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Introduction
TempO-seq has emerged as a targeted alternative to traditional 
RNA-seq that is more amenable to high-throughput tran-
scriptomics,1 particularly for applications in Toxicogenomics.2,3 
TempO-seq relies on next-generation sequencing platforms 
and ultimately generates short read data which must be pro-
cessed and quality assessed much like other technologies using 
this platform, including critical analysis steps such as read 
alignment and normalization of raw read counts across samples 
of varying depth and quality. Thus far, studies using the 
TempO-seq method have relied on existing tools for process-
ing the resulting short read data. However, these tools were 
originally designed for other experiment types and in some 
cases may not be suitable or optimal for this specific use case. 
To date, there has been no systematic comparison of these 
methods specifically for TempO-seq data analysis, or investiga-
tion of the impact of these analysis choices on the overall accu-
racy of the results.

A key difference between TempO-seq and RNA-seq is 
that TempO-seq uses 50 nucleotide probes which are 
designed to specifically target a known transcript. These 50 
nucleotide sequences are ultimately what are amplified and 
sequenced in a TempO-seq experiment, which reduces the 
depth of sequencing needed per sample to obtain accurate 
results. Furthermore, a TempO-seq experiment typically uses 
anywhere from ~3000 probes designed to maximally cover 
known pathways and correlated expression modules4 to 
~20 000 probes designed to cover the majority of known 

coding genes in the human genome.1 Thus, raw short read 
data from a TempO-seq experiment differs from standard 
RNA-seq data set in both the complexity of the sequence 
space (in theory, reads need only be aligned to the collection 
of 50 bp probe sequences used in the experiment with no 
consideration for gaps or splicing) and the number of fea-
tures for which read counts need to be computed and nor-
malized (~3000-20 000 features of uniform length, rather 
than > 50 000 possible transcripts and isoforms of variable 
length as seen in RNA-seq). These design factors may have 
an impact on the choice of appropriate alignment algorithm, 
normalization method, and parameters used to compute 
expression and fold-change estimates from TempO-seq data, 
but these choices have yet to be systematically explored.

In this work, we re-analyze several publicly available 
TempO-seq data sets covering a range of experimental designs, 
and use corresponding RNA-seq data sets as a gold standard to 
rigorously assess accuracy at multiple levels (Table 1). We adapt 
6 different short read aligners, which vary widely in the under-
lying algorithm design and intended use cases, to the analysis 
of TempO-seq data. For each aligner, we also identify critical 
parameter adjustments that must be made to ensure reliable 
performance for this data type. We then further explore the 
impact of normalization methods on the accuracy of differen-
tial expression estimates from this platform. Our findings pro-
vide important justification for the choice of both alignment 
and normalization method used for TempO-seq data and lay 
out a general framework that can be used to expand this 
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assessment as additional appropriate data sets and analysis 
methods become available.

Materials and Methods
Obtaining publicly available data sets

Table 1 provides a listing of all public data sets used with refer-
ences and data repository accessions. Gene-level read counts 
for all RNA-seq samples from Yeakley et al1 were obtained 
from processed data in GEO (GSE91395). All other RNA-
seq and TempO-seq raw read data were downloaded from the 
Sequence Read Archive (SRA) and extracted to fastq format 
using the SRA toolkit v2.8.2-1 (https://www.ncbi.nlm.nih.
gov/sra/docs/toolkitsoft/).

Previous analysis of the SEQC RNA-seq data5 identified 1 
sample (RNA ID = 98912) originally labeled as a carbon tetra-
chloride–treated liver that was revealed to be a sample mix-up. 
This sample was excluded from the RNA-seq data deposited 
in public repositories. We excluded the corresponding sample 
from the published TempO-seq data to keep the data sets 
comparable.

Alignment of reads to probe indexes

A defining feature of the TempO-seq method is the use of pre-
designed probes targeted to specific 50 bp regions of known 
genes.1 These probes are initially synthesized as 25 bp half-
probes combined with template sequences needed for amplifi-
cation and sequencing. When a TempO-seq probe library is 
mixed with a cell lysate or purified RNA sample, the half-
probes hybridize to the endogenous RNA target sequence. 
Chemical ligation then joins half-probes that are hybridized in 
close proximity on the same target RNA, resulting in a com-
plete probe sequence consisting of the 50 bp target sequence 
flanked by the Illumina template sequences. The rate of half-
probe ligation reflects the relative concentration of the target 

RNA in the sample, and only the full probes resulting from 
ligation are amplified and sequenced in the final library. Thus, 
the relative count of 50 bp reads aligned to probe sequences 
from each gene is proportional to the relative concentration of 
the target RNA in the sample.

