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a b s t r a c t 

Computed tomographic (CT) images are widely used for the identification of abnormal brain tissue following 

infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is 

both time-consuming and operator-dependent. To address these issues, we present a method that can 

automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the 

accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise 

comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our 

validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions 

resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced 

manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity 

of the automated method in regions close to the ventricles and the brain contours. However, the automated 

method presents a number of benefits in terms of offering significant time savings and the elimination of the

inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation 

of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions 

from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective 

and reproducible manner. 
c © 2014 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http: // creativecommons.org / licenses / by / 3.0 / ). 
 

. Introduction 

Neuropsychological investigation of individuals suffering from 

troke is widely used in cognitive neuroscience to advance our un- 

erstanding of brain function. The analysis of correlations between 

mpaired behavior and physical brain damage has provided consider- 

ble insight into how function depends upon structure ( Fellows et al., 

005 ; Geva et al., 2011 ; Rorden and Karnath, 2004 ; Utz et al., 2013 ). In

his regard, an exact delineation of stroke lesions constitutes a crucial 

tep for structure / function studies in the field of neuropsychology 

 Seghier et al., 2008 ; Stamatakis and Tyler, 2005 ; Wilke et al., 2011 ). 

he typology of stroke can be broadly classified into two categories: 1) 

emorrhagic stroke due to rupture of a blood vessel, and 2) ischemic 

troke or infarct due to an interruption of blood supply. Of these, is- 

hemic stroke occurs more often, and it is also possible for the two 

ypes of stroke to co-occur ( Berger et al., 2001 ). Computed tomogra- 

hy (CT) and magnetic resonance imaging (MRI) are the two modali- 

ies regularly used for stroke lesion mapping. Though it is not unusual 

or MR anatomical images (usually T1- and T2-weighted images) to 
* Corresponding author at: Department of Experimental Psychology, University of 

xford, 9 South Parks Road, Oxford OX1 3UD, UK. 

E-mail address: dante.mantini@psy.ox.ac.uk (D. Mantini). 
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be acquired in stroke patients participating in clinical research proto- 

cols, CT is the preferred procedure in the acute stroke unit, typically 

offering the advantages of speed, cost, and reduced exclusion crite- 

ria relative to MR imaging ( Rorden et al., 2012 ). On the other hand, 

MR imaging is earlier at detecting ischemic stroke, and if available, 

is therefore performed in many cases with a negative CT scan. In 

CT images, a hemorrhage appears as a bright region (hyper-intense) 

displaying sharp contrast against its surroundings. Conversely, an is- 

chemic stroke appears as a dark region (hypo-intense), with the con- 

trast relative to its surround depending on the time elapsed since the 

stroke occurred. 

The standard method for lesion identification is currently the man- 

ual delineation of abnormal brain tissue by trained professionals ( Fiez 

et al., 2000 ); however, this method has a number of disadvantages 

( Ashton et al., 2003 ). Other than being very time-consuming, the man- 

ual method produces variability across operators because there is of- 

ten no clear cutoff between lesioned and non-lesioned tissues, partic- 

ularly at the borders of the brain and around the ventricles. Further- 

more, in chronic stroke patients, manual delineation typically does 

not detect inevitable stroke-induced degeneration that takes place 

outside the lesion, even though this degeneration can contribute to 

the clinical deficits in a patient. The automated detection of hypo- or 
en access article under the CC BY license ( http: // creativecommons.org / licenses / by / 

http://dx.doi.org/10.1016/j.nicl.2014.03.009
http://www.sciencedirect.com/science/journal/22131582
http://www.elsevier.com/locate/ynicl
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.nicl.2014.03.009&domain=pdf
http://creativecommons.org/licenses/by/3.0/
mailto:dante.mantini@psy.ox.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.nicl.2014.03.009


C.R. Gillebert et al. / NeuroImage: Clinical 4 (2014) 540–548 541 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hyper-intense regions, in combination with manual editing, can sig-

nificantly reduce delineation times, but results still remain operator-

dependent ( Wilke et al., 2011 ). More recently, fully-automated ap-

proaches have been suggested, with the aim of removing inter-subject

variability in brain delineation procedures and allowing for the anal-

ysis of large CT datasets ( Rekik et al., 2012 ). While several algorithms

have been developed for lesion segmentation in MR images ( Seghier

et al., 2008 ; Stamatakis and Tyler, 2005 ; Wilke et al., 2011 ), only a few

methods have been proposed for CT scans of stroke lesions. Most ex-

isting work with CT images has been directed towards the detection of

hemorrhagic strokes. Since hemorrhagic stroke appears brighter than

normal tissue, unsupervised “fuzzy clustering” techniques have been

proposed for detecting hemorrhagic candidates, followed by expert-

based system labeling and morphological operations to distinguish

the true lesioned regions from image artifacts ( Chan, 2007 ; Cosic and

Loncaric, 1997 ; Liu et al., 2008 ). In comparison to image-processing

techniques related to hemorrhagic stroke, considerably less attention

has been given to the detection of ischemic stroke, due to its more

challenging nature. To address this issue, seeded region-growing al-

gorithms have been used to segment a CT image into a set of regions

having uniform intensities. Subsequently, features of these regions,

such as brightness, extent, texture and relative position with respect

to an axis of symmetry, have been given as input to a rule-based ex-

pert system to detect the region of the stroke ( Matesin et al., 2001 ;

