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The change of gut microbiota 
in MDD patients under SSRIs 
treatment
Yang Shen1,5, Xiao Yang2,5, Gaofei Li3,5, Jiayu Gao4* & Ying Liang1*

The alterations in the gut microbiota have been reported to be correlated with the development 
of depression. The purpose of this study was to investigate the changes of intestinal microbiota in 
depressed patients after antidepressant treatment. We recruited 30 MDD patients (MDD group) 
and 30 healthy controls (control group). The MDD group received individualized treatment with 
escitalopram at a maximum dose of 20 mg/day. After depressive symptoms improved to a HAMD scale 
score > 50%, a fecal sample was collected again and used as the follow-up group. The differences of gut 
microbiota between patients and controls, the characteristics of gut microbiota under treatment and 
the potential differences in metabolic functions were thus investigated. The Firmicutes/Bacteroidetes 
ratio was significantly different within three groups, and the ratio of follow-up group was significantly 
lower than those of the other two groups. Alpha diversity was significantly higher in MDD group than 
those of the other groups, and the alpha diversity was not significantly different between control and 
follow-up groups. The beta diversity of some patients resembled participants in the control group. The 
metabolic function of gut microbiota after treatment was still different from that of the control group. 
This study suggests that the intestinal flora of depressed patients has a tendency to return to normal 
under escitalopram treatment.

As a common mental disorder accompanied by high disability and suicide, major depressive disorder (MDD) 
has become a worldwide  issue1. In recent years, several studies have shown the correlation between gut micro-
biota and the development of  depression2–4. In several studies, MDD patients showed specific features of gut 
microbes differing from normal  controls5–8. It has been reported that transplants of MDD patients’ feces into 
mice could cause the depression-like behaviors, which used to establish animal models of  MDD5, 9, 10. Moreover, 
it also observed that the fecal bacteria transplantation of patients could lead to the increase of microglial cell 
density and expression of IL-1 in the ventral  hippocampus11. Taken together, the change of gut microbiota could 
be correlated with the occurrence of MDD.

At present, selective serotonin reuptake inhibitors (SSRIs) are widely used in clinical practice and have 
therapeutic effects in the treatment of  depression12. Besides, several SSRIs drugs, including sertraline, fluoxetine, 
paroxetine and escitalopram, could present antibacterial effects  directly13, 14. For example, staphylococcus and 
enterococcus are especially vulnerable to sertraline, fluoxetine and  paroxetine14–16. Therefore, SSRIs have dem-
onstrated both of antidepressant and antimicrobial  properties17. Ramsteijn et al.’s study reported that fluoxetine 
treatment altered important features of this transition from pregnancy to lactation and led to the decreased 
fecal amino acid concentrations. Amino acid concentrations negatively correlated with the relative abundance 
of bacterial taxa such as Prevotella and  Bacteroides18. McVey Neufeld et al. reported that intestinal exposure to 
SSRIs could increase the excitability of intrinsic primary afferent neurons in the intermuscle plexus and alter the 
alpha diversity of the intestinal  microbiota19.

Overall, SSRIs could directly or indirectly influence the changes of gut microbiota which might play the key 
role in the development of MDD. The purpose of this study was to explore the difference of gut microbiota with 
first episode MDD and elucidate the changes of gut microbiota after treatment by SSRIs.
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Results
Clinical data. In this study, 30 patients with drug-naive first-episode MDD and 30 healthy controls were 
recruited, respectively. There were no statistically significant differences between patients’ group and controls 
group in terms of age, gender, height, weight, and tobacco and alcohol consumption (p > 0.05) (Table 1). The 
MDD group received an individualized treatment and the maximum dose was 20 mg/day. The average dose 
of escitalopram was 16.33 ± 3.46 mg/day. Under escitalopram treatment, the mean time of the HAMD score 
decreased over 50% was 34.53 ± 5.18 days. All patients have response with 50% HAMD reduction.

Sequencing data and bacterial taxonomic composition. Sequencing data. Total 4,790,651 original 
sequences were obtained from 90 samples. After double-end Reads splicing and filtering, a total of 4,444,748 
Clean tags were generated. Each sample generated at least 12,039 Clean tags. Taxonomic annotation of OTUs 
was based on Silva (version 138.1) and UNITE (version 7.0) taxonomic databases.

Bacterial composition comparisons within three groups. At phylum level, the dominated gut microbiota was 
composed by Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria in three groups. Bacteroidetes and 
Firmicutes accounted for nearly 90% of the total gut microbiota. At the genus level, the distribution proportion 
of several gut microbiota abundance in the three groups was statistically different (q < 0.05) (Supplementary 
Table S1). Through the calculation, the Firmicutes/Bacteroidetes ratio of MDD group, Follow-up group and 
Controls group were 0.64, 0.46, and 0.70, respectively. The ratio in Follow-up group was significantly lower than 
those of the other two groups. There were significant differences among the three groups (p < 0.05) (Fig. 1).

