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Abstract

The testicular dysgenesis syndrome (TDS) hypothesis proposes that maldevelopment of the testis, irrespective of cause,
leads to malfunction of the somatic (Leydig, Sertoli) cells and consequent downstream TDS disorders. Studies in rats
exposed in utero to di(n-butyl) phthalate (DBP) have strongly supported the TDS concept, but so far no direct evidence has
been produced that links dysgenesis per se to somatic cell dysfunction, in particular to androgen production/action during
the ‘masculinization programming window’ (MPW; e15.5-e18.5). Normal reproductive tract development and anogenital
distance (AGD) are programmed within the MPW, and TDS disorders arise because of deficiencies in this programming.
However, DBP-induced focal testicular dysgenesis (Leydig cell aggregation, ectopic Sertoli cells, malformed seminiferous
cords) is not evident until after the MPW. Therefore, we used AGD as a read-out of androgen exposure in the MPW, and
investigated if this measure was related to objectively quantified dysgenesis (Leydig cell aggregation) at €21.5 in male
fetuses exposed to vehicle, DBP (500 or 750 mg/kg/day) or the synthetic glucocorticoid dexamethasone (Dex; alone or plus
DBP-500) from e15.5-e18.5 (MPW), e13.5-e20.5 or e19.5-e20.5 (late window). Dysgenesis was found only in animals
exposed to DBP during the MPW, and was negatively correlated (R°=—0.5) with AGD at e21.5 and at postnatal day 8,
irrespective of treatment period. Dysgenesis was also negatively correlated (R?=-0.5) with intratesticular testosterone (ITT)
at e21.5, but only when treatments in short windows (MPW, late window) were excluded; the same was true for correlation
between AGD and ITT. We conclude that AGD, reflecting Leydig cell function solely within the MPW, is strongly related to
focal dysgenesis. Our results point to this occurring because of a common early mechanism, targeted by DBP that
determines both dysgenesis and early (during the MPW) fetal Leydig cell dysfunction. The findings provide strong validation

of the TDS hypothesis.
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Introduction

Cryptorchidism, hypospadias, low sperm count and testicular
germ cell cancer are disorders of male reproductive health that
have a high or increasing incidence in the Western world [1,2].
These disorders have been hypothesized to comprise a testicular
dysgenesis syndrome (TDS) with a common fetal origin [3,4]. This
hypothesis proposes that maldevelopment of the testis, which
could have numerous primary causes, leads secondarily to
malfunction of the Leydig and/or Sertoli cells and consequent
downstream TDS disorders [1,3,4]. There has been considerable
interest in identifying the mechanistic origins of TDS disorders
and the events that lead to their development. As these fetal events
are impossible to study in humans, animal models have been
developed, such as in utero exposure of pregnant rats to di(n-butyl)
phthalate (DBP), to try and investigate the mechanisms that
underlie TDS disorders [5,6,7]. These studies have produced
strong supporting evidence for the relationship between somatic
cell dysfunction and TDS disorders [8,9,10,11].
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An important finding in relation to TDS disorders is that androgen
action during a ‘masculinization programming window’ (MPW;
e15.5-18.5 in rats) is essential for setting up normal reproductive
tract development and masculinization of anogenital distance (AGD;
Fig. 1) [12,13,14,15]. Insufficient androgen exposure during the
MPW, for example as the result of exposure to certain endocrine
disrupting compounds [10], leads to smaller adult reproductive organ
size (testes, prostate, seminal vesicles, penis) and increased risk of
reproductive disorders (cryptorchidism, hypospadias), as well as a
reduced AGD [14,15]. AGD is sexually dimorphic in rodents [16,17]
and humans [18,19,20], and toxicologists have long used AGD as an
index of overall fetal androgen exposure [17,21]. In humans the
MPW is postulated to occur within the period ~8-14 weeks’
gestation [15]. As in the rat, shorter AGD is associated with
occurrence of hypospadias, cryptorchidism and shorter penis length
at birth [22,23] and with low sperm counts and mfertlity in
adulthood in humans [24,25], suggesting that AGD could also be
used as a non-invasive ‘read-out’ of in utero fetal androgen action/
exposure (during the MPW) in newborn boys.
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Figure 1. Schematic representation of the various treatment windows and experimental design. Also indicated in blue are testis
differentiation in the rat (at ~embryonic day (e)13.5), reproductive tract differentiation (from ~e18.5 onwards) and the masculinization programming
window (MPW, e15.5-e18.5), during which anogenital distance (AGD) is programmed. Three treatment windows were used in this study, namely ‘full
treatment window’ (e13.5-e20.5), ‘MPW treatment window’ (e15.5-e18.5) and ‘late treatment window’ (e19.5-€20.5). At e21.5 embryos were isolated.
For each embryo, AGD was measured, testes were dissected and weighed, before 1 testis was fixed for subsequent immunohistochemistry (IHC) and
1 testis was frozen on dry ice for subsequent intratesticular testosterone (ITT) measurement. In a separate experiment, pregnant rats were treated
from e13.5-e21.5 and pups were collected on postnatal day (pnd) 8 and the same procedures as for the fetal samples were undertaken.