Usinskas et al., 2004 ). The main disadvantage of this approach is that

the boundaries of the stroke region may not be clearly defined by

seeded region-growing algorithms. Moreover, to date, only a single

study has addressed the problem of detecting both hemorrhagic and

ischemic strokes in a given CT volume ( Chawla et al., 2009 ). In this

study, lesioned tissue was identified by comparing image intensities

in the two hemispheres, under the assumption that an abnormal re-

gion in one hemisphere will have a significantly different intensity

compared to the other hemisphere. This approach is imperfect, how-

ever, in that it cannot detect symmetrical abnormalities occurring on

both sides with respect to the brain midline. Clinical data indicate that

symmetrical abnormalities are a possibility, although the number of

such cases is limited ( Ganesan et al., 1999 ). 

An alternative approach for the detection of hemorrhagic and is-

chemic strokes utilizes a comparison of CT image intensity from a

single patient with a group of images from control subjects, in order

to define outlier voxels. This approach has been successfully used,

with several variants, in the analysis of MR images ( Stamatakis and

Tyler, 2005 ), but has never been applied to CT images. Significantly,

this approach requires an accurate spatial registration of the individ-

ual brains to the same template image, and the first high-resolution CT

template was published only recently ( Rorden et al., 2012 ). It is worth

mentioning, however, that the availability of a high-quality template

does not in itself ensure a successful spatial normalization ( Ripolles

et al., 2012 ). Classical algorithms use affine and / or nonlinear warping

to match a single brain image to the template. Problems can there-

fore occur when the brain to be normalized contains atypical areas of

hypo- or hyper-intensity. In this case, more sophisticated spatial reg-

istration techniques, such as cost-function masking or surface-based

registration techniques ( Klein et al., 2010 ), can prevent the presence

of a stroke from negatively affecting bias normalization in terms of

an over- or under-fitting of the lesion area ( Ripolles et al., 2012 ). 

In this study, we develop a method that accurately normalises CT

images from stroke patients to template space and applies subsequent

voxelwise comparison with a group of control CT images in order to

define areas with hypo- or hyper-intense signals. We demonstrate

the validity and effectiveness of our approach by using simulated

lesions superimposed on lesion-free brain CT images, as well as CT

images collected from stroke patients. We anticipate that our method

will permit automatic delineation of stroke lesions, and, in so doing,

can provide a rapid and efficient tool for both research and clinical

application. 
2. Methods 

2.1. Method description 

We have developed a fully automated tool permitting preprocess-

ing of brain CT images from healthy subjects and patients, as well as

statistical analyses of lesion mapping. We validated the method using

the CT image database collected for the Birmingham University Cog-

nitive Screen (BUCS) project ( http: // www.bucs.bham.ac.uk ), and ob-

tained from stroke units across the West Midlands area of the United

Kingdom. The CT data were expressed in Hounsfield units, a quan-

titative scale for describing radiodensity ( Hounsfield, 1980 ) ranging

from −1000 (value outside the head) to 1000 (value corresponding to

the bone). 

2.1.1. CT image preprocessing 

CT image preprocessing of both patient and control data was per-

formed using SPM8 (the Wellcome Trust Centre for Neuroimaging,

London, UK) and in-house software written in MATLAB (The Math-

Works, Natick, MA, USA). The same procedure was used for CT data

collected from both patients and controls. First, we removed the ir-

relevant signals from the neck and sides of the head by applying a

threshold-based clustering at 0.1% maximum intensity ( Batenburg

and Sijbers, 2009 ) and we spatially aligned the resulting CT image

to the template image using the coregistration tool in SPM8. Subse-

quently, CT image intensity was transformed using an invertible for-

mula to emphasize the image contrast between cerebrospinal fluid

(CSF) and parenchyma, as proposed by Rorden et al. (2012 ). To imple-

ment this conversion, values from −1000 to −100 were rescaled to

0–900 by adding + 1000, values from −99 to 100 were linearly scaled

to the range 911–3100, and values where i > 100 were assigned the

value [i + 3000] ( Fig. 1 A). We then warped the CT image to MNI space

using the CT template ( Rorden et al., 2012 ) ( Fig. 1D ), following a two-

step approach. The first step involved the use of the SPM8 normaliza-

tion function to calculate and apply a 12-parameter affine transfor-

mation that maximized the alignment to the template ( Fig. 1B ). We

then calculated the distribution of all image intensities, providing the

basis upon which the ventricles (signal < mean − 2 × standard devi-

ation) and brain contours (signal > mean + 2 × standard deviation)

were segmented ( Volkau et al., 2010 ). Applying the ventricle and brain

masks to the CT image produced a skull-stripped image that did not

contain CSF voxels but did include lesioned voxels ( Supplementary

Fig. 1 ). Note that the invertible formula reduced the contrast between

the lesioned and non-lesioned areas. This permitted the use of the

same processing pipeline for both stroke and control scans because

the normalization procedure was not substantially affected by the

high contrast that typically characterizes a lesion. The skull-stripped

image was then used for the second step of the normalization pro-

cedure. Specifically, a spatial deformation was calculated from the

skull-stripped, scaled CT image to a skull-stripped scaled version of

the template, and applied to the unmasked CT image ( Fig. 1C ). The

resulting normalized image was next resliced at 1 mm isotropic res-

olution using a large bounding box that included both the cortex and

the cerebellum (MNI-XYZ: min; max = [ −90 −126 −82; 90 90,108]).

