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Abstract

Acrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America

that has been achieving economic interest due to the great potential of oil production of

some of its species. In particular A. aculeata, due to its vocation to supply oil with the same

productive capacity as the oil palm (Elaeis guineenses) even in areas with water deficit.

Although eight species are recognized in the genus, the taxonomic classification based on

morphology and geographic distribution is still controversial. Knowledge about the genetic

diversity and population structure of the species is limited, which has limited the understand-

ing of the genetic relationships and the orientation of management, conservation, and

genetic improvement activities of species of the genus. In the present study, we analyzed

the genomic diversity and population structure of Acrocomia genus, including 172 samples

from seven species, with a focus on A. aculeata with 117 samples covering a wide geo-

graphical area of occurrence of the species, using Single Nucleotide Polymorphism (SNP)

markers originated from Genotyping By Sequencing (GBS).The genetic structure of the

Acrocomia species were partially congruent with the current taxonomic classification based

on morphological characters, recovering the separation of the species A. aculeata, A. totai,

A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media

was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were

grouped together with A. totai. The species that showed the highest and lowest genetic

diversity were A. totai and A. media, respectively. When analyzed separately, the species A.

aculeata showed a strong genetic structure, forming two genetic groups, the first repre-

sented mainly by genotypes from Brazil and the second by accessions from Central and

North American countries. Greater genetic diversity was found in Brazil when compared to

the other countries. Our results on the genetic diversity of the genus are unprecedented, as

is also establishes new insights on the genomic relationships between Acrocomia species.

It is also the first study to provide a more global view of the genomic diversity of A. aculeata.

We also highlight the applicability of genomic data as a reference for future studies on

genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to
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support strategies for the conservation, exploration and breeding of Acrocomia species and

in particular A. aculeata.

Introduction

The genus Acrocomia is endemic to tropical and subtropical America. This genus is one of the

most taxonomically complex concerning species in the family Arecaceae [1]. Taxonomic clas-

sifications of Acrocomia are mostly limited to the description of species based on morphologi-

cal and geographical distribution information. However, extensive morphological plasticity,

especially for species with wide geographical distribution, has hindered the taxonomic resolu-

tion of species. Since the description of the genus Acrocomia by Martius in 1824 [2], many

species have been included and removed from the genus. From the most recent classifications,

Henderson et al. [3] attributed only two species to the genus. One is A. aculeata (Jacq.) Lodd.

ex Mart., which is large (arboreal) and widely distributed throughout Central, North, and

South America. The other is A. hassleri (Barb. Rodr.) WJ Hahn, which is small size and is

restricted to the Cerrado savanna in Brazil and part of Paraguay. Lorenzi et al. [4] recognized

seven species for the genus. Six of these are found in Brazil: A. aculeata, A. intumescens, and A.

totai have an arboreal size and are mainly differentiated by the stipe characteristics. A. hassleri,
A. glaucescens, and A. emensis are small size and are differentiated by their height. The seventh

species, A. crispa, has an arboreal size and is endemic to Cuba. The Plant List [5] and The

Palmweb [6] recognized A.media as the eighth species. It is endemic to Puerto Rico. There-

fore, the systematics of the genus Acrocomia remain controversial, with the number of species

not well resolved and very few studies having addressed species delimitation, population

genetic diversity and structure, and inter-species relationships.

As the exclusive use of morphology may not be enough for accurate species delimitation,

molecular markers can provide additional information to species classification [7–9]. How-

ever, genetic differentiation can be influenced by forces acting in different DNA regions. Natu-

ral selection also can promote the population genetic structure acting in non-neutral loci (loci

under selection). While gene flow and genetic drift are stochastic processes driving the popula-

tion genetic structure at neutral loci [10,11].

In a genus as Acrocomia with a wide geographic distribution, some of the morphological

differentiation at the species level may be due to responses to local adaption. Nevertheless,

morphological traits may experience similar selective pressures and evolve convergently could

bias morphological-based taxonomy. In addition, the lack of resolution in the genus could be a

result of gene flow between species mainly in areas of co-occurrence [12], independently of

selective forces. In this sense, neutral molecular markers are interesting to assess the genetic

diversity of populations because they provide unbiased estimates of random processes such as

genetic drift [10].

A. aculeata, A. totai, and A. intumescens are the species of greatest economic interest,

mainly due to their many applications and products obtained, with practically all parts of the

palms used. The fruits are important for the production of vegetable oil as a bioenergy source

and flour for human and animal consumption [13] as well as for medicinal uses [13,14]. Of

these three species, A. aculeata is distinguished by its high productive capacity and oil quality

[15]. The oil production of 4,000 oil L/ha/year estimated in Brazil far surpasses soybean (Gly-
cine max) (400 L/ha) [15] and equals the oil palm (Elaeis guineenses), which is considered the

oilseed with the highest oil yield per area, with an oil production volume of up to 6,000 L/ha

[16,17].
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A. aculeata is an arborescent heliophile and monoecious. This species produces unisexual

flowers in the same inflorescence [3,4]. According to Abreu et al. [18], the species has a mixed

reproduction system. Nonetheless, [19,20] indicate that the species is preferably allogamous..

It is a diploid species (2n = 30), with a genome size of 2.8 Gbp [21]. A. aculeata has a wide geo-

graphic distribution, occurring naturally from northern Mexico and the Antilles to southern

Brazil [3,4,22,23]. It is commonly found in savanna areas, but also is found in tropical and sub-

tropical forests, and in the dry forests of Caatinga [3,4,24] and has adapted to sandy soils and

regions with low water availability [25]. Besides being a perennial species, it is beneficial for

soil management and conservation since its useful life can exceed 50 years. Colombo et al. [15]

identified A. aculeata as a promising resource for sustainable large-scale production of vegeta-

ble oil.

Although the economic interest in some Acrocomia species is growing, little is known

about infrageneric relationships, levels of genetic diversity and structure, and patterns of gene

flow at the genus level. The population genetics approach can assist in species delimitation and

provide reference information on the genetic diversity and structure within and between spe-

cies. Such knowledge is essential for more efficient management and economic exploration of

the species and can guide strategies for domestication and conservation of these genetic

resources [26–28]. A. aculeata is an emerging crop with incipient domestication. The analysis

of genetic diversity of A. aculeata is crucial to guide the selection of the most promising mate-

rials for crop use, to maximize genetic gains, and to more effectively contribute to the creation

of commercial cultivars.