TempO-seq reads in single-end fastq format were aligned 
to corresponding probe sequences (rat S1500 + in Supplemental 
Table 1, human whole transcriptome in Yeakley et al1) using 
each of the following aligners and additional parameters:

•• Bowtie v1.2.27 with the following additional alignment 
parameters: “-v 3 -k 10 m 10 --best --strata --trim3 1.” 
This configuration allows up to 3 mismatches (the maxi-
mum allowed for bowtie) and reports up to 10 multiple 
alignments per read when they are of equal quality. Only 
uniquely aligned reads were included in the probe-level 
read counts from this aligner. The “--trim3 1” parameter 
is included because some of the data sets used have read 
length = 51 bp, and bowtie will fail to align these reads to 
the 50 bp known probe sequences otherwise.

•• Bowtie2 v2.3.08 with the following additional alignment 
parameters: “--end-to-end -k 10.” This configuration 
enforces full-length alignment of the complete 50 bp 
probe sequence (no soft-clipping of reads), and reports 
up to 10 multiple alignments per read when they are of 
equal quality. Bowtie2 could align the 51 bp reads to the 
appropriate gene and hence "trim 3 1" was not used with 
Bowtie2. Only uniquely aligned reads with at least 40 
matching bases were included in the probe-level read 
counts from this aligner.

•• Hisat2 v2.1.09,10 with the following additional parame-
ters: “--dta --no-spliced-alignment --trim3 1.” This 
parameter configuration keeps memory usage low (“--
dta”), disables spliced alignments from being reported 
(“--no-spliced-alignment”), and correctly handles the 
data sets that have read length = 51 bp (“--trim3 1”). This 

Table 1. Public data sets used for benchmarking analysis.

DESCRIPTION PLATfORM SPECIES REfERENCE GEO ACCESSION SRA ACCESSION

Comparison of MCf-7 and MDA-MB-231 
Human Cell Lines

RNA-seq Human Yeakley et al1 GSE91395 SRP094862

TempO-seq Whole 
Transcriptome

Human

Lysate titration TempO-seq Whole 
Transcriptome

Human

URR titration  

SEQC chemical exposed rat liver RNA-seq Rat Wang et al5 GSE55347 SRP039021

TempO-seq Rat S1500+ Rat Bushel et al6 GSE118956 SRP158667

Abbreviations: GEO, Gene Expression Omnibus; SRA, Sequence Read Archive.
Table of all data sets used for benchmarking analysis of TempO-seq processing methods, including references to associated manuscripts, and accessions for source 
data in both Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA).
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configuration has been used previously for high-through-
put TempO-seq data alignment11 and was chosen here to 
remain consistent with the previous work. By default, 
hisat2 reports multiple alignments per read when they 
are of equal quality. Only uniquely aligned reads with at 
least 40 matching bases were included in the probe-level 
read counts from this aligner.

•• Kallisto v0.44.012 with the following additional align-
ment parameters: “--single -l 50 -s 1 --single-overhang 
--bias”. These parameters configure Kallisto for single-
end reads of known length (50 bp). Probe-level raw read 
counts were output directly by Kallisto.

•• Subread v1.5.113 with the following additional align-
ment parameters: “-n 33 --DPGapExt -1 -B 10 --sv.” 
Subread index construction was performed with the “-F” 
option to construct a full index with 16 bp subreads at 
every position of the reference sequences (which in this 
case consists only of the known probe sequences, not the 
entire genome). The alignment configuration used here 
matches all possible subreads (rather than sparsely sam-
pled subreads), penalizes gapped alignments, reports up 
to 10 equally good alignments per read, and also allows 
chimeric alignments. Only those reads that uniquely 
aligned to at least 40 matching bases of a single probe 
were included in the probe-level read counts from this 
aligner. Remaining reads were categorized as either chi-
meric (based on the extended SAM tags used by Subread 
to denote chimeric alignments), multiply aligned 
(reported with 2 or more nonchimeric alignments), or 
unaligned (no alignment reported).

•• STAR v2.5.2b14 via the “Temposeqcount” pipeline.15 
Probe-level read counts were output directly by this 
pipeline.

Note that Bowtie was developed to handle ungapped full-
length alignments, while Bowtie2 was developed to support 
both full-length and local alignments, with or without gaps. 
Due to these differences, not all alignment parameters are 
available for both aligners. The “--end-to-end” parameter was 
used with Bowtie2 to force full-length alignments. “-v 3” was 
used for Bowtie to allow at most 3 mismatches. Bowtie2 uses 
a scoring function calculated using the match/mismatch/gap 
scores to consider an alignment “valid” (http://bowtie-bio.
sourceforge.net/manual.shtml; http://bowtie-bio.source-
forge.net/bowtie2/manual.shtml). We have used the default 
Bowtie2 scoring options. “--best” and “--strata” make Bowtie 
guarantee that reported alignments are optimal in terms of 
the number of mismatches and/or quality values. Bowtie2 
does not have any equivalent of Bowtie’s “--best” or “--strata” 
options. Given that Bowtie and Bowtie2 were developed at 
different times with slightly different goals, the two aligners 
do differ in available parameter choices, and hence, in their 
implementation in this work.