In a final pre-processing step, the normalized CT image was smoothed

with SPM8 using a Gaussian filter to accommodate the assumption

of random field theory used in the statistical analysis ( Salmond et al.,

2002 ; Stamatakis and Tyler, 2005 ). The effects of different smoothing

filters were examined in the study. 

2.1.2. Statistical analysis for lesion delineation 

The lesion of each stroke patient was automatically identified us-
ing a voxel-based outlier detection procedure based on the Crawford–
Howell parametric t -test for case–control comparisons ( Crawford et
al., 2009 ; Crawford and Howell, 1998 ). The result of this test can be

http://www.bucs.bham.ac.uk
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Fig. 1. Spatial normalization of CT images to MNI space. A representative brain CT 

image, shown in three axial views. Section (A) is warped to MNI space in two steps (B–

C), using a template CT image (D) as reference image. Note that the first normalization 

step registers the brain contour to the template, whereas the second step primarily 

registers periventricular regions. 
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Fig. 2. Classification of damaged tissue in stroke CTs. A representative stroke CT scan 

(A) is normalized to MNI space (B) and spatially smoothed (C). Next, the resulting image 

is compared to a group of control CTs by means of the Crawford–Howell t -test. The 

resulting t -score map is converted to a probability map, which is then overlaid onto the 

image itself (D). By thresholding this probability map at a given significance level, the 

lesioned regions can be delineated. The lesion map in MNI space can be transformed 

back to individual subject space (E), so that it can be compared with a lesion map 

manually delineated by an operator (F) on the original CT image. 

 

xpressed in terms of a t -score, defined as follows: 

 = 
x − 1 

n 

∑ n 
i=1 c i √ 

n + 1 
n ( n −1 ) 

∑ n 
i=1 

(
c i − 1 

n 

∑ n 
i=1 c i 

)2 
(1) 

where x is the value for the individual patient and c i is the value 

or the i-th control subject, and n is the number of control subjects. 

Using the Crawford–Howell t -test, an outlier t -score map was gen- 

rated that coded the degree of abnormality of each voxel intensity, 

ased on the comparison to the normal range from control scans 

 Fig. 2 ). The outlier map generally contained both positive and neg- 

tive values. By thresholding the t -score map at a given significance 

evel, we obtained a lesion map that contained values of −1, 0 or 1. 

 value of −1 coded voxels with significantly lower intensities than 

ormal and that most likely related to the presence of ischemia; con- 

ersely, a value of 1 coded voxels with significantly higher intensities 

han normal and that most likely related to the presence of hemor- 

hage. The lesion map in MNI space was also converted to the original 

T space (before co-registration to the template) by inverting the spa- 

ial transformations used to move from individual to MNI space. This 

llowed a direct comparison with manual classification conducted on 

he original CT scan. 

.2. Method assessment 

.2.1. CT data acquisition 

CT scans were acquired as a part of their routine clinical assess- 

ent following hospital admission for stroke in eight stroke units 

cross the West Midlands area (United Kingdom). All participants 

rovided written informed consent to their inclusion in the BUCS 

roject in agreement with ethics protocols approved by the National 

esearch Ethics Service: Essex 1 Ethics Committee. The CT data were 

ollected using the following scanners: Siemens Sensation 16 and GE 

edical System LightSpeed 16 and LightSpeed Plus. The images cov- 

red the whole brain with an in-plane resolution of 0.5 × 0.5 mm 

2 

nd a slice thickness varying between 4 and 5 mm. A CT database 

f more than 500 patients with acute / subacute stroke was available. 

cute and subacute strokes were defined respectively as strokes of 

ess than one week and between one week and one month after on- 

et. Clinical and demographic data were obtained from the patients’ 
clinical files. Each patient completed a battery of neuropsychological 

tests for attention and executive functions, language, memory, and 

motor planning ( Humphreys et al., 2011 ), in most of the cases within 

one week, and always within one month after CT scanning. We ex- 

cluded CT scans where a shunt was visible or where the field of view 

of the scan did not completely encompass the head ( n = 127). We 

classified the remaining 458 patients with valid CT images as having 

either a hemorrhagic or ischemic stroke and either a focal or extended 

lesion. For each of these four groups, we randomly selected six pa- 

tients to assess the performance of our automated method with re- 

gard to stroke CT data as compared to manual lesion delineation (see 

Table 1 for detailed patient information). In addition, we selected 77 

age-matched patients ( Table 1 ) with no visible lesions on CT scans, 

who were used as controls. The neurological deficits in these patients 

were later found to be a consequence of metabolic abnormalities 

rather than stroke. 