In this context, molecular markers have been broadly adopted in plants as an essential tool

to investigate genetic diversity in ecological, phylogenetic, and evolutionary studies. In addi-

tion, they have been widely used for direct management, conservation, and genetic breeding of

several species [29]. Next generation sequencing (NGS) has facilitated the identification of sin-

gle nucleotide polymorphisms (SNPs) and has become the most used molecular marker due to

the abundance, wide genomic coverage, access to neutral variations and loci under selection,

offering a fast and high-yield genotyping, with low error rates and ability to identify SNP with-

out the need for reference genomes [26,30–32]. The applications of this marker are quite wide

and in different areas of science mainly in the use of high density panels for the purposes of

genomic selection, conservation genetics, genomic landscape and breeding [26,33–35]. How-

ever, although very advantageous, SNPs markers have not been used so far in genetic studies

of Acrocomia species.

In Acrocomia, microsatellites or simple sequence repeats (SSR) have been the most used

molecular markers, with the main objective of evaluating the genetic diversity and structure of

natural populations and germplasm banks [18,19,36–38]. Other approaches include the use of

internal transcribed ribosomal 18S-26S spacer (ITS region) [39] and random amplification of

polymorphic DNA (RAPD) markers [40]. However, most studies have focused on A. aculeata
[18,20,36–38]. Only one study has analyzed the genetic diversity of A. totai [12].

Genetic studies of species occurring in large geographic areas associated with analyzes of a

large number of neutral loci provide accurate information on how stochastic events such as

genetic drift and gene flow are acting on diversity and genetic structure [10]. Essential infor-

mation for breeding, management of germplasm resources and conservation in the different

areas where species occur [41]. However, the genetic diversity studies carried out in A. aculeata
refer to a very small geographical sample, with Brazilian genotypes mainly from the states of

São Paulo and Minas Gerais [18,20,36,37,40] and only a single study has evaluated the genetic

diversity of natural populations of A. aculeata (called A.mexicana) from another country

besides Brazil, that being Mexico [42]. Therefore, there is a huge gap in information about the
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extent of genomic variation in the Acrocomia species in other areas of occurrence besides

Brazil.

In view of the controversies regarding the taxonomic resolution of the genus Acrocomia

and the lack of information on the genetic diversity of its species, we applied a population

genomic approach based on genome-wide SNPs to assess the genetic population structure and

diversity of Acrocomia species from wide heterogeneity of environmental conditions where

their occur. We hypothesized that the current taxonomic designation of the Acrocomia species

is supported by population genetic structure based on genomic neutral data.

The present study is unprecedented because it was conducted using seven Acrocomia spe-

cies and a wide sampling of A. aculeata from several countries in the American continent. This

is the first study carried out with SNP markers for the genus.

Material and methods

Plant material and DNA extraction

In the present study, we considered 172 samples to represent seven from eight Acrocomia spe-

cies: A. aculeata, A. totai, A. intumescens, A.media, A. crispa, A. hassleri, A. glaucescens. This

study was carried out in accordance with the Ministério do Meio Ambiente do Brazil and reg-

istered in the Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradi-

cional Associado(SISGEN) within the number A69E071 and was approved by the Comissão

de Ética Cientifica of Instituto Agronômico de Campinas (CEtIAC). The samples were

obtained from different locations in order to represent the entire geographic distribution

described in the literature for the respective species [3,4]. The species A. aculeata, with a

greater distribution in America, was represented by samples from five countries (Fig 1 and S1

Table).

The total genomic DNA was extracted from leaf material using the Doyle & Doyle [43] pro-

tocol. We evaluated the quality and quantity of DNA on a 1% agarose gel, on the NanoVue ™
Plus spectrophotometer (GE Healthcare), and through fluorescence using the QubitTM

dsDNA BR Assay (Qubit—Life Technologies). Based on the obtained reading, we standardized

the DNA to a concentration of 30ng.μl-1.

GBS library preparation and high-throughput sequencing

To obtain SNPs, we developed genomic libraries using the two-enzyme genotyping-by-

sequencing (GBS) technique according to the protocol described by Poland et al. [44], with

modifications. We digested 7 μl of the genomic DNA [30ng.μl-1] from each sample at 37˚ C

for 12 h with the enzymes NsiI andMspI. Subsequently, 0.02 μM of specific adapters for the

Illumina technology (containing the barcode sequences and complementary to the Illumina ™
primers for sequencing) were connected to the fragments ends generated in the digestion. The

ligation reaction was carried out at 22˚C for 2 h; 65˚C for 20 min; 10˚C indefinitely.

After adapters ligation, we purified the samples using QIAquick PCR Purification Kit (Qia-

gen). The library was enriched by PCR. We performed eight replicates, each one containing

10 μL of purified and amplified ligation, using 12.5 μL of Phusion1High-Fidelity PCR Master

Mix NEB (New England Biolabs Inc.), and 2 μl of Illumina forward and reverse [10 μM] prim-

ers ™, in a final volume of 25 μL, using the following amplification program: 95˚C for 30 s, fol-

lowed by 16 cycles of 95˚C for 10 s, 62˚C for 20 s, 72˚C for 30 s, ending at 72˚C for 5 min.

Finally, we purified the library using QIAgen’s QIAquick PCR Purification Kit.

The verification of average size of the DNA fragments using the Agilent DNA 12,000 kit

and the 2100 Bioanalyzer System (Agilent) equipment. The libraries were quantified by qPCR

using the CFX 384 real-time thermocycler (BioRad) with the aid of the KAPA Library
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Quantification kit (KAPA Biosystems). We prepared two libraries of 96 samples each, which

were sequenced using Illumina’s NextSeq 500/550 Mid Output Kit v2.5 (150-cycle), on the

NextSeq550 platform (Illumina Inc., San Diego, CA).