Alignment of SEQC RNA-seq data

Rat transcriptome sequences were downloaded from RefSeq in 
fasta format on March 27, 2018. In addition, 17 sequences cor-
responding to deprecated gene models from the S1500+ plat-
form (Supplemental Table 2) were included to ensure maximum 
overlap between the RNA-seq and TempO-seq gene IDs. Raw 
paired-end RNA-seq data in fastq format was aligned to the 
rat transcriptome using Kallisto v0.44.012 to obtain transcript-
level read counts. Transcript-level read counts were then con-
densed to gene-level read counts by summing the read counts 
for all transcripts mapping to the same Entrez gene ID.

Normalization of raw read counts

Raw read counts for both TempO-seq and RNA-seq data were 
normalized across samples by each of the following methods:

•• RPM: Simple reads per million (RPM) normaliza-
tion = xi, j * 106 / Nj, where Nj is the total number of 
uniquely aligned reads in sample j.

•• QNorm: Simple RPM normalization followed by quan-
tile normalization using the normalize.quantiles function 
in preprocessCore v1.36.16

•• DESeq2: Normalization using the estimateSizeFactors 
and fpm functions in DESeq2 package v1.14.1 with 
default parameters17,18 and default size factor estimation 
used in the fpm function.

•• GMPR: DESeq2 fpm normalization with size factors 
computed using the GMPR method.19 Author’s source 
code for implementing the GMPR method was down-
loaded from github.com/jchen1981/GMPR on 
December 14, 2018.

•• DESeq2+: A revised version of DESeq2 fpm normali-
zation.19 In this approach, the size factors are computed 
by adding 1 to all counts to ensure that the geometric 
mean is defined for all genes/probes.

All normalizations methods above produce normalized val-
ues that can be interpreted as reads/features per million. For all 
normalization methods above, these values were further trans-
formed as to log2 scale with pseudo-count = log2(X + 1).

Identif ication of differentially expressed genes

Differentially expressed genes were determined based on log2 
normalized read counts (alternate methods described above) 
using student’s t-test. Differentially expressed genes were called 
as having P ⩽ .001 and absolute fold-change ⩾ 1.5. Differential 
expression analysis was performed independently for each 
chemical treatment and corresponding controls in the SEQC 
data set. For the small number of genes with multiple corre-
sponding TempO-seq probes, differential expression analysis 
was performed at the probe level, and each gene was called as 
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differentially expressed if any of the corresponding probes 
passed the significance and fold-change thresholds noted 
above. When multiple probes for the same gene passed these 
thresholds, the probe with the highest absolute fold-change 
was used to represent the gene.

Assessment of TempO-seq accuracy

When comparable RNA-seq data was available, it was used as 
the “gold standard” for assessing the accuracy of TempO-seq 
data. For the cell type comparison data in Yeakley et al,1 there 
is no correspondence between individual replicates, but the 
fold-changes and DEG calls between the two cell types can be 
compared. For the Yeakley titration experiments, the highest 
input concentration was treated as the “gold standard.” For the 
SEQC data, we compared only the samples that were common 
to both platforms. For both data sets, gene IDs were mapped to 
current NCBI Entrez IDs, and we computed all accuracy met-
rics based solely on genes that are common to both platforms.

We assessed the accuracy of corresponding log2 normalized 
expression values and/or log2 fold-change values by Pearson 
correlation coefficient (PCC). For the downsampled results, we 
also compared log2 fold-change values to gold standards using 
mean squared error (MSE), calculated as:

MSE X Y
n

X Y
i

n

i i,( ) = −( )
=
∑1
1

2

where X and Y correspond to vectors of corresponding log2 
expression or fold-change values from TempO-seq and gold 
standard respectively. DEG calls were summarized as values of 
0, 1, –1, indicating nonsignificance, upregulation, and down-
regulation, respectively. We assessed the accuracy of DEG calls 
by Matthews correlation coefficient (MCC).20,21

Downsampling of probe-level read count data

The SEQC data aligned using Bowtie was downsampled to 
each target depth of N total uniquely aligned reads per sample 
as follows: For each sample j, a vector Tj of probe IDs was gen-
erated such that the ID for probe i appears xij times in vector Tj, 
where xij is the number of reads from sample j uniquely aligned 
to probe i. Vector Sj was then generated by sampling without 
replacement N probe IDs from vector Tj, and the read counts 
for the downsampled version of sample j are computed as the 
sum of occurrences of each probe ID i in vector Sj.