doi:10.1371/journal.pone.0030111.g001

In utero exposure of rats to DBP induces testicular changes
remarkably similar to TDS in humans, including the induction of
focal areas of dysgenesis in otherwise normal testes
[5,26,27,28,29]. Therefore, this model can potentially be used to
dissect the mechanisms that underlie dysgenesis and, importantly,
the inter-relationship of dysgenesis to somatic cell function,
notably that of the fetal Leydig cells. The latter is especially
important because we have shown there is a temporal ‘mis-match’
between DBP-induced inhibition of Leydig cell steroidogenesis in
the MPW, which underlies TDS disorders [14,15] and the
occurrence of focal testicular dysgenesis (malformed seminiferous
cords, Leydig cell aggregation, intratubular Leydig cells), which is
not evident until after the MPW [8,9]. One hallmark of DBP-
induced dysgenesis is the abnormal formation of large Leydig cell
aggregates in central regions of the fetal rat testis, which can be
objectively quantified [8]. In the present studies we used this
hallmark, in combination with DBP exposure in various fetal time
windows, to determine the inter-relationships in late gestation
(e21.5) between dysgenesis and steroidogenic function, earlier in
the MPW (as indicated by AGD measurement), and currently by
measurement of intratesticular testosterone at e21.5. We also
included a treatment, dexamethasone (Dex), that modestly reduces
Leydig cell steroidogenic function and AGD, but does not cause
detectable dysgenesis when administered on its own but
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exacerbates the endocrine effects of DBP [30]. Our results suggest
that impaired Leydig cell function in the MPW and the degree of
subsequent dysgenesis are inter-related, supporting the idea that
both features have a common origin, in keeping with the TDS
hypothesis.

Results

DBP-induction of focal testicular dysgenesis (fetal Leydig
cell aggregation)

Exposure of animals to a high dose of DBP (750 mg/kg/day)
from e13.5-20.5 induced focal dysgenetic areas at €21.5 in which
abnormal Leydig cell aggregates were intermingled with ectopic
Sertoli cells (ie outside of seminiferous cords) (Fig. 2A, B). By
postnatal day 8, mis-shapen seminiferous cords form within these
areas and intratubular Leydig cells are found (Fig. 2E), neither of
which are found in controls (Fig. 2D). Leydig cell aggregation at
e21.5 was therefore analyzed as a measure of focal testicular
dysgenesis, using previously established methods [8]. Three
sections per e21.5 testis were immunostained with 33-HSD before
being analyzed using stereology (Fig. 2C1-C6). The measured
area of each Leydig cell aggregate was then expressed as a
percentage of the total Leydig cell area in that section as a means
of quantifying the degree of aggregation (Leydig cell number per
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testis 1s unchanged; [8]). A significantly higher percentage of
Leydig cells were present in large aggregates in animals exposed to
500 mg/kg DBP (DBP-500), 750 mg/kg DBP (DBP-750), DBP-
500+Dex during the full treatment window (el3.5-20.5) or
during the MPW (e15.5-¢18.5), when compared with vehicle-
exposed controls (Fig. 3). No significant effect on Leydig cell
aggregation was observed when animals were exposed to Dex on
its own or to DBP-500 or DBP-750 when these were administered
during the late treatment window (e19.5-¢20.5; ie after the MPW)
(Fig. 3). We also analyzed the data using litter means and similar
results were found (Fig. S1).