SNP identification

We performed the identification of SNP markers using the Stacks v. 1.42 pipeline [45]. We

used the process_radtagsmodule to demultiplex the samples and we remove the low-quality

reads (reads that either dropped the Phred score of 10, contained Illumina adapters, uncalled

bases" Ns "or without restriction sites). As there is no reference genome for Acrocomia, we

used the denovo pipeline of Stacks starting with the ustacksmodule to identify groups of puta-

tively homologous reads (putative loci). This step was performed for each sample separately

with the following parameters: the minimum sequencing depth (-m)� 3, the maximum dis-

tance between stacks (-M) = 2; and the maximum distance between primary and secondary

sequences [30] = 2. Subsequently, a locus catalog was built using the cstacksmodule, allowing a

maximum of 2 differences between stacks [30] from different individuals. We eliminated loci

with lower values of probability (lnl_lim -10) by the rxstacks correction module. The SNPs

Fig 1. Schematic map of Acrocomia species distribution and geographic location and origin of samples. Data used to

generate the species distribution (Colored shading) are based on occurrence record data from GBIF (Global Biodiversity

Information Facility www.gbif.org) and [4]. Circles represent geographical location and origin of samples in this study. Image

sources: A. aculeata, A. totai, A. hassleri, A. glaucescens. A. emensis (B. G. Dı́az); A. intumescens; A.media and A. crispa (S. A.

Vianna).

https://doi.org/10.1371/journal.pone.0241025.g001
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were filtered using the populationsmodule, retaining only one SNP per sequence, with a mini-

mum depth of 3X sequencing, minor allele frequency� 0.01, and minimum occurrence in

75% of individuals in each location/population. After filtering, we identified 3269 SNPs (S1

File) considering all the samples.

Neutral loci identification

Three approaches were applied to identify outlier loci, putatively under selection. For the first

approach, a based population structure using PCA analyses, with no a priori information

about the number of populations, was employed using the pcadapt package [46], on the R plat-

form [47]. In the second approach, we used the fsthet package [48] based on Wright’s FST fixa-

tion index [49] to identify the loci with deviation from the expected relationship between FST

and heterozygosity (HE), using the island migration model [50]. For the third approach we

adopted to test the association of environmental variables with the genetic variation of SNP

with the LFMM (Latent Factor Mixed Models) [51], using the LEA package [52]. Nineteen bio-

climatic variables were obtained from WorldClim database [53]. However, the analysis was

performed with the 13 variables (correlation� 0.8) (S2 File). The number of latent factors was

determined, using the SNMF function [51] to estimate the number of ancestral populations

with ten repetitions of K = 1 to 15. For the LFMM function, five replicates were performed

with 200,000 MCMC interactions after 50,000 burn-ins, considering K = 8 (species) and 6

(A. aculeata), identified by the SNMF function. The p-values were adjusted using the genomic

inflation factor (λ) and the false discovery rates (FDR) were defined using the Benjamini-

Hochberg algorithm, considering FDR = 0.1 (see S2 File for more methods details).

The identification of outlier loci was performed independently for the following groups: 1)

In the genus Acrocomia, considering the species as groups, and 2) within A. aculeata, consid-

ering as groups the samples’ countries of origin. We considered as outlier loci those shared

between the three identification methods (S2 Table). Consequently, we adopted the remaining

SNPs considered neutral for the analysis of population genomic diversity and structure.

Population structure

We used all samples (S1 Table) to perform the analysis of the genomic structure for de Acroco-

mia genus and to infer the number of the most likely groups using the software Structure

v.2.3.4 [54], considering only neutral SNPs (3227). We also used the same software to assess

the genomic structure of A. aculeata separately, considering 3259 neutral SNPs identified for

the species. Each analysis in Structure was performed with a burn-in of 100,000 interactions,

followed by 500,000 repetitions of the Markov Chain Monte Carlo (MCMC) in 10 indepen-

dent simulations, and without prior information to define the clusters. The number of clusters

(K) was determined using the average likelihood values of the ΔK method [55] implemented

in the program Structure Harvester [56]. The ancestry coefficients of each sample was given by

the alignment of five repetitions of the best K through the CLUMPP method [57] by the soft-

ware CLUMPAK [58].

To visualize the genetic relationships among Acrocomia species and within the A. aculeata,

we obtained the Nei genetic distance [59] between the individuals of each data set, and the

Neighbor-Joining [60] hierarchical classification method with 20000 bootstrap repetitions,

using the poppr package [61] on R [47].

In addition, the Principal Component Analysis (PCoA) was also carried out through the

ade4 package [62] to explore the genetic structure of the different groups using only neutral

SNPs, and was visualized graphically by the ggplot2 package [63].
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Finally, given the wide distribution of A. aculeata populations we used the Monmonier’s

function [64] in the R package adegenet 1.3-1 [65] to identify possible barriers to gene flow

between populations associated with geography. Random noise was eliminated using Principal

Coordinate Analysis with the dudi.pco function from the ade4 package [62]. The connection

network was calculated using a Gabriel graph [66].

Analysis of genomic diversity

We conducted the population diversity analysis only with the SNP data set identified as neutral

for two groups or taxonomic levels: 1) The genus Acrocomia (except the species A. hassleri
and A. glaucescens as they contain only one individual for each species), and 2) A. aculeata.

Population estimates of allelic richness, number of total alleles by locus, observed heterozygos-

ity, expected heterozygosity, and inbreeding coefficient were calculated using the diveRsity

[67], poppr [61], and the PopGenKit packages [68] on R platform [47]. To minimize the effect

of differences in the number of samples of each population, we calculated the allelic richness

(Ar) and the richness of private alleles (ap) for populations of each group or taxonomic level,

by the rarefaction method implemented in the software HP-Rare v.1.1 [69].

Contemporary effective population size (Ne) was estimated using NeEstimator v2.01 [70].

The PGDSpider software [71] was used to convert the vcf file into GENEPOP input file. Esti-

mation was assessed based on LD method [72], assuming random mating and setting a critical

value of a minimum allele frequency of 0.05 as is a common value used in SNP-based studies.

Results

Genomic structure of Acrocomia spp.