2.2.2. Simulated lesion analysis 

To assess the performance of our lesion delineation method, we 

created CT images containing artificial brain lesions with controlled 

incremental variations in size and signal. Spherical binary masks were 

defined in the same space of 5 images extracted from the set of control 

CT scans (5 male subjects, aged 46–75 years), and were respectively 

centered on the following MNI coordinates: [32, 12, −4], [15, −43, 

9], [3, 55, −5], [ −48, 6, 0], and [ −21, 6, −13]. For each CT scan, we

generated spherical lesions with different radii: 7, 10, 15 and 22 mm 

(i.e. size = 1.4 cm 

3 , 4.2 cm 

3 , 14.1 cm 

3 and 44.6 cm 

3 , respectively). 

These lesions were then superimposed on the corresponding CT im- 

age, with intensities of −60%, −40%, −20%, + 20%, + 40%, and + 60% 

compared to the average CT signal in the brain. This range was chosen 

to realistically simulate the signal decrease / increase associated with 

ischemic / hemorrhagic stroke lesions ( Supplementary Fig. 2 ). The re- 

sulting 120 (5 scans × 4 lesion sizes × 6 signal intensity changes) 

simulated CT images were subjected to the automated lesion delin- 

eation method, and the estimated lesion was then compared with 

ground-truth binary masks. Normal, CT intensity ranges, to be given 

as input to the automated method, were obtained using CT data from 
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Table 1 

Demographic and clinical information about selected stroke patients.The patients are divided into the following four groups: hemorrhagic focal stroke, hemorrhagic extended 

stroke, ischemic focal stroke and ischemic extended stroke. For each patient, the gender, the age, the time elapsed between the stroke and the CT scan, the type of the stroke, the 

main anatomical structure damaged and the lesion size are shown. Lesion location and size were obtained from the lesion delineation performed by an expert operator. 

Gender Age (year) Time to stroke (day) Type of stroke Lesion location Lesion size (cm 

3 ) 

Group 1 

P2059 F 72 0 Hemorrhage Left superior 

temporal sulcus 

2.1 

P2065 M 65 0 Hemorrhage Right superior 

temporal sulcus 

9.1 

P2173 M 81 0 Hemorrhage Right basal ganglia 7.9 

P2213 F 78 4 Hemorrhage Right pulvinar 2.0 

P2287 M 77 2 Hemorrhage Left cerebellum 3.9 

P2492 M 75 1 Hemorrhage Left central sulcus 3.1 

Group 2 

P2025 F 83 4 Hemorrhage Left parietal 31.2 

P2154 F 84 4 Hemorrhage Left parietal 52.4 

P2206 F 53 1 Hemorrhage Right basal ganglia 14.9 

P2374 M 57 2 Hemorrhage Left putamen, left 

thalamus 

12.6 

P2474 M 61 3 Hemorrhage Right cerebellum 16.8 

P2713 F 73 0 Hemorrhage Left insula, left 

thalamus 

22.8 

Group 3 

P2058 M 70 1 Ischemia Left inferior frontal 

gyrus 

3.2 

P2064 F 79 2 Ischemia Right occipital 2.9 

P2066 F 83 0 Ischemia Right dorsolateral 

prefrontal 

9.0 

P2091 M 74 2 Ischemia Right basal ganglia 3.3 

P2554 M 69 1 Ischemia Right insula 8.4 

P2624 F 57 1 Ischemia Left basal ganglia 1.9 

Group 4 

P2008 F 81 1 Ischemia Left occipital, 

bilateral cerebellum 

23.0 

P2069 M 60 4 Ischemia Left premotor 43.6 

P2077 F 84 1 Ischemia Right basal ganglia 12.4 

P2342 F 75 4 Ischemia Left frontal, right 

parietal 

27.8 

P2670 M 67 1 Ischemia Right occipital 19.6 

P2758 M 82 2 Ischemia Right orbitofrontal 50.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a group of 72 subjects without stroke (31 females, 69 ± 12 years old),

which did not include the 5 subjects used to create the simulated

lesions. We quantified performance in lesion delineation by measur-

ing Dice’s similarity index (DSI) ( Zou et al., 2004 ). This is a measure

of the similarity between the reference image ( X ) and the estimated

image ( Y ) and is calculated as: 

DSI = 

2 | X ∩ Y | 
( | X | + | Y | ) (2)

where | X ∩ Y | indicates the number of voxels that are common to

X and Y , whereas | X | and | Y | are the number of voxels that are in X and

Y , respectively. DSI ranges from 0 to 1; it is equal to 0 when there is

no overlap between the estimated and reference images and is equal

to 1 when they perfectly overlap. Accordingly, larger values indicate

better lesion delineation performances ( Zou et al., 2004 ). By using

the DSI, we quantified the performance of our method using different

smoothing levels (from 2 to 15 mm full width half maximum, FWHM)

and significance ( t -score) thresholds. In this manner, we identified the

configuration of parameters that maximized detection performance

for our automated method. These settings were then used for the

analysis of the stroke CT scans. 