Effects of the different treatments and treatment
windows on AGD and intratesticular testosterone at
e21.5

Fetal exposure to Dex, DBP-500, DBP-750 or DBP-500+Dex
from e13.5-20.5 all significantly reduced AGD at e21.5 (Fig. 4A),
indicative of reduced androgen production/exposure during the
MPW (e15.5-e18.5). Exposure to DBP-750 just during the MPW
also significantly reduced AGD at e21.5, whereas exposure to
DBP-500 or DBP-750 after the MPW (from €19.5-¢20.5 =late

Control DBP-500

Control e

Figure 2. Immunohistological analysis of focal dysgenetic
areas in rat testes exposed to vehicle (control) or dibutyl
phthalate (DBP). (A-B) Double immunofluorescence for 3B3-HSD
(blue) and Sox-9 (red) on e21.5 testis sections from (A) vehicle (control)
and (B) DBP-exposed (750 mg/kg/) animals, illustrating focal dysgenesis
in which Leydig cell aggregates contain ectopically localized Sertoli
cells. Green depicts DAPI nuclear counterstain. SC = seminiferous cords.
Scale bar=20 um. (C1-C6) Example of sections stained for 3B-HSD
(brown) used for Leydig cell aggregate analysis (see Figure 3). Arrows
indicate large Leydig cell aggregates, asterisks indicate seminiferous
cords. Scale bar=200 um. (D-E) Double immunohistochemistry for 3f3-
HSD (blue) and SMA (brown) on postnatal day (pnd) 8 testis sections
from (D) vehicle (control) and (E) DBP-exposed (500 mg/kg/) animals,
illustrating focal dysgenesis after DBP-exposure, with large Leydig cell
aggregates and malformed seminiferous cords and intratubular Leydig
cells (arrows). Scale bar=50 um.
doi:10.1371/journal.pone.0030111.g002
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treatment window) did not alter AGD at e21.5 when compared
with vehicle-exposed controls (Fig. 4A), confirming that AGD is
programmed only by androgen action during the MPW [15,31].
In contrast, intratesticular testosterone (IT'T) at €21.5 was reduced
equally when animals were exposed to DBP-500 or DBP-750 from
¢13.5-¢20.5 or during the late treatment window (¢19.5-¢20.5)
(Fig. 4B). When animals were exposed to DBP-750 only during the
MPW, only a modest reduction in I'T'T was still evident at e21.5
(Fig. 4B), confirming that DBP-induced reduction of I'TT largely
recovers once treatment ceases (i.e. at ¢18.5) [31]. When data was
analyzed using litter means similar results were found, except for
effects of exposure to Dex on AGD and ITT (Fig. S2).

Relationship between dysgenesis (Leydig cell
aggregation) and AGD and intratesticular testosterone

(ITT) at e21.5

To establish if Leydig cell aggregation (reflecting focal testicular
dysgenesis later in gestation) was correlated with AGD (reflecting
androgen production/action during the MPW), these measures
were compared for all animals from all treatment groups or after
excluding animals that were only exposed during the MPW or
during the late time window. Both analyses showed that Leydig
cell aggregation was strongly negatively correlated with AGD at
e21.5 (Fig. 5A, B; R?=—0.5, P<0.0001). A similar analysis
undertaken between Leydig cell aggregation and I'T'T" at e21.5 still
showed a significant negative relationship, but this was far stronger
(R?=—0.5, P<0.0001; Fig. 5D) for animals exposed to DBP =
Dex throughout the period e13.5-€20.5, than when this analysis
also included animals exposed to DBP only in the MPW or in the
late window (R* = —0.06, P=10.02; Fig. 5C). Consistent with these
results, analysis of AGD versus ITT at e21.5 revealed no
significant association (P>0.1) when data for all treatment groups
were included (Fig. 5E) but a significant positive correlation
(R?=0.36, P<0.0001) when animals that were only exposed
during the MPW or during the late time window were excluded
(Fig. 4F). However, even in the latter instance, the slope of the
regression line was shallow when compared with that relating
Leydig cell aggregation to AGD (Fig. 5A, B, D). Analyzing the
data using litter means showed the same results, with even stronger
correlations (Fig. S3).