This procedure is equivalent to randomly sampling N reads 
from the original fastq file and re-running the alignment and 
read-counting process, because the alignment of each read is 
independent and the only thing that changes with downsam-
pling is which subset of reads get counted. However, this 
approach is computationally more efficient, as it does not 
require re-running the entire alignment process multiple times 
on redundant subsets of the data, and has the advantage of 

downsampling to a target number of uniquely aligned reads, 
which is the more meaningful metric of sample depth for 
TempO-seq.

We repeated the downsampling procedure on all SEQC 
TempO-seq samples on values of N from 100 K to 1M, at 
every iteration of 100 K reads. Downsampling and complete 
accuracy analysis was repeated independently 5 times on each 
value of N.

Results
Multiple types of alignment algorithms produce 
highly correlated TempO-seq expression estimates

In theory, the alignment problem for TempO-seq data is 
greatly simplified from that of RNA-seq or even DNA-seq. 
Short reads need only be aligned to the collection of 50 bp 
probe sequences on the target platform, as opposed to the com-
plete transcriptome or genome for the organism of study. 
Additional complications such as splicing, indels, and single 
nucleotide variation (SNVs) do not need to be considered. The 
initial publication introducing the TempO-seq method1 used 
the Bowtie algorithm,7 which was designed to align short sin-
gle-end reads to a genome or transcriptome without consider-
ing splicing, larger indels, or other types of variation, to 
complete this alignment task. An alternative pipeline has been 
proposed15 for TempO-seq analysis using the STAR alignment 
algorithm,14 which was originally designed to align RNA-seq 
data while handling potentially longer reads and allowing the 
discovery of novel splice junctions.

Although we did not perform a systematic comparison of  
all possible parameter combinations for all algorithms—some 
aligners tested have a large number of parameter choices, but 
most are unlikely to be relevant to this particular application—
we do note that several parameters are critical for effectively 
applying certain aligners to TempO-seq. In general, we set 
parameters to require full-length alignment of probe sequences 
to prevent alignment of spurious ligation products or other 
sequencing artifacts. Another alignment issue is that some 
reported TempO-seq data sets have read lengths of 51 bp, 
despite the fact that the intended probe sequences are 50 bp. 
This likely results from an extra cycle of sequencing that picks 
up the beginning of the template sequence flanking the pri-
mary target sequence. In these cases, some aligners, such as 
Bowtie, failed to align any reads that were longer than the 
probe sequences used to construct the index (no soft-clipping 
allowed). The simple solution to this was to trim the TempO-
seq reads to the expected length before alignment, which 
Bowtie1 can do when specific parameters are set (see methods). 
For the STAR aligner, we used the exact set of parameters 
specified by House et al15 as part of the “Temposeqcount” 
pipeline.

We identified several publicly available TempO-seq data 
sets and processed the raw read files (fastq format) with 6 dif-
ferent open-source alignment tools that varied in both their 
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fundamental algorithmic designs and their originally intended 
use cases. Each of the data sets analyzed here (SEQC and 
Yeakley cell type comparison) has a corresponding RNA-seq 
data set which was used as a “gold standard” for computing 
accuracy. For each TempO-seq data set we compared overall 
alignment rates, computed correlation of the read counts 

resulting from each aligner, and computed the accuracy of log2 
fold-changes resulting from each aligner as compared with 
gold-standard data (Figure 1).

All algorithms used were able to uniquely align >90% of 
the reads to a known probe sequence for most of the samples 
analyzed (Figure 1A and B). Despite the variation in overall 

Figure 1. Comparison of alignment algorithms on TempO-seq data. Boxplot summarizing percentage of reads uniquely aligned to a single probe for each 

sample by each aligner for Human Whole Transcriptome TempO-seq data of 2 cell types from Yeakley et al (A) and Rat S1500+ TempO-seq data of 

chemically exposed liver samples from SEQC (B). Pearson correlation coefficient of raw read counts across all samples for each pair of aligners are 

shown for Yeakley et al data (C) and SEQC data (D). Log2 fold-changes for each gene across the 2 cell-types in Yeakley et al were computed from 

TempO-seq data, then correlated against comparable expression measured by RNA-seq (E). Log2 fold-changes for each chemical exposure in SEQC rat 

livers were computed from TempO-seq data, then correlated against matching treatment effects measured by RNA-seq (f).
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unique alignment rate, we found that the aligners we tested 
produced read counts that were highly correlated across probes 
and sample (Figure 1C and D). For both the platform com-
parison data set1 and the SEQC TempO-seq data set,6 Pearson 
correlation coefficients exceeded 0.99 for all pairs of aligners.