2.2.3. Analysis on experimental data 

Initially, we assessed the reliability of our method by analyzing

the five control scans that were used for the creation of the simu-

lated lesions. The expert analysis detected no lesions in these images

which were therefore used to quantify the detection of false positives

by automated lesion delineation. We subsequently applied our lesion
delineation method to stroke CT images and tested the accuracy of this

procedure with regard to hemorrhagic and ischemic strokes of varied

size and affecting diverse brain regions. To this end, we used CT im-

ages from 24 patients with acute stroke, as well as the same 72 control

subjects used for the analysis of the simulated lesions. The patients

were specifically selected to create four groups of equal numbers, and

they were characterized by the presence of either a hemorrhagic or

ischemic stroke and of either focal or extended lesions (see Table 1 ). A

trained operator with several years’ experience performed a manual

delineation of the lesions in the stroke CT images, using MRIcron (Mc-

Causland Center for Brain Imaging, Columbia, SC, USA). The operator

drew each lesion on a ‘slice-by-slice ’ basis, using an axial view of the

CT image. In practice, the area deemed to be lesioned was outlined

using a mouse, and then a filling function was used to incorporate

all the brain mass lying within those borders into a lesion map. The

manually delineated lesion was employed as a reference to quantify

the performance of the automated method in terms of DSI ( Eq. 2 ). To

complement the analysis of stroke CT images, we also measured the

sensitivity and the positive predictive value associated with the auto-

mated lesion detection. After calculating the number of true positives

(TP), false positives (FP), true negatives (TN) and false negatives (FN),

we quantified the detection sensitivity as TP / (TP + FN) and the

positive predictive value as TP / (TP + FP). Under this formulation,

the DSI can be expressed as 2 × TP / [(FP + TP) + (TP + FN)]. 

In addition, we applied the automated lesion delineation proce-

dure to all stroke CT images collected for the BUCS project, and used

the resulting lesion maps for a voxel-based lesion symptom map-

ping (VLSM) analysis ( Bates et al., 2003 ) to provide an example of
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Fig. 3. Spatial normalization of CT images: quantitative analysis.Using spatial correla- 

tion, we measured the correspondence between the CT image at different preprocessing 

steps (coregistration, first-step normalization, second-step normalization) and the CT 

template. This analysis was performed on a group of 72 control CT images. Average 

and standard deviation values are reported for each processing step. Significant differ- 

ences between correlation values of processing steps, calculated using paired t -tests, 

are indicated in the figure. 

Fig. 4. Lesion detection on simulated data: significance thresholding and image 

smoothing.We assessed the correspondence between the lesion masks used to gen- 

erate the simulated CT images (ground truth) and those obtained by the automated 

lesion detection method on the same images. (A) We tested six different significance 

levels: p < 0.05, p < 0.01 and p < 0.001, with and without correction for multiple 

comparisons. Among them, the significance thresholding at p < 0.05 corrected (indi- 

cated with a light gray bar) was selected. (B) After selecting the significance level, we 

examined the results for smoothing values ranging between 2 and 15 mm full-width 
he potential utility of our method in neuropsychology. This was car- 

ied out in relation to the symptoms of unilateral neglect in patients. 

e selected a global index of the severity of unilateral neglect for 

ach patient ( Humphreys et al., 2011 ) and used available behavioral 

ata from 332 patients (161 females, 73 ± 12 years old) to perform 

LSM. CT images for which no behavioral data were available were 

xcluded from this analysis; we therefore were able to analyze 332 

rain lesions with VLSM. A linear model was fit at each voxel, relating 

he neglect score to lesion intensity (0 for no lesion; 1 for lesion). 

ests were confined to those voxels for which there were at least ten 

atients with and ten patients without a lesion. A statistical thresh- 

ld cut-off ( t -value) was determined based on permutation testing 

 n = 1000) with a significance level of 0.01 ( (Kimberg et al. 2007) ). 

pecifically, we randomly reassigned the patients’ behavioral scores 

000 times, and for each permutated dataset, we refit the GLM and 

ecorded the size of the largest t -values. Based on those values, we 

reated a null distribution against which the significance of the actual 

 -scores obtained by VLSM was then assessed. 

. Results 

.1. Preprocessing of CT images 

One important feature of our lesion mapping method is the pre- 

ise spatial registration of each CT image to a common space, so that a 

oxel-by-voxel statistical comparison could be performed of a single 

troke scan against a group of normal scans. Accordingly, we eval- 

ated the effectiveness of this spatial registration, and specifically 

uantified the improvement in spatial registration across the differ- 

nt image processing steps (coregistration, first-step normalization, 

econd-step-normalization). The analysis of spatial correlations with 

he CT template revealed that each of these steps significantly im- 

roved the spatial registration, resulting in significant increases in 

oving from coregistration to first-step normalization and from first- 

tep normalization to second-step normalization ( Fig. 3 ). 

We visually inspected the normalized images, from control CT 

cans and from stroke CT scans, ensuring that the registration to a 

ommon space proceeded correctly in all cases (see Supplementary 

ig. 3 for some examples). The normalized images from control CT 

cans were processed to create an average map and a standard- 

eviation map ( Supplementary Fig. 4 ), which were then used to de- 

ne normal intensity ranges for lesion mapping. Notably, the average 

T map largely corresponded to the template image. However, the 

tandard deviation map contained relatively higher values near the 

rain contours and the ventricles. This indirectly indicates that inter- 

ubject differences in brain shape were not completely eliminated. 