Fetal Leydig cell aggregation at postnatal day 8 and its
correlation with AGD

For some treatment groups (Dex, DBP-500 or DBP-500+Dex)
involving exposure of animals from el3.5-€21.5, dams were
allowed to give birth and the pups were then culled at postnatal
day 8 (pnd8) to investigate whether the treatment effects on Leydig
cell aggregation and AGD evident at €21.5, and their correlation,
persisted after birth and cessation of treatment. Pnd8 is about the
latest time point at which fetal Leydig cells can still be easily
discerned in the rat testis, but their widespread distribution and
small numbers meant that a different method had to be used for
measuring their aggregation, as explained in Materials & Methods.
At pnd8, pups exposed to DBP = Dex, but not to Dex alone, still
exhibited marked evidence of Leydig cell aggregation (Fig. 6A),
and this was still negatively correlated with AGD (Fig. 6B) as found
before birth (Fig. 5).

Discussion

The testicular dysgenesis syndrome (TDS) hypothesis proposes
that maldevelopment of the testis, which could have numerous
primary causes, leads to malfunction of the Leydig and/or Sertoli
cells and consequent downstream TDS disorders [4]. Previous
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Figure 3. Contribution of small and large Leydig cell aggregates to the total Leydig cell aggregate area per testis in €21.5 rat testes
after in utero exposure to vehicle (control) or dibutyl phthalate (DBP-500 or 750 mg/kg), dexamethasone (Dex 100 ng/kg) or DBP-
500+Dex from e13.5-e20.5 (full treatment window), e15.5-e18.5 (MPW window) or e19.5-e20.5 (late window). Values are Means =
SEM for 8-15 animals from 3-5 litters per treatment group. ***p<<0.001, in comparison with controls; °p<0.001 in comparison with Dex group
(except p<0.05 when Dex is compared with DBP-500 late window treatment); °p<0.05 in comparison with DBP-500 late window group; “p<<0.001 in
comparison with DBP-750 late window group; dp<0.01 in comparison with DBP-750 MPW window group; *p<<0.05 in comparison with DBP-750 full

treatment window group.
doi:10.1371/journal.pone.0030111.g003

studies have demonstrated the importance of a ‘masculinization
programming window’ (MPW; ¢15.5-¢18.5) in rats, during which
sufficient androgen action is essential for laying the foundations of
correct development of the male reproductive tract [10,15].
Experimental studies in animals have shown that when androgen
production or action is manipulated during the MPW in rats, a
higher incidence of TDS-like disorders is observed in male offspring
[10,15,30,32]. Moreover, DBP exposure results in the occurrence in
some animals of focal areas of dysgenesis in the testis, although these
are not evident until late in gestation (after the MPW) or after birth
(malformed seminiferous cords, intratubular Leydig cells) [33].
Therefore, the connection between dysgenesis and somatic (Leydig)
cell dysfunction in the MPW is unclear. The present studies
demonstrate this connection by showing that occurrence of
dysgenesis in individual animals is inversely related to AGD, which
provides a measure of androgen exposure in the MPW, and thus of
somatic (Leydig) cell function in this critical period.

In order to analyze focal dysgenesis, we quantified the level of
Leydig cell aggregation by following the same procedures as used
previously in our laboratory [8]. Because this method uses three
sections at approximately 25, 50, and 75% intervals through the
serially sectioned testis, it provides an objective quantification of
the level of Leydig cell aggregation at the whole testis level. We
validated this method to demonstrate a decrease in small Leydig
cell aggregates and an increase in large Leydig cell aggregates after
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in utero exposure to DBP, as previously described [8]. Using this
method we then demonstrated that large Leydig cell aggregates
were found when animals were exposed to DBP during the full
treatment window (el13.5-€20.5) or during the MPW (el5.5—
¢18.5), but not after exposure during the late treatment window
(€19.5-¢20.5, after the MPW). Exposure to Dex modestly reduces
Leydig cell steroidogenic function and AGD, but does not result in
Leydig cell aggregates, demonstrating that such effects can occur
in the absence of detectable dysgenesis. When large Leydig cell
aggregates occur they are usually part of focal dysgenetic areas,
which are abnormal in their cellular composition (eg presence of
ectopic Sertoli cells) and are associated with reduced Leydig cell
function (see below). Furthermore, it is within these focal
dysgenetic areas, seen in fetal life, that malformed seminiferous
cords with intratubular Leydig cells can develop after birth [8,33],
as confirmed presently. The latter persist for life as Sertoli-cell only
tubules [8,33], which are also found commonly in adult men with
testicular germ cell cancer [27] as well as in some men with low
sperm counts [28] and cryptorchidism [34].