Table1.  Demographic characteristics of MDD and controls. a Chi-square test; compared with HCs, p < 0.05; 
BMI body mass index.

MDD (n = 30) Controls (n = 30)

p valueM ± SD M ± SD

Age (years) 44.83 ± 11.00 43.97 ± 10.57 0.757

Gender (M/F) 13/17 15/15 0.605

Height (m) 1.68 ± 0.07 1.70 ± 0.05 0.171

Weight (kg) 67.83 ± 6.86 69.21 ± 7.14 0.447

BMI (kg/m2) 23.99 ± 2.05 23.83 ± 2.08 0.761

Tobacco (%)a 46.67% 30.00% 0.288

Alcohol (%)a 53.33% 33.33% 0.192

Figure 1.  Histogram of species distribution. QIIME software was used to generate species abundance tables 
at different taxonomic levels, and R language tool was used to draw community structure charts at different 
taxonomic levels. (a) Relative proportions of species distribution at the phylum level; (b) relative proportions of 
species distribution at the genus level.
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Bacterial composition comparisons before treatment. Between the MDD and Controls groups, there were signif-
icant differences in the abundance of multiple gut microbiota at the genus level. The abundance of Parasutterella, 
Prevotella_9, Fusobacterium, Prevotella_2, Christensenellaceae_R-7_group, Odoribacter and [Eubacterium] 
_ruminantium_group significantly decreased in MDD group. Meanwhile, The abundance of Parabacteroides, 
Lactobacillus, Anaerostipes, and Ruminococcaceae_UCG-014 significantly increased in MDD group (q < 0.05) 
(Supplementary Table S2).

Bacterial composition comparisons after treatment. After escitalopram treatment, the abundance of 
Christensenellaceae_R-7_group, [Eubacterium] _ruminantium_group and Fusobacterium significantly 
increased in Follow-up group (q < 0.05). The abundance of Lactobacillus significantly decreased in the Follow-
up group (q < 0.05). The main change of gut microbiota abundance in Follow-up group was Bacteroides (Sup-
plementary Table S2).

In addition, there were also several differences in the gut microbiota between Follow-up group and Controls 
group. In Follow-up group, the abundance of Parabacteroides, Prevotellaceae, Ruminiclostridium_6, Flavoni-
fractor significantly increased (q < 0.05), while that of Prevotella_2, Lachnospira, Collinsella, and Clostridium_
sensu_stricto_1 significantly decreased (q < 0.05). Moreover, the abundance of Faecalibacterium and Lachnoclo-
stridium in Follow-up group or in MDD group was significantly lower than that of the Controls group (q < 0.05) 
(Supplementary Table S2).

Diversity analysis. Alpha diversity comparisons among three groups. Alpha diversity mainly reflected the 
richness and diversity of the species in samples. As shown in Fig. 2, indices of Chao 1, Ace, and Shannon of MDD 
group were significantly higher than those of Follow-up group and Controls group, and the Simpson index was 
significantly lower in MDD group than others. This showed that the richness and the diversity of gut microbiota 
in MDD group were significantly higher than those of Follow-up group and Controls group. Indices value of al-
pha diversity in Follow-up group was significant different from that of MDD group, and there was no significant 
difference between Follow-up group and Control group. The Alpha diversity of gut microbiota in patients had a 
tendency to return to normal. The statistics of Alpha diversity index values of each group were shown in Table 2.

Mothur (version v.1.30) software was used to calculate the Alpha diversity index for samples. The larger of 
the index values of Ace and Chaos1 indices showed the greater number of species in the samples. The larger of 
the Shannon index value and the smaller of the Simpson index value showed more species categories of samples.

Beta diversity comparisons among three groups. Beta diversity was used to compare the similarity of species 
diversity among different groups. The binary jaccard algorithm was used to calculate beta diversity. The gut 
microbiota of MDD group was significantly different with that of controls group, and the gut microbiota within 
MDD group was more similar (R = 0.273, p = 0.001) (Fig. 3).

In addition, the gut microbiota profiles of some patients treated with escitalopram were more similar to those 
of the control group, but the others’ profiles remained closer to those of patients. The other analysis methods 
employed in this study also produced similar results. The unweighted paired average method (UPGMA) was 
used in the R language tool to perform hierarchical clustering of each groups. It found that the gut microbiota 
of MDD group was significantly different with that of controls group, and the gut microbiota of follow-up group 
was more similar with that of controls group (Supplementary Figure S1).