The neutral datasets for the different groups were constructed by removing the outliers. After

the removal of outlier loci (S2 Table), genus Acrocomia (all species) and A. aculeata contained,

respectively, 3227 and 3259 neutral loci, that were used for the analyses of genetic structure

and diversity.

The Bayesian analyses to access the genomic population structure of 172 samples of Acro-

comia species based on 3227 neutral SNPs suggested the existence of seven genetic groups (Fig

2) based on the ΔK (S1 Fig). Samples with an ancestry coefficients > 0.75 and < 0.75 were

assigned to the “pure group” and “admixture group”, respectively. Based on the classification

of Lorenzi [4] and the geographic distribution of the species, we observed a substructure of

samples considered to be A. aculeata. Two well-defined subgroups (clusters 1 and 3) strongly

associated with the geographical origin of the samples were evident. Cluster 1 (Fig 2) was com-

posed of 38 samples of A. aculeata from Central and North America (Costa Rica, Trinidad and

Tobago, Puerto Rico, and Mexico) and Colombia. Cluster 2 (Fig 2) comprised 39 samples of

A. totai and five samples considered as A. aculeata. Of the latter, four were collected in the

state of Parana, southeastern Brazil, (XAM, PR) and one in state of Tocantins, northern Brazil

(PAL). The samples from Campo Grande (CGR) showed low mixture levels with clusters 1

and 5 of A. aculeata. Cluster 3 (Fig 2) consisted of 39 samples from Brazil. The majority

(n = 34) of these samples were from the southeast region of the country, with five from the

north region (BEL population). Cluster 4 was exclusively formed by A. crispa samples, with a

100% probability of assignment to the cluster.

Based on ancestry coefficients� 0.75, some samples were assigned to an admixture group.

Twenty samples of A. aculeata from the central-west, north, and northeast regions of Brazil,

and all samples of A. intumescens displayed a similar genomic composition, with a median

level of assignment (� 0.50). A genetic admixture of A. aculeata samples in cluster 5 (Fig 2)

with samples mainly from clusters 1 and 3 was evident. A. intumescens samples presented a
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mixture of clusters 5 and 6, with cluster 6 being practically exclusive to the species. Individuals

from Cáceres, MT (CAC), and Braúna, São Paulo (SP) (BRA), with a greater assignment to

cluster 2, also showed a significant degree of admixture with clusters 3 and 5.

The NJ and PCoA analyses (Fig 3a and 3b) performed with all the samples showed strong

agreement with the results of the Bayesian analysis performed using Structure software. How-

ever, the NJ tree showed higher resolution in group/cluster recovery than the PCoA. In both

analyses, A. crispa was clearly separated from the rest of the Acrocomia species. In addition,

there is a clear genomic differentiation between A. aculeata and A. totai. Similar to the results

obtained using the Structure software, the NJ analysis also recovered the substructure within

A. aculeata, separating the Brazilian samples from those from other countries (Fig 3a). This

separation did not result from the PCoA (Fig 3b). In agreement with the results obtained using

the Structure software, both PCoA and NJ grouped A.media and A. intumescens samples into

the cluster formed mainly by A. aculeata, with A. hassleri and A. glaucescens grouped into the

A. totai cluster. The results of NJ and PCoA also agreed concerning the allocation of samples

from Xambré, PR (XAM) originally considered as A. aculeata in the cluster of A. totai. Samples

from Braúna, SP (BRA) and Cáceres, MT (CAC), which were identified as an admixture by the

Structure software, occupied an intermediate position between the clusters formed mainly by

A. aculeata and A. totai in the PCoA.

Based on the Structure software results (Fig 2) and NJ and PCoA data (Fig 3a and 3b), the

samples from Xambrê, PR (XAM) previously considered A. aculeata were treated as A. totai
species for further analysis of differentiation and genomic diversity. The FST values enabled a

moderate genetic differentiation between species, with an average value of 0.469. The FST val-

ues between species (Table 1) ranged from 0.083 (A. aculeata vs. A. totai) to 0.946 (A.media
vs. A. crispa). In agreement with the genomic structure analysis findings, all comparisons

between A. crispa and the other species showed higher values of FST, demonstrating a greater

degree of genetic differentiation of A. crispa with the other species.

Genomic diversity within species

The mean number of alleles per locus of the five Acrocomia species ranged from 0.017 to

0.601. A. aculeata had the highest mean and A.media had the lowest mean (Table 2). The

genomic diversity based on the average expected heterozygosity (HE) in the species ranged

Fig 2. Genomic structure of 172 samples from Acrocomia species based on 3227 neutral SNP loci. The y-axis is the

population membership, and the x-axis is the sample. Each vertical bar represents a sample and color represent

separate clusters (K = 7).

https://doi.org/10.1371/journal.pone.0241025.g002
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from 0.106 in A. totai to 0.005 in A.media. However, A. crispa was the species with the highest

allelic richness (2.29) and the highest allelic richness of private alleles (0.17), while A.media
presented the lowest values of allelic richness and allelic richness of private alleles (1.08 and

0.01, respectively). The inbreeding coefficient (F) values were high for all species, indicating

Fig 3. Neighbor-joining [60] tree and principal components analysis (PCoA) of Acrocomia species. a) Scatterplot

of the principal components analysis (PCoA) showing the dispersion of samples across the first two principal

components and b) Neighbor-Joining dendrogram based on Nei´s genetic distance. Bootstrap support of nodes is

shown.

https://doi.org/10.1371/journal.pone.0241025.g003

Table 1. Pairwise FST estimates among five species of Acrocomia.

A. aculeata A. totai A. intumescens A. media A. crispa
A. aculeata 0.000

A. totai 0.083 0.000

A. intumescens 0.128 0.194 0.000

A. media 0.133 0.235 0.700 0.000

A. crispa 0.673 0.687 0.912 0.946 0.000

https://doi.org/10.1371/journal.pone.0241025.t001
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relatively high levels of inbreeding in Acrocomia species, with the exception of A.media,

which presented negative values (Table 2). The current of effective population size (Ne) range

from 0.6 to infinite. The lowest values were observed for A. aculeata, while A. totai and A.

media presented the highest Ne. Nevertheless, ranges of confidence for A.media, were

extremely high (infinite), making these estimates unreliable (S3 Table).