.2. Detection of simulated lesions 

By comparing the simulated and detected lesion images, we quan- 

ified the performance of the procedure under controlled conditions. 

ere, the DSI was used as a measure of overall spatial overlap be- 

ween simulated and the detected lesions. We started our investi- 

ation on the simulated data by examining the dependence of the 

esion detection results on the degree of smoothing and the level of 

ignificance thresholding. Values producing the highest DSI indicated 

he specific parameters i.e. 5-mm FWHM smoothing and p < 0.05 

onferroni-corrected thresholding needed to optimize automated le- 

ion detection ( Fig. 4 A–B). 

We then selected these parameters for further analyses, and in- 

estigated the performance of the procedure on simulated lesions of 

ifferent sizes and relative intensities. We observed that all configu- 

ations were characterized by reasonably accurate lesion identifica- 

ions, with DSI ranging between 0.52 and 0.89 ( Fig. 5 ). Nevertheless, 

he automated method was relatively less sensitive in the presence 

f lesions that were small in size and / or were characterized by low 
half maximum (FWHM). The selected configuration was 5 mm FWHM (also indicated 

with a light gray bar). 
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Fig. 5. Automated lesion detection on simulated data: effects of lesion size and con- 

trast. We assessed the DSI between the lesion masks used to generate the simulated CT 

images (ground truth) and those obtained by the automated lesion detection method 

using optimal significance thresholding ( p < 0.05 corrected) and image smoothing 

(5 mm FWHM). Specifically, we examined detection performance for spherical lesions 

of 7, 10, 15 and 22 mm radii and intensity increases / decreases of 20%, 40% and 60% 

compared to the mean image intensity. Intensity increases and decreases simulated 

hemorrhagic and ischemic strokes, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Lesion detection accuracy on stroke CT scans.We measured the DSI between 

brain lesions obtained from automated and manual classifications. The 24 cases are di- 

vided into four groups of equal number: group 1, focal hemorrhagic; group 2, extended 

hemorrhagic; group 3, focal ischemic; and group 4, extended ischemic. Each individual 

case is indicated with a diamond marker. The median value across the six elements of 

each group is indicated with a horizontal line. 

Fig. 7. Automated detection of brain lesions from stroke CT scans.In this figure we show 

brain lesions obtained by the automated method on four different cases, each belonging 

to a different group: group 1, focal hemorrhagic; group 2, extended hemorrhagic; group 

3, focal ischemic; and group 4, extended ischemic. Red and blue outlines define the 

lesion area and correspond to significant positive and negative increases, respectively, 

compared to the control group. A minimum cluster size of 1400 voxels (1.4 cm 

3 ) was 

applied to the lesion maps for visualization purposes. 

 

 

 

 

 

 

 

 

 

 

image contrast (i.e. ± 20% deviation from normal intensity values). Fi-

nally, simulated hemorrhagic and ischemic strokes yielded very sim-

ilar average DSI (0.68 and 0.67, respectively). 

3.3. Detection of actual lesions 

We started our analysis of actual CT images by assessing the po-

tential for false positives, using settings determined with the simu-

lated lesion data (smoothing: 5 mm FWHM; significance threshold-

ing: p < 0.05 Bonferroni corrected). We analyzed the five control

scans used in the creation of simulated lesions ( see Methods sec-

tion ), as these were patient scans with no visible lesions. When we

applied our automated lesion delineation procedure, we found that

only 0.013% and 0.145% of the total number of brain voxels showed

significantly positive and negative variations, respectively. Across the

five control images used for the analysis, the number of voxels de-

tected as belonging to a lesion ranged from 1301 to 3714, against a

total number of about 1.6 million voxels in the brain. Subsequently we

proceeded to the analysis of the 24 stroke CTs, comparing the results

of the manual and automated lesion classifications. The automated

procedure was able to recover lesion areas in all cases (see Fig. 6 ). We

observed a substantial variability in the DSI for CT scans within a given

stroke group (hemorrhagic and ischemic, focal and extended strokes).

An analysis of the median values across these four groups revealed

that the performance of the method was generally better for large,

rather than small lesions, and for hemorrhage rather than ischemia

( Fig. 6 ). Complementary analyses suggested that higher DSI in hemor-

rhagic than in ischemic cases was the consequence of a lower number

of false negatives (i.e. greater sensitivity) and improved performance

for larger lesions was associated with a lower number of false posi-

tives compared to true positives (i.e. greater positive predictive value)

( Supplementary Fig. 5 ). 

Visual inspection of the binary maps generated by the automated

method, performed using a cross-hair cursor in MRIcron, confirmed

that the central region of the stroke-induced lesion was always re-

trieved. We found that lesion-boundary reconstructions were precise

in 18 out of 24 cases (see Fig. 7 ). When we inspected cases having rel-

atively low DSI between automated and manual lesion delineations,

we observed that the automated method indicated additional areas

not classified by the manual operator as stroke-related. These areas

were generally characterized by reduced image intensity, which may

be attributed to the presence of brain atrophy ( Fig. 8 ). 

Finally, we evaluated the usefulness of automatically delineated
lesions for large-scale studies of brain–behavior relationships. To this

end, we used neglect severity indices estimated by neuropsycholog-

ical testing in 332 patients and their corresponding CT lesion maps.