Demonstration of the MPW, within which androgens must act
to ensure correct later development of the male reproductive tract,
led to the hypothesis that AGD measurements can be used as an
indicator of fetal androgen production/exposure during this
developmental time window and therefore as a ‘predictor’ of
adult-onset male reproductive disorders [10,14,15,30,32]. Similar
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doi:10.1371/journal.pone.0030111.9g004

to rat studies, shorter AGD in human males is associated with
occurrence of hypospadias, cryptorchidism and shorter penis
length at birth [22,23] and with low sperm counts and infertility in
adulthood [24,25]. The present studies confirm and extend
previously published data [15,31], by showing that, irrespective
of when the i ufero treatments are applied and when ITT is
reduced, AGD only reflects effects within the MPW as only
treatments including the MPW significantly reduced AGD in
e21.5 fetuses. Therefore, AGD provides a robust ‘read-out’ of
somatic (Leydig) cell function specifically in the MPW.

@ PLoS ONE | www.plosone.org

In this study we found a strong negative correlation between the
degree of testicular dysgenesis and AGD at both ¢21.5 and
postnatal day (pnd) 8. This relationship was independent of the
timing or duration of DBP treatment, and suggests that dysgenesis
and Leydig (somatic) cell function during the MPW are closely
mterlinked, consistent with a common cause/origin. Our results
point to this relationship occurring because of a common cause
rather than the induction of dysgenesis secondarily causing
impaired Leydig cell function. First, the Leydig cell impairment
is evident before dysgenesis is apparent. Second, impairment of
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doi:10.1371/journal.pone.0030111.g005

Leydig cell function was induced by late window DBP treatment,
which did not induce dysgenesis and, conversely, DBP treatment
in the MPW caused dysgenesis and impaired Leydig cell function
in the MPW (as indicated by AGD) whereas Leydig cell function
had largely recovered by e21.5 following cessation of DBP
treatment. This interpretation is strongly supported by the
correlation analyses between I'TT at €21.5 and either dysgenesis
or AGD. Both showed that a strong correlation was only evident
when data was included for animals in which DBP * Dex
exposure was maintained throughout (from el3.5-€20.5), and
disappeared when animals were included that had been exposed
only in early (MPW) or late time windows. This implies that when

@ PLoS ONE | www.plosone.org 6

DBP exposure induces changes that lead to both dysgenesis and
impaired Leydig cell function in the MPW, the latter but not the
former is able to largely recover if treatment ceases at the end of
the MPW. This also shows that measurement of testosterone levels
at one stage in development is not necessarily reflective of levels at
another time. Conversely, if DBP treatment continues after the
MPW the impairment of Leydig cell function is maintained.
Partial or complete recovery of Leydig cell function after cessation
of DBP/phthalate treatment has been described previously by us
[31] and others [35]. Aside from Pnd8, all of our correlation
analyses were performed at the same age (e21.5), as this is the
earliest age at which all relevant parameters could be measured
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simultaneously. Despite this, our findings imply that both AGD
and dysgenesis provide read-outs of events several days earlier in
gestation, namely during the MPW], and that both appear to mark
a common event. Exactly what this is, is unknown, but it seems
likely that a common, DBP-sensitive, mechanism that leads to
impaired Leydig cell function (at any fetal age) also leads to
dysgenesis, perhaps by affecting an aspect of cell lineage
specification, consistent with the abnormal mixture of somatic
(Sertoli, Leydig) cells found in some focal dysgenetic areas at e21.5
in DBP-exposed animals.