The correlation of gut microbiota among the Follow‑up group and other groups. Spearman correlation coefficient 
between samples was calculated to draw the heatmap. The closer of the calculated Spearman correlation coef-
ficient was to 1, the redder of the color was in the heat map, thus indicating the stronger correlation between 
two samples. As shown in Fig. 4, the follow-up group could be divided into two subgroups. The gut microbiota 
profiles of some of the treated patients in the follow-up group remained similar to those in the MDD group, 
while others’ profiles were more similar with those of Controls group. These results suggested that antidepressant 
drugs could transform the gut microbiota of some patients into that of the control group. LEfSe was used for the 
quantitative analysis of biomarkers in two subgroups (LDA > 4). Several microorganisms could be selected as 
biomarkers in two subgroups. Gut microbiota of follow-up group 2, the subgroup associated with MDD group, 
was differently enriched with p_Bacteroidetes, o_Bacteroidales, c_Bacteroidia and g_Prevotella_9. While gut 
microbiota of follow-up group 1, the subgroup associated with Controls group, was differently enriched with 
p_Firmicutes, p_Actinobacteria, f_Lachnospiraceae, f_Bifidobacteriaceae, o_Bifidobacteriales, c_Actinobacte-
ria and g_Bifidobacterium (Supplementary Figure S2).

Functional properties predicted by PICRUSt. The study considered that the profiles of gut micro-
biota in follow-up group could not completely return to the normal state. The PICRUSt software was used to 
compare the species composition information obtained from 16S sequencing data to infer the functional gene 
composition between patients and controls. Through the annotation of the KEGG metabolic pathway, it found 
that there were differences in the metabolic pathways of Transport and catabolism, Nervous system, Glycan bio-
synthesis and metabolism, Cell motility and Membrane transport between Follow-up group and Controls group 
(p < 0.05)(Fig. 5). In MDD group and Controls group, the major different pathways included Glycan biosynthesis 
and metabolism, Transport and catabolism, Excretory system, Metabolism of other amino acides, and Nervous 
system, which were similar with the result of those of Follow-up group and Controls group (Supplementary 
Figure S3). Meanwhile, only the pathway of Biosynthesis of other secondary metabolites was significantly dif-
ferences between MDD group and Follow-up group (Supplementary Figure S4). It suggested that the gut micro-
biota of Follow-up group might still involve in the occurrence of depression.
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Discussion
This study demonstrated that the gut microbiota from patients of drug-naive first-episode MDD was significantly 
different with that of controls, and the composition and structure of the gut microbiota in patients were more 
similar. This suggested that the occurrence and development of MDD might be associated with specific gut 
microbiotas. However, the identification results of gut microbiota structure were  inconsistent7, 20, 21. In the study 

Figure 2.  Visualization of Alpha diversity index. (a) Ace index; (b) Chaos1 index; (c) Shannon index; (d) 
Simpson index. **means the statistical difference between the two groups, p < 0.05.

Table 2.  Richness and diversity index values of MDD, follow-up and controls.

MDD (mean ± SD) Follow-up (mean ± SD) Controls (mean ± SD)

Ace 254.88 ± 2.30 187.39 ± 11.09 173.43 ± 3.80

Chaos1 257.38 ± 2.63 188.93 ± 11.07 172.69 ± 4.46

Shannon 3.57 ± 0.07 3.17 ± 0.11 2.99 ± 0.09

Simpson 0.09 ± 0.01 0.12 ± 0.01 0.13 ± 0.01
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of Lin et al., they found the MDD patients had more phylum Firmicutes and less  Bacteroidetes7. On the contrary, 
Huang et al. reported that Firmicutes were significantly lower in patients with  depression21. The inconsistency 
of the results from different studies may be related to factors including small sample size, different inclusion 
criteria, course, severity of disease, etc.22. However, some studies have shown that transplanting fecal samples 
from depressed patients could induce depressive symptoms in  mice23, 24. This suggested that a disturbed gut 
microbiota could be one of the causes of depression.

There is still a lack of effective biomarkers as clinical guidance for the diagnosis and treatment of  depression25. 
Several studies have shown that gut microbiota, used as a biomarker, has a good distinguishing effect on depres-
sion, AUC value 0.702-0.98626–28. Gut microbiota profiles can be used to effectively distinguish not only patients 
from normal population, but also major depressive disorder and bipolar depression, and even evaluate the 
therapeutic effect as  well27, 28. In this study, the major changed gut microbiota were Bacteroidetes. Monitoring 
the variation of Bacteroidetes may indicate the prognosis of the disease and the efficacy of the drug, which could 
be used as a potential biomarker.