Finally, we normalized the counts to the total uniquely 
aligned reads in each sample using the simple RPM method 
and compared the accuracy of log2 fold-changes estimated 
from each aligner compared with gold-standard RNA-seq 
results (Figure 1E and F). We found that for each data set, log2 
fold-change estimates were highly correlated (Pearson correla-
tion coefficient > 0.8) between the two platforms, with the 
choice of aligner showing very minimal impact on overall accu-
racy. Thus, the moderate variation in overall alignment rate 
does not impact the accuracy of the results at the level of fold-
change estimation.

TempO-seq alignment rate and accuracy depend on 
sample quality

The data published by Yeakley et al1 also include two titration 
experiments, one using a single type of cell lysate and the other 
using a universal reference RNA (URR) mixture. In each 
experiment, the starting material is diluted multiple times and 
profiled by TempO-seq in triplicate, producing a final data set 
spanning several orders of magnitude in terms of the amount 
of input material. These data were used in the original publica-
tion to identify a cutoff for optimal input concentration for the 
TempO-seq platform. Here, we use this data to explore the 
relationship between the magnitude of input material dilution 
and features of the per-sample alignment results, such as 
unique alignment rate and the occurrence of chimeric align-
ments—a relationship that may be missed in the analysis above 
due to the large amount of input material used to generate 
those data sets.

First, we noted that samples with extremely low or no input 
can still produce >500 K total sequenced reads (Figure 2A and 
B), but the vast majority of these do not produce unique full-
length alignments to the target probe sequences (Figure 2C 
and D), suggesting that unique alignment rate may be a useful 
indicator of overall sample quality. In the TempO-seq assay, 
spurious ligation may occur between nonmatching half-probes, 
but the resulting reads should be a negligible part of the overall 
library that is produced when sufficient input material is used. 
However, when input material is below optimal levels, as in the 
diluted samples analyzed here, spurious ligation products may 
constitute a higher percentage of the overall reads. These spuri-
ous ligation products should result in reads that produce chi-
meric alignments to the known probe library and thus fail to 
uniquely align to a single probe under the stringent alignment 
criteria used here. The Subread algorithm13 is designed to spe-
cifically detect and report chimeric alignments in addition to 
standard unique alignments, and this algorithm detected a 

substantially higher percentage (>10%) of reads with chimeric 
alignments from the samples with very low input concentra-
tions (Figure 2E and F).

We also computed the accuracy of each aligner in the titra-
tion experiments from Yeakley et al.1 Here, we normalized the 
probe-level read counts in each sample using the simple RPM 
method and computed the correlation coefficient of each indi-
vidual titrated sample expression profile against the average of 
all nontitrated samples (Figure 2G and H). As the titrated sam-
ples are expected to have the same normalized expression profile 
as the nontitrated samples, this provides a proxy for sample 
accuracy as a function of decreasing sample input material. 
Here, we found that accuracy generally degrades with sample 
input RNA concentration, but some aligners were more sensi-
tive to this reduction. In particular, Subread had lower accuracy 
on samples with input concentration reduced 100x or 1000x, 
compared with the other aligners, although differences between 
aligners for each input concentration were always smaller than 
the overall differences between input concentrations.

Simple read depth normalization is suff icient for 
TempO-seq

Transcriptome sequencing experiments of any type are typi-
cally first quantified by counting the reads that are aligned to 
the features of interest (typically genes or isoforms). However, 
raw feature-level read counts are highly dependent on the 
overall number of reads sequenced and successfully aligned 
(often called “read depth” or “sequencing depth” of the sam-
ple). The read depth of a sample depends on both controlled 
and uncontrolled factors such as the quality of the sequenc-
ing library preparation, the specific sequencing platform 
used, and the number of samples multiplexed per sequencing 
run. If the same sample is sequenced twice, but the second 
sequencing run produces double the number of aligned reads 
as the first run, then each gene-level read count would be 
expected to roughly double on average. Thus, to compare 
expression estimates across samples with variable read depth, 
it is necessary to normalize read counts for this experimental 
factor.

The simplest approach to this normalization is to compute 
“reads per million” (RPM), alternatively called “counts per mil-
lion” (CPM) or “features per million” (FPM)—this is the num-
ber of reads expected to align to the gene or other expression 
feature per 1 million reads, and is computed as xij = rij * 106 / Nj, 
where rij is the number of reads aligned to feature i in sample j 
and Nj is the total number of aligned reads for the whole sam-
ple. Previous work on RNA-seq normalization has found that 
transcriptome complexity can vary from sample to sample, in 
terms of both the number of expressed features and the distri-
bution of reads across those features. Thus, multiple meth-
ods17,22 have been proposed to compute appropriate “size 
factors” that adjust for differences in both read depth and 
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overall sample complexity. However, the use of these methods 
has not been tested specifically on TempO-seq data.