Genomic structure of A. aculeata
The population structure of all the A. aculeata samples was evaluated using 3259 hypothetically

neutral SNPs. Using the method of Evanno [55] the most probable Δk was K = 2 (S2 Fig). This

finding supported the presence of two genetically distinct subpopulations previously identified

in the structure analysis at the genus level (Fig 2). The two groups were mainly associated with

geographical origin, given that samples from Central and North America (Colombia, Costa

Rica, Trinidad and Tobago, and Mexico) were grouped in cluster 1, and most of the collected

in Brazil were grouped in cluster 2 (Fig 4).

The same two groups identified using the Structure software were also visualized by using

the first two PCoA axes as well as the NJ dendrogram. These analyses clearly revealed the for-

mation of two distinct genetic groups within A. aculeata (Fig 4b and 4c). In addition, the anal-

ysis using Monmonier’s algorithm [64] revealed three potential barriers to gene flow

separating the Northern Populations from the rest of Sothern populations from Brazil (S3 Fig),

which are suggested to be geographically separated by the Amazon Rainforest.

Based on the NJ dendrogram, two large groups were assigned based on geographical origin,

separating all individuals from the North and Central America in one node [41] from the Bra-

zilian samples (blue). Two main subgroups were evident in the Northern group. One subgroup

contained samples from Peritoró (PER) and São Jose dos Patos (SJP) from Maranhão, Brazil.

The other subgroup contained the remaining samples. Interestingly, individuals from Tuxtla

Chico, Chiapas (TUX) in Mexico formed a separate cluster from the other samples from

Mexico and Colombia, Costa Rica, Trinidad and Tobago, and Puerto Rico (Fig 4b).

The second PCoA axis comprised three samples from Cáceres, MT (CAC). These samples

formed a subgroup that was very distant from the other samples of A. aculeata. However, the

Structure and NJ dendrogram data were not able to discriminate these samples and grouped

with individuals from Brazil (Fig 4a and 4c).

The ‘South’ group (Cluster 2 in Fig 4a) contained most of the samples from Brazil. The sam-

ples collected in Maranda formed a different cluster from the other samples. However, most

clusters reflected a strong relationship with the samples geographic origins, with the exception

of samples collected in Belém, PA (BEL), northern Brazil, which were more closely related to

samples from Rio de Janeiro and São Paulo located in southeastern Brazil. It is also noteworthy

Table 2. Genetic diversity parameter estimates for Acrocomia species calculated from 3227 neutral loci SNPs.

Species Na I HO HE Ar PAr f

A. aculeata 1.601 0.157 0.031 0.093 1.20 0.03 0.479

A. totai 1.534 0.176 0.074 0.106 1.23 0.07 0.262

A. intumescens 1.053 0.037 0.011 0.025 1.10 0.02 0.483

A. media 0.993 0.007 0.006 0.005 1.08 0.01 -0.145

A. crispa 0.630 0.028 0.006 0.020 2.29 0.21 0.591

Mean of different alleles (Na), Shannon’s Index (I), Observed (HO) and Expected (HE) Heterozygosity, allelic richness (Ar), private alleles richness (PAr) and Fixation

index (f).

https://doi.org/10.1371/journal.pone.0241025.t002
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that five samples collected in the Brazilian State of Maranhão (PER and SJP) were more closely

related with the ‘North’ group, as evident by the cluster 1 considering the assignment probabil-

ity of 0.75 in the Structure software analysis (Fig 4a). This result was also corroborated by the

NJ and PCoA (Fig 4b and 4c).

Fig 4. Population genomic structure within A. aculeata, based on 3256 neutral loci SNPs. a) Genomic structure from Bayesian analyses (K = 2). The

y-axis is the population membership, and the x-axis is the sample. Each bar represents an individual and each color is inferred membership in each of

the cluster; b) Neighbor-Joining dendrogram based on Nei´s genetic distance. Bootstrap support of nodes is shown. Groups: Northern genetic group

(Blue); southern genetic group [41] and c) Scatterplot of the principal components analysis (PCoA) showing the dispersion of samples across the first

two principal components.

https://doi.org/10.1371/journal.pone.0241025.g004
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Genomic diversity of A. aculeata
Concerning the genomic diversity within A. aculeata, the greatest diversity was found in Brazil

(HE = 0.081) and the lowest diversity in Mexico (HE = 0.005). Likewise, the allelic richness val-

ues were similar for all populations in the ‘North’ samples, varying from 1.09 to 1.11. However,

the greatest allelic richness for the species was registered in Brazil (Ar = 1.44) (Table 3).

Considering the two genetic groups identified in A. aculeata, the Southern group had

higher estimates of population size (Ne = 3.2) than the Northern group (Ne = 0.6) (S3 Table).

Due to the vast territory and the greater number of A. aculeata samples from Brazil, genetic

diversity analyses were conducted for groups of samples according to Brazilian states. Greater

diversity (HE) was found in the states of Mato Grosso [26], São Paulo (SP), and Minas Gerais

(MG), with values of 0.061, 0.059, and 0.058, respectively. In terms of allelic richness (Ar), the

most accentuated values were located in the central-west region of the country, in Distrito Fed-

eral (DF), Goiás (GO), and Mato Grosso [26], with values of 1.49, 1.26, and 1.23, respectively.

Discussion

To our knowledge, this is the first study using GBS for identifying genome-wide SNPs and

their application for inferring the genetic diversity and population structure in Acrocomia spe-

cies and within A. aculeata. Sampling was broad in terms of the occurrence of Acrocomia spe-

cies and comprehensively captured the genomic diversity and structure of the species.

A. aculeata
At the genus level, the distinction of A. aculeata as an independent genetic group or taxon was

supported through the results obtained with the Bayesian analyses (Fig 2), and by the PCoA

and the NJ tree (Fig 3a and 3b). A notable finding was the identification of a clear substructure

within A. aculeata, showing two genetic groups, corresponding to a north–south split in which

the samples from Brazil (Southern group, blue cluster in Fig 3) were separated from those of

Central and North America (Northern group, red Cluster in Fig 3). This result was evident in

Table 3. Genetic diversity parameter estimates for A. aculeata calculated from 3259 neutral loci of SNPs.