In 2011, Manimozhiyan Arumugam et al. proposed the concept of  enterotypes29. In the sequencing results, 
they reported that the human gut microbiome could be divided into three robust clusters, including Prevotella-
enterotype (enterotype P), Bacteroides-enterotype (enterotype B) and Ruminococcus-enterotype (enterotype R). 
Different enterotypes have characteristic advantages of respective functional  states30. For example, enterotype 
P can generate more short-chain fatty acids and thus has stronger fermentation ability. Enterobacter type B has 
a variety of specific enzymes, which can promote the hydrolysis of sugars and proteins in food and improve the 
absorption by the  body31. Our study found that the composition of gut microbiota in Follow-up group resem-
bled participants in the control group, but the metabolic function of gut microbiota in Follow-up group was still 
similar to that of MDD group. We considered that the partial composition of gut microbiota had changed after 
treatment, but the enterotype was not, so that it still retained abnormal metabolic characteristics. However, we 
were unable to confirm this hypothesis due to short follow-up period in this study. The Belgian Flemish Gut 
Flora Project have found that enterotype distribution varied with depression  status32. Therefore, the future study 
could explore the relationship between enterotypes and metabolic function in different period of depression, 
which may help to understand the impact of gut microbiota on the development of MDD.

In addition, the gut microbiota tended to “normal” gut microbiota structure under SSRIs treatment, thus 
indicating a positive effect of SSRIs on the change of gut microbiota. However, there is currently no consensus 
on the effect of antidepressants on the gut microbiota. A recent study reported Lachnospiraceae species were 
more abundant in SSRIs treated mice compared to  controls33. However, the opposite conclusion was reported 
in Valles-Colomer et al.’s  study32. Since gut microbiota is easily affected by a variety of factors, future research 

Figure 3.  PCoA analysis shows the distribution coordinate diagram of samples: in the graph, the distance 
between the dots represents the similarity of the samples. Samples with high similarity tend to cluster together. 
The yellow dots represent the patient group, the blue dots represent the follow-up group, and the red dots 
represent the control group. The results showed a statistically significant difference among the three groups 
(R = 0.273, p = 0.001).
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should pay attention to course of disease, severity, population characteristics and other aspects to further clarify 
the change of gut microbiota.

The outcomes of current study were limited to the relatively small sample size and short follow-up time. 
This study was unable to further observe the effects of different antidepressant doses on the composition of gut 
microbiota. The effect of diet on gut microbiota was also not fully considered. Different diets and microbial com-
binations have different effects on the physiological function and substance metabolism of the intestinal  tract34. 
In the future, we could further expand the sample size for research. Based on the understanding of the changes 
of gut microbiota, the correlation between gut microbiota and clinical phenotypes could be further elucidated. 

Figure 4.  Spearman correlation coefficient heat map between samples. The closer the calculated Spearman 
correlation coefficient is to 1, the redder the color in the heat map, indicating the stronger correlation between 
the two samples. Follow-up group 1 had high correlation with Controls group. Follow-up group 2 had high 
correlation with MDD group.

Figure 5.  Metabolic pathway analysis between Controls group and Follow-up group. The left side of the figure 
shows the abundance ratio between the two groups. The middle section shows the proportional variation in 
functional abundance within the 95% confidence interval. The p value is on the right.
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Moreover, metabolomics and proteomics omics technologies are strongly suggested to be employed to explore 
the relationship between gut microbiota and depression.

Conclusions
In this study, it found that the gut microbiota of patients with first-episode depression was significantly different 
with that of Controls group. After escitalopram treatment, gut microbiota diversity of depressive patients tended 
to return to the normal state. However, there were still several structures and metabolic pathways difference in 
the gut microbiota between follow-up patients and controls, which might be related to the relapse of depression.

Methods
Participants. The 60 local subjects, including 30 depressed patients and 30 normal subjects, were recruited 
in this study. The inclusion criteria for subjects described as follows: (1) age was between 18–65 years old; (2) 
body mass index (BMI) was between 18 and 28 kg/m2; (3) no history of treatment with antipsychotic medica-
tion; (4) duration of symptoms was between 1 and 24  months; (5) no history of treatment with antidepres-
sant medication; (6) currently in the acute episode with the Hamilton Depression Rating Scale for Depression 
(HAMD) score ≥ 24; (7) other mental disorders such as axis I, personality disorder and mental retardation were 
excluded; (8) psychotropic drugs were never used; (9) diagnosis of depression in MDD group was made by two 
psychiatrists according to the Mini-International Neuropsychiatric Interview (MINI); (10) in Controls group, 
a diagnosis of mental disorder was excluded by two psychiatrists according to the MINI, and HAMD-17 score 
was < 7; (11) MDD group was defined as Follow-up group after receiving the drug treatment.

In addition, a series of exclusion criteria, based on the previous work, were employed in this study to exclude 
the factors affecting gut  microbiota35. Those include: (1) no somatic diseases known to affect the gut microbiota 
such as inflammatory bowel disease, immune system diseases, diabetes, etc.; (2) without antibiotics, probiotics 
or microbiological products used in recent 3 months; (3) no history of medical examination or surgery through 
the gastrointestinal tract in recent 6 months; (4) without obvious changes in dietary habits or the presence of 
obvious diarrhea, constipation and other symptoms in recent 1 month.