Here, we tested simple RPM normalization as described 
earlier, quantile normalization of RPM values (widely used in 
the microarray field), and several alternative methods for com-
puting size factors, which we then applied with the DESeq2 
package available in BioConductor.18 All normalized counts xij 
were then transformed to log2(xij + 1) to obtain log-scale 
counts with a minimum transformed value of 0. We applied 
each normalization method to both TempO-seq and corre-
sponding RNA-seq data, and compared the correlation of log2 
fold-changes for all genes and comparisons. We also identified 
differentially expressed genes (DEGs) on each platform as 

those with a student’s t-test P ⩽ .001 and absolute fold-
change ⩾ 1.5, and compared the accuracy of these calls using 
MCC.

We found that for high-quality data sets, the choice of nor-
malization method did not have a substantial impact on the 
overall accuracy of the log2 fold-changes (Figure 3A and B) or 
differential expression calls (Figure 3C and D). Notably, accu-
racy varied slightly more between normalization methods than 
between aligners, indicating that normalization method has a 
larger impact on accuracy than alignment method, but the dif-
ferences in accuracy between normalization methods were still 
negligible. We also note that most differences in accuracy were 
not consistent across the 2 data sets, eg, normalization methods 

Figure 2. Alignment rate and accuracy depend on sample quality. Stripcharts summarizing: Total sequenced reads for cell lysate titration experiment with 

replicates grouped by input cell count (A) and for URR titration experiment with replicates grouped by input concentration in μM (B); Percentage of reads 

uniquely aligned to a single probe by each alignment algorithm for each input amount in cell lysate titration experiment (C) and URR titration experiment 

(D); Percentage of chimeric probe sequences detected by each alignment algorithm for each input amount in cell lysate titration experiment (E) and URR 

titration experiment (f); Pearson correlation coefficient of normalized (RPM) probe expression profile for each titrated replicate versus the average of all 

nontitrated samples for cell lysate titration experiment (G) and URR titration experiment (H). Abbreviation: URR, universal reference RNA.
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that slightly overperformed relative to others on 1 data set were 
observed to underperform on the other data set. For example, 
QNorm has the highest Matthews correlation in the Yeakley et 
al data set but the second lowest Matthews correlation for the 
SEQC data (Figure 3 C and D). The one exception to this is 
the “DESeq2+” method, which incorporates pseudo-counts in 
the size factor estimation to use all features19 and underper-
formed all other methods tested here. Overall, our current 
results support the use of simple RPM normalization on high 
quality data sets. More advanced methods add more computa-

tional and statistical complexity without a consistent or sub-
stantive gain in accuracy.

We also examined differences in normalization method 
accuracy on the input titration data sets (Figure 4). Here, we 
observed clear differences in accuracy as sample input concen-
tration is reduced. In all cases, overall accuracy is reduced with 
sample input concentration, but our results suggest that quan-
tile normalization consistently produces the most accurate 
expression estimates from samples with varying depth and 
quality. Size factors do not produce a substantial improvement 

Figure 3. Comparison of normalization method accuracy using RNA-seq as gold standard. Bar charts summarizing: Pearson correlation coefficient 

(PCC) of the log2 MDA/MCf-7 fold-changes for the TempO-seq and RNA-seq data in Yeakley et al using each of 5 normalization methods (A). Pearson 

correlation coefficient (PCC) of the log2 fold-changes for each SEQC treatment (based on the global comparison of all gene x treatment combinations) 

between TempO-seq and RNA-seq (B). Matthews correlation coefficient (MCC) of the identified upregulated and downregulated differentially expressed 

genes (student’s t-test P ≤ .001 and absolute fold-change ≥ 1.5) for MDA vs MCf-7 cells based on each platform, treating the RNA-seq as gold standard 

(C). Matthews correlation coefficient (MCC) of DEG calls (student’s t-test P ≤ .001 and absolute fold-change ≥ 1.5) for each treatment in the SEQC data for 

each platform, treating the RNA-seq as gold standard (D).
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in accuracy, and in some cases actually perform worse than sim-
ple RPM estimates, at least when used with the normalization 
method in the standard DESeq2 package.