This study has implications for human male reproductive
health. First, it provides strong support for the TDS hypothesis as
the data suggest that early set-up problems (during the MPW) most
likely result in effects (somatic cell dysfunction) that lead to TDS
disorders in later life. Focal testicular dysgenesis is simply a
reflection of poor set-up during this early programming period,
even though it is not observed itself until some time later in
development. Therefore, if the present experimental studies in rats
can be extrapolated to humans, they imply that occurrence of
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areas of focal dysgenesis in humans, which can include at least
some cases of Sertoli-cell-only (SCO) tubules [27,28], may be a
visible indicator of deficient androgen production/action in the
MPW. If this is the case then reduced AGD in humans should
correlate with the degree of testicular dysgenesis and this could be
investigated in men with TGCC or who are being biopsied for low
sperm counts. Two studies have already shown that shorter AGD
is associated with low sperm counts and infertility in adulthood
[24,25], consistent with this thinking. Second, the current
experimental studies suggest that there is an early, unknown,
event, which can be disturbed by exposure to DBP, which
fundamentally alters set-up of testis development and also impairs
Leydig cell function. Our DBP studies in the rat can be used to
identify this mechanism and investigate what factors, in addition to
DBP, might impact this mechanism, as these would be likely to
cause TDS disorders in human males.

This study and the human studies mentioned above clearly
demonstrate the importance of early fetal life for later male
reproductive health and function. We have demonstrated that
exposing animals i utero to a treatment that disrupts normal testis
development and causes focal testicular dysgenesis also impairs
Leydig cell function during the MPW, which can lead to later
TDS disorders but which is also captured by altered AGD. We
believe that AGD in newborn boys therefore provides a reliable
‘read-out’ of androgen production/action during the MPW, and
perhaps also of dysgenesis. We further hypothesize that AGD at
birth can indicate whether a boy is susceptible to develop adult-
onset TDS disorders, such as low sperm counts and TGCC.

Materials and Methods

Animals and treatments

Wistar rats were maintained according to UK Home Office
guidelines (which also involves an ethical approval step) and were
fed a soy-free breeding diet (RM3(E) soya free; SDS, Dundee,
Scotland). Housing conditions were carefully controlled (lights on
at 0700, off at 1900 h, temperature 19-21 C, GOLD shavings and
LITASPEN standard bedding (SPPS, Argenteuil, France)). Time-
mated female rats were subjected to the daily treatments described
below, which were administered between 0900 and 1030 h. Three
different treatment windows were used in this study for animals
that were to be sampled on embryonic day (e) 21.5 (Fig. 1), namely
“full treatment window” (e13.5-¢20.5), “MPW treatment win-
dow” (e15.5-¢18.5) and “late treatment window” (e19.5-¢20.5).
The doses of dibutyl phthalate (DBP) and dexamethasone (Dex)
were based on previous studies [5,30,36], but in order to induce a
higher level of testicular dysgenesis, 750 mg/kg of DBP was used
in addition to the more common used dose of 500 mg/kg, which
had previously been shown to induce focal dysgenetic areas in
~60% of animals [5,8]. The DBP was 99% pure according to the
supplier. Rat treatment groups were as follows:

1)  DBP (Sigma-Aldrich Co. Ltd., Dorset, UK) at a dose of
either 500 or 750 mg/kg administered by oral gavage in
1 ml/kg corn oil.

2)  Dex (Sigma-Aldrich) at a dose of 100 pug/kg by subcutane-

ous injection in 1 ml/kg saline.

3) A combination of DBP (500 mg/kg by oral gavage) plus Dex
(100 pg/kg subcutaneously).

4)  Control (1 ml/kg corn oil by gavage and 1 ml/kg saline by
subcutaneous injection).

In a separate study, time-mated female rats were treated with
Dex (100 pg/kg by subcutaneous injection), DBP (500 mg/kg by
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oral gavage) or a combination of DBP (500 mg/kg}+Dex (100 pg/kg)
or vehicle from e13.5-e21.5 with termination at postnatal day (pnd) 8.