According to the questionnaire, subjects’ life events that may affect the mood, such as examinations, unem-
ployment and bereavement during the last six months and the whole research period, were surveyed and 
recorded. All of subjects in this study were required to sign an informed consent. According to the Helsinki 
Declaration, the protocol for sample collection and analysis was approved by the Ethics Committee of Peking 
University Sixth Hospital and Beijing Hospital of Chinese Traditional and Western Medicine.

Sample collection. Fecal samples were obtained from subjects enrolled. Subjects were instructed by staff to 
discharge feces into a clean container. After defecation, the staff collected 2 g fecal sample and quickly placed it 
into a container containing liquid nitrogen. The samples were then frozen at − 80 °C until analysis.

Treatment. All patients with depression received individualized treatment with escitalopram. The starting 
dose of escitalopram was 5 mg/day from day 1-day 7 and increased to 10 mg/day from day 8. According to the 
individual response, the dose of escitalopram could be adjusted, and the maximum dose was 20 mg/day. After 
4–6 weeks of treatment, the patients were evaluated by HAMD scale. When the scale reduction rate of HAMD 
was ≥ 50% compared with baseline, their fecal sample was collected for the second time and recorded as ‘Follow-
up group’ to be used in the comparison of gut microbiota.

16S rRNA Amplification of V3-V4 region and Illumina Sequencing. Using a PowerSoil DNA kit 
(MoBio, USA), DNA extraction was performed from 200 mg fecal samples according to manufacturer’s instruc-
tions. KAPA HiFi HotStart ReadyMix (KAPA, USA) was used to amplify the 16S rRNA (V3–V4) gene marker. 
Each DNA sample of the bacterial 16S rRNA gene was amplified with primers 341F (GGA CTA CHVGGG TWT 
CTAAT) and 805R (ACT CCT ACG GGA GGC AGC AG). The primers included a unique 8-nucleotide barcode 
and an Illumina adapter. Polymerase chain reaction (PCR) conditions were set as follows: initial denaturation at 
95 ℃ for 5 min, 98 ℃ denaturation for 20 cycles for 20 s, 58 ℃ annealing for 30 s, 72 ℃ extension for 30 s, and 
72 ℃ final extension for 5 min. The amplicons obtained by PCR were analyzed on 1.5% agarose gel electropho-
resis, and a band of a desired size was purified using a QIAquick gel extraction kit (QIAGEN, Germany). The 
product was submitted to the second-generation sequencing laboratory of Beijing institute of bioinformatics for 
sequencing on Illumina HiSeq 2500 platform.

Bioinformatics analysis. The QIIME (Version 1.9.1) software was used to filter and sequence the original 
sequence to obtain optimized sequences (Tags)36. Fragments containing ambiguous characters in the sequence 
or more than two nucleotide mismatched primers were removed. Usearch (version 10.0) software was used to 
cluster Tags at a similarity level of 97% to obtain  OTUs37. OTUs were annotated based on the Silva (bacterial) 
and UNITE (fungi) taxonomy databases. QIIME (Version 1.9.1) software was used to generate species richness 
tables at different taxonomic levels, and R language tools were used to draw community structure maps at each 
taxonomic level of the sample. The community structure map of each sample was obtained at the level of tax-
onomy, class, order, family, genus, species.

In order to identify the difference in microbial community richness between the MDD group and Controls 
group, the Metastats (URL: http:// metas tats. cbcb. umd. edu) software was used to perform a T test on the species 
richness data between two groups to obtain the p  value38. The q value was obtained by correcting the p value. 
Species were selected based on p values or q values that caused differences in the composition of the two groups 

http://metastats.cbcb.umd.edu
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of samples. The analysis was performed at the level of phylum, class, order, family, genus, species taxonomy to 
analyze the significance between groups.

Mothur (version v.1.30, URL: http:// www. mothur. org/) software was used to evaluate the Alpha Diversity 
Index of the  samples39. The species diversity within a single sample was studied by Alpha Diversity Analysis, and 
the Ace, Chao1, Shannon, and Simpson indices of each sample at the 97% similarity level were counted; Beta 
diversity analysis was performed using QIIME (Version 1.9.1) software. Beta diversity analysis mainly used the 
binary jaccard algorithm to calculate the distance among samples to obtain the β value between samples. Based 
on the distance matrix obtained from the Beta diversity analysis, PCoA analysis was performed using R language 
tools to further demonstrate the differences in species diversity among  samples40. Hierarchical clustering was 
performed on samples using unweighted paired average method (UPGMA) to determine the similarity of spe-
cies composition among samples. According to the species abundance table obtained by clustering, spearman 
correlation coefficient among samples was calculated by Psych package in R language, and then the heatmap 
was drawn by P heatmap package in R language. The closer of the calculated Spearman correlation coefficient 
was to 1, the darker the red shading was in the heat map, thus indicating the stronger correlation of two samples. 
Then, LEfSe tools (URL: http:// hutte nhower. sph. harva rd. edu/ lefse/) were used the Wilcox test function of the R 
language STATS package to estimate the impact of the abundance of each component (species) on the effect of 
the difference between components, so that the comparison of two subgroups can be realized to find the species 
marker (Biomaker) with significant difference in the  abundance41.