Country Na I HO HE Ar PAr f

Trinidad &Tobago 1.001 0.013 0.008 0.008 1.09 0.01 0.038

Colombia 1.009 0.018 0.012 0.012 1.09 0.01 -0.014

Mexico 0.994 0.009 0.004 0.005 1.09 0.01 0.147

Costa Rica 0.981 0.012 0.009 0.008 1.11 0.01 -0.139

Brazil 1.441 0.135 0.043 0.081 1.44 0.33 0.377

Brazilian State

Pará 1.090 0.059 0.046 0.039 1.11 0.01 -0.168

Mato Grosso 1.090 0.091 0.062 0.061 1.23 0.04 -0.023

Góias 0.957 0.041 0.031 0.028 1.26 0.01 -0.068

Distrito Federal 0.870 0.053 0.033 0.035 1.49 0.01 0.015

Minas Gerais 1.190 0.089 0.043 0.058 1.09 0.01 0.198

Rio de Janeiro 1.024 0.037 0.024 0.024 1.14 0 -0.006

São Paulo 1.200 0.091 0.044 0.059 1.10 0.01 0.179

Maranhão 1.000 0.042 0.039 0.029 1.17 0.02 -0.350

Mean of different alleles (Na), Shannon’s Index (I), Observed (HO) and Expected (HE) Heterozygosity, allelic richness (Ar), private alleles richness (PAr) and Fixation

index (f).

https://doi.org/10.1371/journal.pone.0241025.t003
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the Bayesian analysis performed at the genus level (Fig 2) as well as with only samples of A.

aculeata (Fig 4a). The substructure identified in A. aculeata has not been previously reported

and can be attributed to the greater number of samples included in this study, which covered a

wide geographic occurrence of the species in the American continent. The presence of two

genetic groups may be the result of reproductive isolation due to the Amazon Rainforest acting

as a geographical barrier (S3 Fig) that prevented gene flow between them and with an indepen-

dent evolution. Another hypothesis is that these two gene pools support the existence of more

than one species, as reported in a previous taxonomic classification in Central and North

America Countries [73].

Another interesting result observed was that individuals from the population of Maranhão

presented as an admixture between the Northern and Southern groups of A. aculeata (Fig 4).

The origin of the genus Acrocomia is uncertain. However, in the case of A. aculeata, based on

the dates of archeological records of human use, the most accepted hypothesis suggests that

the species originated in northern Brazil (in the region of Santarém, State of Pará) approxi-

mately 11,200 MY, and was later dispersed by humans to Central America [74]. According to

our results, the admixture observed in the populations of Maranhão (neighboring to Pará

State) (Fig 4a) may support this hypothesis, suggesting a common geographical origin of the to

two genetic groups in the northeast region of Brazil. In agreement with the A. aculeata disper-

sion routes from South to Central and North America [74], the lower values of genetic diver-

sity for the species found in the Northern group may have resulted from a founder effect, since

all population of this cluster presented lower values of genetic diversity than those observed in

the populations of the southern cluster (Brazil) (Table 3).

Bayesian analysis identified individuals of A. aculeata with a degree of genetic admixture

with A. totai (Cluster 2, in Fig 2) and A. intumescens (Cluster 6, in Fig 2), suggesting gene flow

between species. As A. aculeata is dispersed mainly by cattle [75,76], the agricultural expansion

and livestock may have favored the dispersion of the species to areas where A. totai and A.

intumescens occur, creating opportunities for hybridization due to secondary contact. There

have been no reports of interspecific hybridization in the Acrocomia genus. However, a recent

study using microsatellite markers also detected connectivity between populations of A. acu-
leata and A. totai in Brazil [12].

A. aculeata displays the greatest geographical distribution of the genus [3,4,22,23]. As

expected for a species with a wide distribution that has adapted to diverse environmental con-

ditions, the genetic diversity of A. aculeata was higher when compared to other species

(Table 3). At the intraspecific level, the highest genetic diversity for the species was found in

Brazil, especially in the States of Minas Gerais and São Paulo (Table 3). Although it is not pos-

sible to make direct comparisons due to the different types of molecular markers used, previ-

ous studies also identified a high genetic diversity for A. aculeata in the States of Minas Gerais

and São Paulo [20,36,40].

An unexpected result was the low genetic diversity of A. aculeata in Mexico, where the spe-

cies is also distributed in an extensive geographical area, from the north to the south of the

country (Fig 1). These results could reflect the use and exploration of the species in that coun-

try and other Central American countries, where adult plants are harvested as the raw material

for a fermented drink called “taverna” [77,78]. This kind of exploration is one of the main fac-

tors driving the reduction size or elimination of the natural populations, which affects the

reproductive capacity of the species and its natural regeneration [78] and might also been

reducing the genetic diversity and the effective population size.

A. aculeata is strongly associated with humans [74,75]. Even though it is considered an

incipiently domesticated species, it has a wide range of uses in different countries of the Amer-

icas [13,14,79]. Therefore, patterns of genetic diversity and structure can also be the result of

PLOS ONE Genomic population structure and diversity of Acrocomia species

PLOS ONE | https://doi.org/10.1371/journal.pone.0241025 July 20, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0241025


different states of domestication, with different intensities of selection in each region, as also

reported for other species, such as beans [80], tomato [81], and cacao [82].

