.9300
C3—C11	1.526 (5)	C16—H16	0.9300
С3—С9	1.548 (7)	C17—H17A	0.9599
C3—C4	1.568 (6)	С17—Н17В	0.9599
C4—C5A	1.528 (8)	С17—Н17С	0.9599
C4—H4	0.9800	C18—C19	1.536 (6)
C5A—C6A	1.606 (8)	C19—C20	1.528 (6)
С5А—Н5А	0.9700	С19—Н19	0.9800
C5A—H5B	0.9700	C20—C21	1.541 (6)
C6A—C7A	1.446 (8)	C20—H20	0.9800
C4—O1—H1X	106 (6)	H8B—C8—H8C	109.5
C13—O2—C17	119.2 (4)	C10—C9—C3	116.2 (5)
С18—О3—Н3	109.5	С10—С9—Н9А	108.2
С19—О5—Н5	109.5	С3—С9—Н9А	108.2
С20—О6—Н6	109.5	С10—С9—Н9В	108.2
Н9Х—О9—Н9Ү	101 (6)	С3—С9—Н9В	108.2
H10X—O10—H10Y	89 (5)	Н9А—С9—Н9В	107.4
C7A—N1—C2	119.1 (4)	C9—C10—H10A	109.5
C7A—N1—C8	105.4 (4)	С9—С10—Н10В	109.5
C2—N1—C8	106.5 (4)	H10A-C10-H10B	109.5
C7A—N1—H1	115 (3)	C9—C10—H10C	109.5
C2—N1—H1	107 (3)	H10A—C10—H10C	109.5
C8—N1—H1	103 (3)	H10B-C10-H10C	109.5
N1—C2—C3	121.0 (4)	C16—C11—C12	119.1 (4)
N1—C2—H2A	107.1	C16—C11—C3	123.0 (4)
С3—С2—Н2А	107.1	C12—C11—C3	117.7 (3)
N1—C2—H2B	107.1	C13—C12—C11	120.2 (4)
C3—C2—H2B	107.1	C13—C12—H12	119.9
H2A—C2—H2B	106.8	C11—C12—H12	119.9
С11—С3—С9	107.8 (3)	C14—C13—O2	115.9 (4)
C11—C3—C2	115.8 (3)	C14—C13—C12	121.0 (4)
C9—C3—C2	105.1 (4)	O2—C13—C12	123.1 (4)
$C_{11} - C_{3} - C_{4}$			
011 05 01	111.2 (3)	C15-C14-C13	119.3 (4)

C2—C3—C4	110.3 (3)	C13—C14—H14	120.4
O1—C4—C5A	109.8 (4)	C14—C15—C16	120.2 (4)
O1—C4—C3	108.7 (4)	C14—C15—H15	119.9
C5A—C4—C3	115.5 (4)	С16—С15—Н15	119.9
O1—C4—H4	107.5	C11—C16—C15	120.3 (4)
C5A—C4—H4	107.5	C11—C16—H16	119.9
C3—C4—H4	107.5	C15—C16—H16	119.9
C4—C5A—C6A	115.1 (4)	O2—C17—H17A	109.5
С4—С5А—Н5А	108.5	O2—C17—H17B	109.5
С6А—С5А—Н5А	108.5	H17A—C17—H17B	109.5
C4—C5A—H5B	108.5	O2—C17—H17C	109.5
C6A—C5A—H5B	108.5	H17A—C17—H17C	109.5
Н5А—С5А—Н5В	107.5	H17B—C17—H17C	109.5
C7A—C6A—C5A	116.5 (5)	O4—C18—O3	126.3 (4)
С7А—С6А—Н6А	108.2	O4—C18—C19	119.7 (4)
С5А—С6А—Н6А	108.2	O3—C18—C19	114.0 (4)
С7А—С6А—Н6В	108.2	O5-C19-C20	111.0 (3)
С5А—С6А—Н6В	108.2	O5-C19-C18	109.6 (3)
Н6А—С6А—Н6В	107.3	C20-C19-C18	111.4 (3)
C6A—C7A—N1	111.2 (5)	O5-C19-H19	108.3
С6А—С7А—Н7А	109.4	С20—С19—Н19	108.3
N1—C7A—H7A	109.4	С18—С19—Н19	108.3
С6А—С7А—Н7В	109.4	O6—C20—C19	110.5 (3)
N1—C7A—H7B	109.4	O6—C20—C21	109.3 (3)
Н7А—С7А—Н7В	108.0	C19—C20—C21	111.2 (3)
H6B1—C6B—H6B2	105.5	O6—C20—H20	108.6
N1—C8—H8A	109.5	С19—С20—Н20	108.6
N1—C8—H8B	109.5	C21—C20—H20	108.6
H8A—C8—H8B	109.5	O7—C21—O8	125.7 (4)
N1—C8—H8C	109.5	O7—C21—C20	117.3 (4)
H8A—C8—H8C	109.5	O8—C21—C20	117.0 (3)
C7A—N1—C2—C3	50.1 (6)	C4—C3—C11—C12	-48.4 (5)
C8—N1—C2—C3	168.8 (4)	C16-C11-C12-C13	-0.8 (6)
N1—C2—C3—C11	62.8 (5)	C3—C11—C12—C13	-175.4 (4)
N1—C2—C3—C9	-178.4 (4)	C17—O2—C13—C14	-174.2 (5)
N1—C2—C3—C4	-64.6 (5)	C17—O2—C13—C12	5.9 (8)
C11—C3—C4—O1	-172.6 (4)	C11-C12-C13-C14	0.9 (7)
C9—C3—C4—O1	70.6 (5)	C11—C12—C13—O2	-179.2 (4)
C2—C3—C4—O1	-42.7 (5)	O2-C13-C14-C15	179.8 (5)
C11—C3—C4—C5A	-48.7 (5)	C12-C13-C14-C15	-0.3 (7)
C9—C3—C4—C5A	-165.5 (4)	C13-C14-C15-C16	-0.5 (8)
C2—C3—C4—C5A	81.2 (4)	C12-C11-C16-C15	0.0 (7)
O1—C4—C5A—C6A	83.7 (5)	C3-C11-C16-C15	174.4 (4)
C3—C4—C5A—C6A	-39.7 (5)	C14-C15-C16-C11	0.6 (7)
C4—C5A—C6A—C7A	-41.9 (6)	O4—C18—C19—O5	-6.3 (6)
C5A—C6A—C7A—N1	88.8 (6)	O3—C18—C19—O5	174.0 (3)
C2—N1—C7A—C6A	-68.9 (6)	O4—C18—C19—C20	116.9 (5)
C8—N1—C7A—C6A	171.8 (5)	O3—C18—C19—C20	-62.9 (5)
C11—C3—C9—C10	50.3 (6)	O5—C19—C20—O6	57.8 (4)