PICRUSt (Version 1.1.4) software was used to compare the species composition information obtained from 
16S sequencing data to deduce the functional gene composition in the samples, thereby determining the func-
tional differences between different  groups42. Using the KEGG orthology database (KOs) in the Kyoto Ency-
clopedia of Genes and Genomics (KEGG)  database43, the changes in metabolic pathways of functional genes of 
microbial communities between different groups were evaluated through differential analysis of KEGG metabolic 
 pathways44, 45.

Statistics analysis. Statistical analysis was performed using SPSS19.0 software. Participants’ gender, 
tobacco and alcohol consumption were expressed in terms of proportional or percentages. Independent t tests, 
Welch t tests, and White non-parametric t tests were used for continuous variables. Pearson chi-square test or 
Fisher’s exact test were used for classification variables. All significance tests were two-sided tests, and p < 0.05 or 
adjusted p < 0.05 was considered statistically significant.

Received: 6 January 2021; Accepted: 9 July 2021

References
 1. Roberts, T. et al. Factors associated with health service utilisation for common mental disorders: a systematic review. BMC Psy‑

chiatry 18, 262. https:// doi. org/ 10. 1186/ s12888- 018- 1837-1 (2018).
 2. Inserra, A., Mastronardi, C. A., Rogers, G., Licinio, J. & Wong, M. L. Neuroimmunomodulation in major depressive disorder: 

focus on caspase 1, inducible nitric oxide synthase, and interferon-gamma. Mol. Neurobiol. 56, 4288–4305. https:// doi. org/ 10. 
1007/ s12035- 018- 1359-3 (2019).

 3. Inserra, A., Rogers, G. B., Licinio, J. & Wong, M. L. The microbiota-inflammasome hypothesis of major depression. BioEssays 40, 
e1800027. https:// doi. org/ 10. 1002/ bies. 20180 0027 (2018).

 4. Molina-Torres, G., Rodriguez-Arrastia, M., Roman, P., Sanchez-Labraca, N. & Cardona, D. Stress and the gut microbiota-brain 
axis. Behav. Pharmacol. 30, 187–200. https:// doi. org/ 10. 1097/ FBP. 00000 00000 000478 (2019).

 5. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabo-
lism. Mol. Psychiatry 21, 786–796. https:// doi. org/ 10. 1038/ mp. 2016. 44 (2016).

 6. Naseribafrouei, A. et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26, 1155–1162. 
https:// doi. org/ 10. 1111/ nmo. 12378 (2014).

 7. Lin, P. et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients 
with major depressive disorder. J. Affect. Disord. 207, 300–304. https:// doi. org/ 10. 1016/j. jad. 2016. 09. 051 (2017).

 8. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194. 
https:// doi. org/ 10. 1016/j. bbi. 2015. 03. 016 (2015).

 9. Li, B. et al. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic 
unpredictive mild stress mouse livers. Transl. Psychiatry 8, 34. https:// doi. org/ 10. 1038/ s41398- 017- 0078-2 (2018).

 10. Luo, Y. et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. 
Psychiatry 8, 187. https:// doi. org/ 10. 1038/ s41398- 018- 0240-5 (2018).

 11. Pearson-Leary, J. et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in 
the ventral hippocampus of stress vulnerable rats. Mol. Psychiatry https:// doi. org/ 10. 1038/ s41380- 019- 0380-x (2019).

 12. Dale, E., Bang-Andersen, B. & Sanchez, C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem. 
Pharmacol. 95, 81–97. https:// doi. org/ 10. 1016/j. bcp. 2015. 03. 011 (2015).

 13. Lieb, J. The immunostimulating and antimicrobial properties of lithium and antidepressants. J. Infect. 49, 88–93. https:// doi. org/ 
10. 1016/j. jinf. 2004. 03. 006 (2004).

 14. Munoz-Bellido, J. L., Munoz-Criado, S. & Garcia-Rodriguez, J. A. Antimicrobial activity of psychotropic drugs: selective serotonin 
reuptake inhibitors. Int. J. Antimicrob. Agents 14, 177–180. https:// doi. org/ 10. 1016/ s0924- 8579(99) 00154-5 (2000).

 15. Ayaz, M. et al. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. (Thes‑
salon) 22, 4. https:// doi. org/ 10. 1186/ s40709- 015- 0028-1 (2015).

 16. Coban, A. Y., Tanriverdi Cayci, Y., Keles Uludag, S. & Durupinar, B. Investigation of antibacterial activity of sertralin. Mikrobiyol. 
Bul. 43, 651–656 (2009).