Tissue recovery and processing

To acquire fetal samples, dams were killed by inhalation of COq
followed by cervical dislocation at e21.5. Fetuses were removed,
weighed, decapitated and placed in ice cold phosphate buffered saline
(PBS; Sigma-Aldrich). Pnd8 pups were killed by inhalation of COq
followed by cervical dislocation. AGD was measured before opening
of the abdomen, using digital calipers (Faithfull Tools, Kent, UK).
Testes were microdissected and weighed. One testis was fixed in
Bouin’s fixative for 1 hour at room temperature while the other testis
was snap frozen on dry ice and stored at —70°C for determination of
mtratesticular testosterone (IT'T) as described previously [5]. The
limit of detection of the testosterone assay was 40 pg. Bouin’s-fixed
tissues were processed and embedded in paraffin wax, and 5-pm
sections were used for subsequent experiments.

Immunohistochemistry for 33-hydroxysteroid
dehydrogenase

In order to visualize Leydig cell aggregates in the collected
testes, immunohistochemistry for 3B-hydroxysteroid dehydroge-
nase (3B-HSD) was performed on a Leica BOND-MAX automatic
immunostaining machine using the BOND Polymer Refine
Detection (Leica, UK). The 3B-HSD antibody (Santa Cruz
Biotechnology, Inc., CA, USA) was diluted 1:750.

Double immunohistochemistry for 3f-HSD and Smooth
Muscle Actin

In order to delineate the seminiferous cord compartment from
the interstitial compartment and to visualize focal dysgenesis at
postnatal day (pnd) 8, specific antibodies were used for the co-
immunolocalization of a-smooth muscle actin (a-SMA; Sigma-
Aldrich) and 3B-HSD (Santa Cruz Biotechnology) as described by
Hutchison et al. [33].

Double immunofluorescence for 33-HSD and Sox-9

In order to visualize focal dysgenesis, specific antibodies were
used for co-immunolocalization of 3B-HSD (Leydig cell marker;
Santa Cruz Biotechnology) and Sox-9 (Sertoli cell marker;
Chemicon International, UK). All washes between incubation
steps were in TBS (3 x5 min) and all incubations were carried out
in a humidity box (Fisher Scientific, UK). Sections were dewaxed
and rehydrated, followed by a peroxidase block in 3% (v/v) HyOq
in methanol for 30 min. Next, the sections were blocked in normal
chicken serum (NCS; Biosera, Ringmer, UK) diluted 1:5 in TBS
containing 5% (w/v) BSA (NCS/TBS/BSA), followed by
incubation with anti-Sox-9 antibody diluted 1:5,000 in NCS/
TBS/BSA overnight at 4°C. The next day, sections were
incubated with peroxidase-conjugated chicken anti-rabbit second-
ary antibody (CARP; DAKO Corp., Cambridge, UK), diluted
1:200 in NCS/TBS/BSA for 30 minutes at room temperature
(RT), and followed by incubation with Tyr-Cy3 (Perkin Elmer-
TSA-Plus Cyanine3 System; Perkin Elmer Life Sciences, Boston,
MA, USA) according to the manufacturer’s instructions. Sections
were then subjected to antigen retrieval by boiling in a pressure
cooker in 0.01 mol/1 citrate buffer (pH 6.0) for 5 min and left to
cool for 20 minutes, followed by another block in NCS/TBS/BSA
and overnight incubation at 4°C with anti-3f-HSD antibody
diluted 1:6,000 in NCS/TBS/BSA. On the third day, slides were
incubated with peroxidase-conjugated chicken anti-goat secondary
antibody (Sigma-Aldrich) diluted 1:200 in NCS/TBS/BSA for
30 minutes at RT, followed by incubation with Tyr-Cy5 (Perkin
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Elmer-TSA-Plus Cyanined System; Perkin Elmer Life Sciences)
according to the manufacturer’s instructions. Slides were coun-
terstained for 10 minutes using 4',6-diamidino-2-phenylindole
(DAPI; Sigma-Aldrich) diluted 1:1,000 in TBS. Finally, the slides
were mounted with Permafluor (Thermo Scientific, UK) and
fluorescent images were captured using a Zeiss LSM 710 Axio
Observer Z1 confocal laser microscope (Carl Zeiss Ltd.).