C2—C3—C9—C10	-73.7 (5)		C18—C19—	С20—Об		-64.6	(4)
C4—C3—C9—C10	169.4 (5)		O5—C19—C	20—C21		-63.7	(4)
C9—C3—C11—C16	-107.3 (5)		C18—C19—	C20—C21		173.9	(3)
C2—C3—C11—C16	10.1 (6)		O6—C20—C	21—07		13.9 (5)
C4—C3—C11—C16	137.1 (4)		C19—C20—	C21—O7		136.2	(4)
C9—C3—C11—C12	67.2 (5)		O6—C20—C	21—08		-168.	1 (3)
C2—C3—C11—C12	-175.4 (4)		C19—C20—	C21—O8		-45.9	(5)
<i>Hydrogen-bond geometry</i> (A, \circ)							
D—H···A		<i>D</i> —Н	$H \cdots A$		$D \cdots A$		$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O5—H5…O4		0.82	2.15		2.623 (5)		116
O6—H6…O9		0.82	1.91		2.641 (5)		149
O9—H9X…O2		0.83 (2)	2.00 (2	2)	2.823 (5)		171 (6)
O10—H10X…O5		0.82 (2)	1.98 (2	2)	2.790 (5)		173 (6)
С7А—Н7А…О1		0.97	2.56		3.149 (8)		119
C6B—H6B1…O1		0.97	1.91		2.46 (3)		113
O9—H9Y···O7 ⁱ		0.83 (2)	1.85 (2	2)	2.680 (5)		171 (7)
O3—H3···O8 ⁱ		0.82	1.73		2.516 (4)		160
O5—H5…O10 ⁱⁱ		0.82	2.27		2.983 (5)		145
O10—H10Y····O4 ⁱⁱⁱ		0.82 (2)	2.02 (4	-)	2.739 (5)		145 (6)
C16—H16····O7 ^{iv}		0.93	2.50		3.417 (6)		171
C7B—H7B1···O6 ^{iv}		0.97	2.51		3.176 (7)		126
C6B—H6B2···O1 v		0.97	2.39		3.056 (17)		125
Summatry and as (i) a 1 a - (ii) a 1/	1/2 = 1/2	(:::) 1	(iv) 1 1	/2 = +1/2	(1/2) $(1/2)$	1/2 -	+ 1

Symmetry codes: (i) x-1, y, z; (ii) x-1/2, -y+1/2, -z; (iii) x+1, y, z; (iv) -x-1, y-1/2, -z+1/2; (v) x+1/2, -y+1/2, -z+1.

Fig. 1