Optimal read depth for S1500+ TempO-seq 
experiments

A critical design choice is what target read depth to aim for per 
sample, which is directly impacted by the number of samples 
multiplexed per lane of sequencing on Illumina platforms. The 
S1500+ TempO-seq probe sets in particular are designed to 
maximize throughput by reducing the number of measured 
probes thereby reducing the required read depth per sample.4 
However, no rigorous assessment of required read depth has 
been performed to date. The published data from the rat 
S1500+ TempO-seq platform6 sequenced at least 2.4 million 
reads per sample, and we found that all samples had >2 million 
uniquely aligned reads when aligned with Bowtie1. We also 
noted that the individual chemical treatments in this data set 
result in a wide variety of total DEGs and mean fold-changes, 
independent of sample read depth, reflecting a difference in the 
overall effect size of each treatment (Table 2). We subsequently 
used this data set to explore the impact of sample read depth on 
probe coverage and expression accuracy by randomly down-
sampling the originally sequenced data.

We first created randomized downsampled versions of the 
original SEQC TempO-seq data by randomly sampling 
uniquely aligned reads without replacement from the original 
data. We generated 5 independent replicates of each sample at 
each target depth (uniquely aligned reads) of 1M, 900 K, . . ., 
down to 100 K. We then computed the percentage of probes 
with read counts ⩾5 as a metric of overall coverage of the probe 

set (Figure 5A). We found that this probe coverage statistic 
dropped off precipitously below 500 K uniquely aligned reads.

We then examined the impact of reducing read depth on 
overall accuracy, by comparing with both the RNA-seq gold 
standard and the original TempO-seq data without random 
downsampling (Figure 5B to E). Accuracy generally decreased 
with overall read depth, although the relationship between 
depth and PCC varies by treatment, with the smallest effect 
sizes showing the most rapid decline in accuracy. However, 
mean squared residual error (MSRE) trends were largely inde-
pendent of treatment, and show a clear general inflection point 
at 300 K aligned reads.

Discussion
TempO-seq is a relatively new transcriptomic platform that 
combines advantages of microarray and RNA-seq and prom-
ises highly accurate estimates of relative expression at much 
higher throughput than existing next generation sequencing 
(NGS) based methods. However, as with all new genomic 
technologies, it may take several years to establish the experi-
mental, computational, and statistical best practices as a wider 
variety of data sets are published for rigorous assessment.

In this work, we begin the important process of establishing 
a framework for rigorous assessment of analysis pipelines and 
key experimental design factors for TempO-seq. Our results 
first and foremost demonstrate the generally robust accuracy of 
the TempO-seq platform, independent of data processing 
methods. Based on the available data these results appear gen-
eralizable across species and experimental designs.

We attribute this overall robustness to the relative simplicity 
of TempO-seq data—rather than sequencing randomly sheared 
and variable-length fragments from across the transcriptome, 

Figure 4. Comparison of normalization method accuracy on input titration data. Stripcharts summarizing Pearson correlation coefficient of normalized 

probe expression profile for each titrated replicate versus the average of highest input replicates for each normalization method, based on cell lysate 

titration experiment (A) and URR titration experiment (B). Abbreviation: URR, universal reference RNA.
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TempO-seq focuses the sequencing task on known 50 bp indi-
cator probes that are unique to each gene. This greatly reduces 
the space of target sequences to align to and obviates the need 
to consider indels or splice junctions. As a result, relatively sim-
ple alignment algorithms such as Bowtie, are sufficient for the 
primary task of counting reads from each probe.

When input concentration is reduced (Figure 2), both the 
rate of uniquely aligned reads and subsequent accuracy (based 
on PCC against nontitrated samples) degrades for all aligners, 
and the impact of input concentration on accuracy was gener-
ally greater than the choice of aligner used. However, even in 
these cases, Bowtie appears to achieve similar accuracy com-
pared with aligners currently used for RNA-seq, such as STAR 
and Kallisto. Subread can be used to align and further examine 
chimeric reads, which may still be useful for troubleshooting 
problematic samples, although we did not see any advantage on 
higher quality data generated from samples with sufficient 
amount of input material.

We also note that while each aligner tested here produced 
similar levels of overall accuracy in most cases, many of these 
aligners have a large set of possible parameters and configura-
tions that may yet impact accuracy and overall reliability. For 
example, we noted that some TempO-seq data sets include an 
extra base resulting in 51 reads. Naïve aligners such as Bowtie 
will not function properly unless this excess base is trimmed 
prior to alignment, otherwise the aligner will fail to align all 

reads. Similarly, our enforcement of full-length alignment to 
probe sequences is critical to avoid counting spurious ligation 
artifacts, which appear to be rare in high quality samples but 
can rise substantially for samples with low input material.