 17. Kruszewska, H., Zareba, T. & Tyski, S. Examination of antimicrobial activity of selected non-antibiotic medicinal preparations. 
Acta Pol. Pharm. 69, 1368–1371 (2012).

http://www.mothur.org/
http://huttenhower.sph.harvard.edu/lefse/
https://doi.org/10.1186/s12888-018-1837-1
https://doi.org/10.1007/s12035-018-1359-3
https://doi.org/10.1007/s12035-018-1359-3
https://doi.org/10.1002/bies.201800027
https://doi.org/10.1097/FBP.0000000000000478
https://doi.org/10.1038/mp.2016.44
https://doi.org/10.1111/nmo.12378
https://doi.org/10.1016/j.jad.2016.09.051
https://doi.org/10.1016/j.bbi.2015.03.016
https://doi.org/10.1038/s41398-017-0078-2
https://doi.org/10.1038/s41398-018-0240-5
https://doi.org/10.1038/s41380-019-0380-x
https://doi.org/10.1016/j.bcp.2015.03.011
https://doi.org/10.1016/j.jinf.2004.03.006
https://doi.org/10.1016/j.jinf.2004.03.006
https://doi.org/10.1016/s0924-8579(99)00154-5
https://doi.org/10.1186/s40709-015-0028-1


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14918  | https://doi.org/10.1038/s41598-021-94481-1

www.nature.com/scientificreports/

 18. Ramsteijn, A. S., Jasarevic, E., Houwing, D. J., Bale, T. L. & Olivier, J. D. Antidepressant treatment with fluoxetine during pregnancy 
and lactation modulates the gut microbiome and metabolome in a rat model relevant to depression. Gut Microbes 11, 735–753. 
https:// doi. org/ 10. 1080/ 19490 976. 2019. 17057 28 (2020).

 19. McVey Neufeld, K. A. et al. Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Sci. 
Rep. 9, 14290. https:// doi. org/ 10. 1038/ s41598- 019- 50807-8 (2019).

 20. Chen, Z. et al. Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive 
disorder. NeuroReport 29, 417–425. https:// doi. org/ 10. 1097/ WNR. 00000 00000 000985 (2018).

 21. Huang, Y. et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. 
Dis. Treat. 14, 3329–3337. https:// doi. org/ 10. 2147/ NDT. S1883 40 (2018).

 22. Kelly, J. R. et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. 
Psychiatr. Res. 82, 109–118. https:// doi. org/ 10. 1016/j. jpsyc hires. 2016. 07. 019 (2016).

 23. Xu, Z. et al. Fecal microbiota transplantation from healthy donors reduced alcohol-induced anxiety and depression in an animal 
model of chronic alcohol exposure. Chin. J. Physiol. 61, 360–371. https:// doi. org/ 10. 4077/ CJP. 2018. BAH633 (2018).

 24. Kurokawa, S. et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel 
syndrome, functional diarrhea and functional constipation: An open-label observational study. J. Affect. Disord. 235, 506–512. 
https:// doi. org/ 10. 1016/j. jad. 2018. 04. 038 (2018).

 25. Buckman, J. E. J. et al. Risk factors for relapse and recurrence of depression in adults and how they operate: A four-phase systematic 
review and meta-synthesis. Clin. Psychol. Rev. 64, 13–38. https:// doi. org/ 10. 1016/j. cpr. 2018. 07. 005 (2018).

 26. Lai, W. T. et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major 
depressive disorder patients. Psychol. Med. 51, 90–101. https:// doi. org/ 10. 1017/ S0033 29171 90030 27 (2021).

 27. Hu, S. et al. Gut microbiota changes in patients with bipolar depression. Adv. Sci. (Weinh) 6, 1900752. https:// doi. org/ 10. 1002/ 
advs. 20190 0752 (2019).

 28. Zheng, P. et al. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci. (Weinh) 7, 1902862. https:// 
doi. org/ 10. 1002/ advs. 20190 2862 (2020).

 29. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180. https:// doi. org/ 10. 1038/ natur e09944 (2011).
 30. Chen, T. et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 7, 2594. https:// 

doi. org/ 10. 1038/ s41598- 017- 02995-4 (2017).
 31. Vieira-Silva, S. et al. Species-function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 

16088. https:// doi. org/ 10. 1038/ nmicr obiol. 2016. 88 (2016).
 32. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 

4, 623–632. https:// doi. org/ 10. 1038/ s41564- 018- 0337-x (2019).
 33. Lyte, M., Daniels, K. M. & Schmitz-Esser, S. Fluoxetine-induced alteration of murine gut microbial community structure: evidence 

for a microbial endocrinology-based mechanism of action responsible for fluoxetine-induced side effects. PeerJ 7, e6199. https:// 
doi. org/ 10. 7717/ peerj. 6199 (2019).

 34. Dey, N. et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163, 
95–107. https:// doi. org/ 10. 1016/j. cell. 2015. 08. 059 (2015).