The spatial distribution of the lesions across patients was very vari-

able, such that any brain voxel was lesioned in maximum 40 pa-

tients, and almost the whole brain was lesioned in at least 10 patients

(see Fig. 9 A). VLSM analysis yielded regions exclusively in the right

temporo-parietal cortex, with three main clusters in the intraparietal

sulcus, superior longitudinal fasciculus and superior temporal gyrus,

respectively ( Fig. 9B ). This result is in line with previous literature,

which implicated such regions in visuospatial neglect. 
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Fig. 8. Detection of stroke and atrophy on stroke CT scans. In this figure we show two 

cases for which the automated method retrieved lesion areas that are ascribed not only 

to a hemorrhagic or ischemic stroke, but also to brain atrophy. Red and blue outlines 

define the lesion area and correspond to significant positive and negative increases, 

respectively, compared to the control group. A minimum cluster size of 1400 voxels 

(1.4 cm 

3 ) was applied to the lesion maps for visualization purposes. 

Fig. 9. Lesion correlates of visuospatial neglect revealed by VLSM. (A) Lesion overlap 

map for the 332 patients used in the VLSM analysis. (B) VLSM indicated visuospatial 

neglect to be associated with lesions in right intraparietal sulcus (IPS), right superior 

longitudinal fasciculus (SLF) and right superior temporal gyrus (STG). Only significant 

voxels are shown based on a critical threshold determined by permutation testing 

( p < 0.01). 
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. Discussion 

In this study, we have presented a novel method for the automated 

elineation and classification of stroke lesions from brain CT images 

nd have shown its effectiveness for both simulated and real stroke 

esions. Significantly, this automated method can reliably detect brain 

esions with various characteristics, both in terms of size and with 

egard to signal hyper- or hypo-intensity. It has the potential for 

ide application, including aiding in the creation of large patient 

esion databases for use in neuropsychological research (see Fig. 9 for 

n example) or for quantitative lesion analyses which may facilitate 

uture neurorehabilitation protocols. 

Our method has been specifically developed for the analysis of 

troke CT images. It is based on the normalization of the CT scan to a 

ommon space and subsequent comparison to a normative CT sam- 

le for the detection of outlier regions ( Stamatakis and Tyler, 2005 ). 

he method provides an alternative to current techniques including 

hose that rely on rule-based expert systems for labeling background, 
bone, gray and white matter, cerebrospinal fluid, and stroke lesions 

( Matesin et al., 2001 ) and those that use unsupervised learning meth- 

ods based on image histograms and compare the CT images of the two 

hemispheres in order to segment stroke regions ( Usinskas et al., 2004 ). 

It must be pointed out that almost all previously proposed approaches 

were dedicated to the exclusive detection of either hemorrhagic or 

ischemic regions. Only one method has been previously proposed to 

deal with both hemorrhagic and ischemic strokes in CT scans ( Chawla 

et al., 2009 ). This earlier method compared image intensities between 

the two hemispheres, and therefore could not detect bilateral lesions. 

In contrast, our method does not have such a limitation, but classifies 

hemorrhage and ischemia on the basis of significant signal hyper- and 

hypo-intensities, defined in a voxel-by-voxel manner with respect to 

a normative sample. 

One of the most important features of our automated method is 

the accurate normalization of the CT image to MNI space, which is 

achieved in two successive warping steps ( Fig. 1 ) and uses a recently- 

published digital template ( Rorden et al., 2012 ). It is noteworthy that 

our normalization procedure does not require the segmentation of 

gray and white matter voxels, as commonly done in several MR-based 

lesion delineation approaches in order to improve spatial registration 

( Seghier et al., 2008 ). We opted not to include a segmentation step 

in our processing pipeline, as the image contrast in the CT image 

is relatively low, and this procedure can impair segmentation ac- 

curacy ( Rekik et al., 2012 ). Furthermore, we could not simply rely 

on classical MR-based methods for spatial normalization, as these 

typically fail when applied to CT scans ( Rorden et al., 2012 ). To ad- 

dress this problem, we developed a normalization approach tailored 

to low-contrast images, and that incorporated information on brain 

contour and ventricle masks, yielding improved registration to tem- 

plate space. Moreover, spatial registration guided by brain contour 

and ventricle masks significantly reduced the difficulties associated 

with spatial normalization of stroke CT scans, for two main reasons. 

First, hyper- or hypo-intensities in stroke CT scans can confound or 

bias normalization, usually yielding an under- or over-fitting of the 

lesioned region, respectively ( Ripolles et al., 2012 ). This may explain 

the fact that we found higher DSI with simulated lesions having an 

intermediate lesion intensity change ( Fig. 5 ). Secondly, taking into 

account the overall brain morphology helps optimize image normal- 

ization of stroke CT scans because the infarct may distort adjacent 

tissues e.g. by causing midline shifts or constricting the ventricles 

( Rekik et al., 2012 ). 