Measurement of Leydig cell aggregation

Measurement of Leydig cell aggregate size in the fetal testis after
DBP = Dex treatment was done as described previously [8].
Briefly, testes from the different treatment groups (n =8-15 from
3-5 litters per treatment group) were serially sectioned and three
representative sections from each testis then selected and
immunostained for 3B-HSD. The three sections chosen were
those corresponding to approximately 25, 50, and 75% intervals
through the serially sectioned testis. Sections immunostained for
3B-HSD were not counterstained, so as to provide sufficient
homogeneity, high contrast, and low background to allow
computer-assisted thresholding and subsequent computer-assisted
counting of Leydig cell (3f-HSD-immunopositive) aggregates and
determination of Leydig cell aggregation area. This was done
using a Zeiss Axio-Imager microscope (Carl Zeiss Ltd., Welwyn
Garden City, UK) fitted with a Hitachi HV-C20 camera (Hitachi
Denshi  Europe, Leeds, UK) and Image-Pro 6.2 software
(MagWorldwide, Wokingham, UK). The software was used to
trace around each section, creating an area of interest, allowing
the area of each section to be calculated. Computer-assisted
thresholding was then used to identify and analyze aggregates or
clusters of 3B-HSD-immunopositive cells, generating data on
aggregate area and the proportion of each section occupied by
Leydig cell aggregates. Leydig cell aggregates were then assigned
arbitrarily to one of three groups: small aggregates, accounting for
=5% of the total Leydig cell aggregate area per testis, and large
aggregates, which individually accounted for =5.1% of total
Leydig cell aggregate area per testis.

For quantification of Leydig cell aggregates at pnd8, two
sections per animal (n = 8-17 from 3-6 litters per treatment group)
were stained with 3B-HSD as described above. Because of the size
of the testes and the infrequency of fetal Leydig cells at this age, the
same analysis as done for the fetal samples was not practical.
Therefore, the three largest Leydig cell aggregates from each
section were selected visually and then measured as described
above. The mean of the measured Leydig cell aggregates per testis
per animal was then calculated and used for analysis.

Statistical analysis

Values are expressed as mean * SEM. Comparison of
treatment effects used one-way ANOVA followed by the
Bonferroni post test, whereas linear regression analysis was used
to determine the relationship between AGD and Leydig cell
aggregation or I'TT. Data for I'TT was log transformed prior to
analysis to normalize distribution and variance. These analyses
used GraphPad Prism (version 5; GraphPad Software Inc., San
Diego, CA). The presented data used each animal as the unit,
rather than the litter, because the basis of the present studies was
to evaluate the inter-relationships between treatment effects on
AGD, ITT and dysgenesis at the individual level.

Supporting Information

Figure S1 Contribution of small and large Leydig cell
aggregates to the total Leydig cell aggregate area per
testis in e21.5 rat testes after in utero exposure to vehicle
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(control) or dibutyl phthalate (DBP-500 or 750 mg/kg),
dexamethasone (Dex 100 ug/kg) or DBP-500+Dex from
el3.5-e20.5 (full treatment window), el15.5-e¢18.5 (MPW
window) or €19.5-€20.5 (late window) analyzed as litter
means. Values are Means = SEM for 3-5 litters per treatment
group. **¥p<<0.001, in comparison with controls; “p<<0.001 in
comparison with Dex group (except p<<0.05 when Dex is
compared with DBP-500 late window treatment); "p<<0.05 in
comparison with DBP-500 late window group; ‘p<<0.001 in
comparison with DBP-750 late window group; “p<<0.05 in
comparison with DBP-750 full treatment window group.

(TIF)

Figure S2 Litter means of anogenital distance (AGD)
and intratesticular testosterone (ITT) in rats at e21.5
after in utero exposure to vehicle (control), dibutyl
phthalate (DBP-500 or 750 mg/kg), dexamethasone
(Dex 100 png/kg) or DBP-500+Dex from el3.5-€20.5 (full
treatment window), el5.5-el18.5 (MPW window) or
el9.5-e20.5 (late window). Values are Means = SEM for
3-7 litters per group. *p<<0.05, **p<<0.0l, ***p<0.001, i
comparison with controls; “p<<0.001 in comparison with Dex
group; "p<<0.001 in comparison with DBP-500 late window
group; ‘p<<0.001 in comparison with DBP-750 late window group.
(TIF)
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(e13.5-€20.5) only (B, D, F), analyzing the data as litter
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