We also found that complex normalization methods using 
estimated size factors do not appear to have an advantage over 
simpler methods when it comes to specifically analyzing 
TempO-seq data. Again, the reduced complexity of the 
sequencing space, and the fact that TempO-seq probes are all 
equal length, appears to reduce the need for elaborate methods 
used to address these factors in RNA-seq data. We find that a 
simple RPM normalization followed by log2(X + 1) transfor-
mation is sufficient for high quality data sets. In the case of the 
titration studies, where both the concentration of input mate-
rial and the overall sequence depth were more variable, we 
found that RPM followed by quantile normalization was the 
most appropriate method to account for these differences.

Finally, we demonstrate the utility of our framework and 
accuracy metrics for assessing optimal sequencing depth on the 
SEQC rat S1500+ TempO-seq data set.6 Based on the results 
(Figure 5), we recommend targeting a total sequenced read 
depth of at least 300 K uniquely aligned reads to achieve suffi-
cient accuracy and suggest that 500 K uniquely aligned reads is 
necessary to achieve sufficient coverage of the majority of 
probes. As not all sequenced reads will result in unique align-
ments to probe sequences (all aligners used here showed > 80% 

Table 2. SEQC chemical treatments ordered by effect size.

CODE CHEMICAL NAME RNA-SEQ DEGS TEMPO-SEQ DEGS

NAf Nafenopin 3535 567

NIT n-Nitrosodimethylamine 3200 561

CAR Carbon Tetrachloride 3031 378

THI Thioacetamide 2794 433

PIR Pirinixic acid 1925 148

BEZ Bezafibrate 1509 295

AfL Aflatoxin B1 1465 55

ECO Econazole 710 93

CHL Chloroform 694 111

LEf Leflunomide 578 103

MET Methimazole 500 24

IfO Ifosfamide 262 12

PHE Phenobarbital 189 7

3ME 3-Methylcholanthrene 96 5

NAP Beta-Naphthoflavone 53 3

Table of all chemical treatments that were measured by both RNA-seq and TempO-seq, ordered by number of differentially expressed genes (DEGs) detected by RNA-
seq. Also includes the number of DEGs detected by S1500+ TempO-seq. Codes are the same as those used in Wang et al5 and also correspond to the legend in figure 
5.
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unique alignment rate for nontitrated samples), we recommend 
targeting a total sequenced read depth of at least 500 K for 
S1500+ TempO-seq platforms to ensure >300 K uniquely 
aligned reads resulting in sufficient accuracy. Our results also 
suggest that sequencing samples more deeply than 1M total 
reads (or 800 K uniquely aligned reads) is likely to produce 
diminishing returns, both in terms of probe coverage and accu-
racy (Figure 5), and this sequencing bandwidth would be better 
spent on multiplexing more samples. We note, however, that 
these recommendations are specific to the S1500+ probe set, 
and may need to be adjusted for other cell types and lysate 
preparations that could affect the proportion of uniquely 
aligned reads or the relative distribution of reads across probes. 
The analysis performed here provides a framework for assess-
ing the impact of read depth on accuracy in future data sets. 

This approach can be applied to any future data set to optimize 
this critical experimental parameter for other species, cell types, 
lysate preparations, and versions of the TempO-seq platform, 
either with or without gold standard data from another 
platform.

Conclusions
We conclude that a variety of alignment algorithms, including 
the original Bowtie,7 are sufficient to obtain accurate and reli-
able expression estimates from high quality TempO-seq sam-
ples. Various normalization procedures have also been shown 
here to provide generally robust accuracy of data from the 
TempO-seq platform. These results appear generalizable across 
species, platform types (whole transcriptome vs S1500+), and 
experimental setups (analyzing differences in cell lines vs more 

Figure 5. Impact of read depth on TempO-seq accuracy. (A) Scatter plot showing relationship between read depth and probe coverage, defined here as 

the percentage of probes with at least 5 reads uniquely aligned. Dark blue dots correspond to original samples with no downsampling. Light blue dots 

correspond to individual downsampled replicates. Dashed gray line shows loess best-fit curve. (B-D) Accuracy of TempO-seq after downsampling to 

decreasing numbers of uniquely aligned reads (X axis) for each individual chemical treatment, ordered by effect size (see Table 2). Accuracy metrics on Y 

axis are either Pearson correlation coefficient (PCC) (B, D) or mean squared residual error (MSRE) (C) of log2 fold-changes in downsampled data vs 

either the original TempO-seq data (B, C) or the matched RNA-seq data (D). Each dot represents an individual downsampling of the original full data set 

(all samples). Dashed lines indicate the median accuracy value at each target downsampling depth based on 5 independent runs of the downsampling 

procedure.
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subtle chemical treatment effects on whole tissue) based on 
current publicly available TempO-seq data sets.
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