A. totai
A. totai is the second most geographically dispersed species in the genus. It has been docu-

mented in eastern Bolivia, Paraguay, Central-west Brazil to northern Argentina [4,23]. The

taxonomic distinction of the species has been demonstrated based on morphological data and

geographic distribution [4], leaf anatomy [1], and fruit biometry [83]. However, A. totai is

commonly regarded as A. aculeata due to the pronounced morphological similarity of both

species, and because both have fruits with similar biometric and color characteristics [83]. Our

results were congruent with the current taxonomic classification of the species. Almost all sam-

ples initially considered as A. totai (94%) belonged to cluster 2 with a high ancestry coefficient

(> 0.75), according to Structure analysis (Fig 2), and corroborated with PCoA and NJ analysis

(Fig 3a and 3b). Our results agreed with those of Lima et al. [12], that documented the clear

genetic differentiation between A. aculeata and A. totai (treated as ecotypes) using microsatel-

lite markers. Although not treated as distinct species, but considering the geographical distri-

bution of both, several studies using molecular and morphological markers also reinforced the

classification of A. totai as a distinct taxon. Lanes et al. [36] used microsatellite markers to

demonstrate the marked genetic differences of A. aculeata between individuals from the Pan-

tanal region, State of Mato Grosso do Sul, Brazil, and other regions of the country. Similarly,

Silva et al. [39] (27) analyzed the variation in the internal transcribed spacer (ITS) region and

identified four haplotypes. Two were shared by genotypes from São Paulo and Minas Gerais,

and one was exclusive to genotypes collected in Mato Grosso do Sul. The morphological char-

acteristics of A. aculeata include larger fruits (3.5 and 5.0 cm) and a pulp oil content that can

reach approximately 78% (27, 68–70) while the fruits of A. totai are smaller (2.5 and 3.5 cm)

with a pulp oil content between 26% and 33% [83–85] (68, 71, 72).

In Brazil, A. totai is considered to be restricted to the State of Mato Grosso do Sul

[4,86,87]. An interesting finding of our study was that samples from Xambrê, Paraná (XAM)

and a sample from Palmas, Tocantins (PAL_182), considered as A. aculeata based on Lorenzi

et al., [4] taxonomic classification, were attributed to cluster 2 of A. totai by the Bayesian

analysis (Fig 2), by PCoA, and by NJ (Fig 3a and 3b). Although the occurrence of A. totai in

these states has not been proven, our results are consistent with the information reported on

the Flora do Brazil 2020 website [23], indicating the possible occurrence of A. totai in these

states.

Although the genetic structure and separation of A. aculeata from A. totai was evident

based on the cluster analyses, the genetic differentiation (FST) between species was 0.083,

which was the lowest value (Table 1). These result was consistent with the value obtained using

microsatellite markers (FCT = 0.07) by Lima et al., [12]. The findings may reflect the retention

of ancestral polymorphisms, the hybridization or gene flow between species in convergent

areas [12] or could be evidence of an ongoing speciation process [36].

Based on the HE and Ar values, A. totai was the species with the highest level of genetic

diversity (Table 2). Our results are comparable to those found in a recent study using microsat-

ellite markers [12], in which the genetic diversity of A. totai was greater than that of A. acu-
leata. Similarly, previous studies also identified greater genetic diversity in populations from

Mato Grosso do Sul than population from other location of Brazil, although the authors did

not consider the populations to be A. totai [36,37]. The high diversity observed in A. totai
could reflect its geographically widespread occurrence and expansion of genetic diversity pro-

moted by the interspecific hybridization with A. aculeata.
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The results of cluster analysis and genetic differentiation corroborated the classification of

A. totai as an independent taxon based on morphological [4], anatomical [1], and molecular

markers [12]. This taxonomic separation seems to be more appropriate than that proposed for

Henderson et al. [3], which considered all tree-sized Acrocomias as a single taxonomic group

called A. aculeata.

A. intumescens
Contrary to the actual taxonomic classification [4–6], our analyses did not show a clear genetic

separation of A. intumescens (Figs 2, 3a and 3b). All the samples of A. intumescens were

assigned to cluster 6, however presented high levels of admixture with A. aculeata (cluster 5,

Fig 2). A. intumescens also showed a moderate genetic differentiation with A. aculeata (FST =

0.128, Table 1), reinforcing the close genetic relationship among both species as described by

Vianna et al. [1] based on leaf anatomy. Morphologically, A. intumescens is distinguished

mainly by the swelling of the stipe [4]. However, botanical characters suggested to delimit

Acrocomia species have revealed an overlapping in size of fruits [83] and for oil content in the

mesocarp, ranging from 37 to 78% in A. aculeata [85,88] and from 34 to 41% in A. intumescens
[85,89].

A phylogenetic study by Meerow et al. [90], estimated the divergence of A. intumescens and

A. aculeata 5 MA ago. The genetic structure we observed may reflect the maintenance of

ancestral polymorphism, possibly as a result of the recent divergence of these species with

insufficient time for the appearance of reproductive isolation mechanisms, allowing the inter-

specific hybridization. A. intumescens is endemic to northeast Brazil and has a restricted distri-

bution [4,23]. Species with a restricted geographical distribution tend to have lower genetic

diversity than species with a wide geographical distribution [91,92]. Consistent with this trend,

A. intumescens showed lower values of heterozygosity and allelic richness than the wide geo-

graphical distribution species (A. aculeata and A. totai) (Table 2). However, the genetic diver-

sity found in A. intumesces was comparable to that observed in other plant species associated

with restricted geographic distribution [93–95].

A. crispa
A. crispa is an insular species with a distribution restricted to Cuba. A clear separation and a

strong genetic divergence compared to the other species, as evidenced in the cluster analysis

(Figs 2, 3a and 3b) and by the high values of FST (Table 1). These expectations were understood

if considered that the gene flow through pollen or seed dispersal between island populations

and continental populations is limited such that a strong genetic structure and a high degree of

differentiation between them is expected, as reported for several species [96,97]. Our results

are congruent with those reported for other tree species, which also showed high levels of

genetic differentiation between island populations compared to continental populations and

lower levels of genetic diversity on the islands than on the continent [60,98–100]. A. crispa dis-

played low values of genetic diversity (HE = 0.020) compared with other Acrocomia species,

although these values are expected for endemic island species. However, interestingly, A. crispa
presented the greatest allele richness (2.29) and allele richness of private alleles (0.17)

(Table 2). Based on chlorosplastic and nuclear genes, the time of divergence estimated for A.

crispa as 16 Mya, while A. aculeata and A. intumescens diverged 5 Mya [90]. This more ancient

divergence associated with geographic isolation may support the allelic richness and the

greater number of private alleles found in A. crispa, as well as the strong genetic differentiation

of from other Acrocomia species. This hypothesis has also been posited for other endemic spe-

cies of islands that have congeners on the continent [101,102].
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There is no detailed information about the morphological characteristics of A. crispa. How-

ever, some morphological differences have been described, such as the presence of swelling in

the median region of the stipe as the most discriminating botanical characteristic [73], the

smaller fruits, which varies from 1 to 3 cm [3], than that described in A. totai (2.5 to 3.5 cm),

A. intumescens (3.0 to 4.0 cm) and A. aculeata (3.5 to 5.0 cm) [83] and also differences in pol-

len morphology with trichotomocolpated pollen in A. aculeata and monocolpous pollen in A.

crispa (named Gastrococos crispa by the authors) [103].