 35. Shen, Y. et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-
sectional study. Schizophr. Res. 197, 470–477. https:// doi. org/ 10. 1016/j. schres. 2018. 01. 002 (2018).

 36. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https:// 
doi. org/ 10. 1038/ nmeth.f. 303 (2010).

 37. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https:// doi. org/ 
10. 1038/ nmeth. 2604 (2013).

 38. White, J. R., Nagarajan, N. & Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic 
samples. PLoS Comput. Biol. 5, e1000352. https:// doi. org/ 10. 1371/ journ al. pcbi. 10003 52 (2009).

 39. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192. https:// doi. org/ 
10. 1126/ scien ce. 11717 00 (2009).

 40. Sakaki, T., Takeshima, T., Tominaga, M., Hashimoto, H. & Kawaguchi, S. Recurrence of ICA-PCoA aneurysms after neck clipping. 
J. Neurosurg. 80, 58–63. https:// doi. org/ 10. 3171/ jns. 1994. 80.1. 0058 (1994).

 41. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https:// doi. org/ 10. 1186/ gb- 2011- 12-6- 
r60 (2011).

 42. Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioin‑
formatics 30, 3123–3124. https:// doi. org/ 10. 1093/ bioin forma tics/ btu494 (2014).

 43. Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199-205. 
https:// doi. org/ 10. 1093/ nar/ gkt10 76 (2014).

 44. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. 
Biotechnol. 31, 814–821. https:// doi. org/ 10. 1038/ nbt. 2676 (2013).

 45. Kanehisa, M. & Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 29, 28–35. https:// doi. 
org/ 10. 1002/ pro. 3711 (2020).

Acknowledgements
We thank all the subjects who took part in this study. Thank XXX, ZYL and YCH for their support in this study.

Author contributions
Y.S., X.Y., J.Y.G. and Y.L. designed the study and wrote the protocol. X.Y. and J.Y.G. managed the literature 
searches and analyses. Y.S. undertook the statistical analysis, and Y.S., X.Y. and G.F.L. wrote the first draft of the 
manuscript. All authors contributed to and have approved the final manuscript.

Funding
This study was supported by Beijing Association for Science and Technology Jinqiao Seed Fund Project (no. 
JQ18005). The role of funding body was in the design and implementation of study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 94481-1.

https://doi.org/10.1080/19490976.2019.1705728
https://doi.org/10.1038/s41598-019-50807-8
https://doi.org/10.1097/WNR.0000000000000985
https://doi.org/10.2147/NDT.S188340
https://doi.org/10.1016/j.jpsychires.2016.07.019
https://doi.org/10.4077/CJP.2018.BAH633
https://doi.org/10.1016/j.jad.2018.04.038
https://doi.org/10.1016/j.cpr.2018.07.005
https://doi.org/10.1017/S0033291719003027
https://doi.org/10.1002/advs.201900752
https://doi.org/10.1002/advs.201900752
https://doi.org/10.1002/advs.201902862
https://doi.org/10.1002/advs.201902862
https://doi.org/10.1038/nature09944
https://doi.org/10.1038/s41598-017-02995-4
https://doi.org/10.1038/s41598-017-02995-4
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1038/s41564-018-0337-x
https://doi.org/10.7717/peerj.6199
https://doi.org/10.7717/peerj.6199
https://doi.org/10.1016/j.cell.2015.08.059
https://doi.org/10.1016/j.schres.2018.01.002
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1371/journal.pcbi.1000352
https://doi.org/10.1126/science.1171700
https://doi.org/10.1126/science.1171700
https://doi.org/10.3171/jns.1994.80.1.0058
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1093/bioinformatics/btu494
https://doi.org/10.1093/nar/gkt1076
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1002/pro.3711
https://doi.org/10.1002/pro.3711
https://doi.org/10.1038/s41598-021-94481-1
https://doi.org/10.1038/s41598-021-94481-1


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14918  | https://doi.org/10.1038/s41598-021-94481-1

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to J.G. or Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The change of gut microbiota in MDD patients under SSRIs treatment
	Results
	Clinical data. 
	Sequencing data and bacterial taxonomic composition. 
	Sequencing data. 
	Bacterial composition comparisons within three groups. 
	Bacterial composition comparisons before treatment. 
	Bacterial composition comparisons after treatment. 

	Diversity analysis. 
	Alpha diversity comparisons among three groups. 
	Beta diversity comparisons among three groups. 
	The correlation of gut microbiota among the Follow-up group and other groups. 

	Functional properties predicted by PICRUSt. 

	Discussion
	Conclusions
	Methods
	Participants. 
	Sample collection. 
	Treatment. 
	16S rRNA Amplification of V3-V4 region and Illumina Sequencing. 
	Bioinformatics analysis. 
	Statistics analysis. 

	References
	Acknowledgements