A. crispa, previously designated to the genus Gastrococos by Moore [104], was recently allo-

cated to the genus Acrocomia, mainly due to the sequencing of the nuclear prk gene [105].

Although most phylogenetic studies support the relationship between A. aculeata and A. crispa
as sisters in a single monophyletic group [105–110], other phylogenetic [90] and cladistic stud-

ies [111] shown that they are sister species in paraphyletic groups. However, these phylogenetic

studies were conducted at higher taxonomic levels (families, subfamilies, and tribes), with the

inclusion of few species of Acrocomia. Therefore, they have limited ability to accurately reveal

phylogenetic relationships of Acrocomia species.

The morphological characteristics of the species, the divergence time and our results of

genetic differentiation, diversity, and structure may collectively support an independent taxo-

nomic status of A. crispa within the genus Acrocomia. Therefore, we suggest a revision of the

taxonomy for the species and considering the low sample size, our results about genetic diver-

sity in the species should be taken with caution and additional studies including more popula-

tions and more samples per population are needed.

A. media
In contrast to the evidence of genetic divergence for A. crispa, the recognition of A.media as

an independent taxonomic unit was not supported by our study. As A.media is also an island

species, it would be expected to have a strong genetic structure when compared to other Acro-

comia species with a continental distribution. Contrary to this assumption, all samples consid-

ered as A.media were assigned to the northern group of A. aculeata, as evidenced by three

cluster analyses (Figs 2, 3a and 3b). In addition, the FST values (Table 1) also indicated low

genetic differentiation of A.media compared to A. aculeata.

The estimates of genetic diversity observed in A.media were the lowest compared to other

species (HE = 0.005 and Ar = 1.08), but were consistent with several studies of population

genetics in plants, which predicted that island populations have reduced levels of genetic diver-

sity compared to continental populations [96,112]. The low genetic diversity observed in A.

media can be attributed to the founder effect associated with the establishment of populations

with only a few individuals [112,113] or to genetic drift due to stochastic events inherent in the

islands and/or fragmentation during its formation [114]. Nevertheless, studies with greater

representativeness of the species are necessary to obtain more accurate parameters of genetic

diversity.

A.media was first described in Puerto Rico by Cook [115]. The author adopted the shortest

trunk and the smallest diameter of the stipe as the differentiating characteristics of A.media
from A. aculeata. However, A.media was considered synonymous with A. aculeata for a long

time due to the absence of consistent botanical characteristics for differentiation. In 2013, The

Plant List recognized A.media as a distinct species based on the floristic palm inventory of

Proctor [116]. However, the same author mentioned that the existing information about A.

media was very old and based on few individuals, suggesting an increase in the number of eval-

uated individuals to guarantee a more consistent morphological description of the species. The

PLOS ONE Genomic population structure and diversity of Acrocomia species

PLOS ONE | https://doi.org/10.1371/journal.pone.0241025 July 20, 2021 16 / 24

https://doi.org/10.1371/journal.pone.0241025


only phylogenetic study performed with A.media included an individual from Puerto Rico,

and a sample of A. aculeata from Brazil revealed that both species were closely related [105].

Based on the lack of genetic differentiation of A.media, low genetic diversity in the species,

and low pairwise FST value between A.media and A. aculeata, we hypothesize that A.media is

synonymous with A. aculeata. Thus, a recent introduction in Puerto Rico was not sufficient to

characterize the reproductive isolation needed for the differentiation of A. aculeata.

A. hassleri and A. glauscescens
The genomic data of our study did not allow the assignment of distinct taxonomic units to

the species A. hassleri and A. glauscescens. Based on morphological characters, the species

are clearly differentiated from the others by their small size. However, based on the results

obtained from the cluster analysis, they were assigned to cluster 2, being closely related to

A. totai (Figs 2, 3a and 3b). However, this result should be considered with caution, as we

only used one sample of each species in the analyses, which could limit the comparison of

genetic estimates and decrease the probability of detecting genetic structure, as evidenced

in similar studies with a low number of samples [117,118]. Further studies with a greater

number of accessions are needed to increase the species representation, and to establish

reliable genetic relationships between A. hassleri and A. glauscescens and other Acrocomia

species.

Conclusions

Our study is the first to offer evidence of the efficiency of NGS through the application of the

GBS protocol in Acrocomia. The data may constitute a reference for the application of this

protocol in the genus. Even without a reference genome, we successfully identified a large

number of SNPs for several species, revealing potentially valuable markers for future studies in

the genus Acrocomia. The SNPs yielded unprecedented results of the genetic relationships

between Acrocomia species as well as at the population level for A. aculeata. In general, our

results were partially congruent with the taxonomy of the genus, supporting the current sepa-

ration of some species. The genomic structure revealed the formation of well-defined genetic

groups and confirmed the distinction of A. aculeata, A. totai, A. intumescens, and A. crispa,

with the latter showing a strong genetic differentiation as well as the absence of genetic distinc-

tion of A.media. We recommend a review of the current taxonomic classification of A. crispa
and A.media. In addition, SNPs also allowed the identification of gene flow patterns and/or

hybridization between species.

In the case of A. aculeata, the data provide an overview of the genomic diversity and struc-

ture from sampling over a wide area of occurrence. The genomic data showed the existence of

two large gene pools in the species at the continental level (north and south), with greater

genomic diversity in the latter populations. The results from this study will serve as a reference

for current and future studies on genetic diversity, taxonomy, evolution, ecology, and phylog-

eny of the genus Acrocomia, and will support genetic breeding, conservation, and manage-

ment activities for A. aculeata.
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tipos elite de macaúba (Acrocomia aculeata). Campinas, SP Brazil: Instituto Agronômico de Campi-
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