Our analysis also revealed the limited impact image smoothing 

has on the accuracy of lesion delineation using our automated method 

( Fig. 5B ). Although this result is seemingly at odds with previous MR 

studies ( Stamatakis and Tyler, 2005 ), it may be explained by the fact 

that CT scans typically have lower spatial resolution and are more 

blurred than MR scans. Accordingly, the effects of smoothing are not 

apparent at the level of the single image. The use of spatial smoothing 

is nonetheless justified by the necessity of accounting for inter-subject 

anatomical variability and to satisfy the assumption of normality for 

parametric tests. Consistent with MR studies, smoothing values with 

a kernel that is comparable to the minimum lesion size appeared to 

ensure optimal performance of the automated method ( Stamatakis 

and Tyler, 2005 ). Larger smoothing values are presumed to penalize 

the detection of small lesions, as these tend to become blended with 

the background signal surrounding the lesion itself. It is also worth 

noting that smoothing may have an impact on the precise delineation 

of lesion boundaries ( Seghier et al., 2008 ). Indeed, strokes do not 

present as a uniformly reduced signal with respect to normal tissue, 

but display smaller decreases on the borders and larger decreases 

towards the center of the lesion ( Rekik et al., 2012 ). This implies that 

our method is generally less accurate at the borders than at the center 

of the lesion. 
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Our automated method implements a statistical mapping ap-

proach based on the Crawford–Howell t -test for case–control com-

parisons, a robust and widely used approach in other research ar-

eas, such as neuropsychology ( Crawford et al., 2009 ; Crawford and

Howell, 1998 ). Critically, such comparisons between images of brain-

damaged and healthy subjects assume that differences relate only

to the presence or absence of abnormal tissue. Thus, it is important

to minimize potential differences arising from demographics, par-

ticularly age, by selecting appropriately-matched control CT scans

or by factoring out these variables within the statistical framework

( Crawford et al., 2011 ). For instance, the comparison of an elderly

stroke patient to younger control subjects might detect abnormal

voxels representing atrophy rather than a real injury produced by

stroke ( Earnest et al., 1979 ). The degree of abnormality is expressed

in terms of t -scores, hence provides quantification on a continuous

scale. Furthermore, based on the t -score maps, we delineated dam-

aged areas by binarization, using a preset significance level to define

a cut-off value: regions with t -scores larger than a positive threshold

value were classified as resulting from hemorrhage; conversely, those

with t -scores smaller than a negative threshold value were classified

as caused by ischemia. The resulting lesion map, generated within

stereotaxic space, can easily be compared with a given brain atlas for

lesion overlap and lesion–symptom mapping analyses ( Bates et al.,

2003 ). 

During the evaluation of our method on actual lesions, we used

manual classification as the reference for calculating the DSI. The au-

tomated lesion detection method generated lesion maps that were

always spatially consistent with the manual detection in terms of le-

sion location, and in many cases the correspondence of automated and

manual lesion maps was striking ( Fig. 6 ). On stroke CT scans, we found

that larger lesions were delineated more accurately than small lesions.

This may be not only an effect of smoothing, as discussed above, but

also a consequence of a different surface-to-volume ratio in larger le-

sions. Furthermore, the detection of hemorrhagic stroke lesions was

generally more reliable than that for ischemic strokes. This may sim-

ply be due to the fact that lesion boundaries in the CT images are

typically better defined for hemorrhagic than ischemic strokes. How-

ever, there may also be alternative explanations. We observed that

the analysis of CT images from participants without stroke yielded

about ten times more voxels with significantly reduced (0.145%) than

with significantly increased intensities (0.013%). It should be con-

sidered that the detection of areas with hypo-intense signals in the

CT scans might not only be the result of ischemic stroke lesions but

could also represent brain atrophy ( Fjell et al., 2009 ; Yamaura et al.,

1980 ). Consistent with this possibility, we found that in some cases

the automated method detected brain regions that were not manually

delineated, and that were compatible with brain atrophy ( Fig. 8 ). It

is important to consider that brain atrophy, especially in the chronic

phase, may be a consequence of diaschisis induced by the lesion itself

( Price et al., 2001 ). In the first instance, the inability to discriminate

between ischemic stroke and atrophy may be considered a limita-

tion of our method. On the other hand, it might also be important to

consider not only brain lesions but also brain atrophy in attempts to

account for behavioral deficits in terms of lesion–symptom maps or

prediction, as the atrophy could contribute to the behavioral symp-

toms. 

With regard to the lesions resulting from stroke, we noticed that

boundaries did not completely correspond to those obtained by man-

ual delineation ( Fig. 7 ). This may be ascribed to the methodological

limitations of spatial normalization, smoothing and statistical map-

ping discussed above. It should be noted that the precise definition

of lesion boundaries on stroke CTs is not straightforward, even with

the manual approach ( van der Worp et al., 2001 ), due to the limited

spatial resolution and contrast of CT images. In future research, we

hope to further develop our method so as to improve the degree of

correspondence with manually-delineated lesions. Possible solutions
could involve the detection of adaptive smoothing approaches to bet-

ter preserve lesion features in stroke CT scans ( Tsai et al., 2005 ) and the

use of Bayesian statistics to control for the effect of demographic vari-

ables in comparisons between single patients and controls ( Crawford

et al., 2011 ). 

5. Conclusion 

We have validated a fully-automated method for lesion detec-

tion and classification in CT stroke scans. This relies on the spatial

alignment to the CT image to template space and the detection of

voxel outliers based on a group of control CT images. Manual trac-

ing methods remain the standard technique for delineating damaged

brain regions; nevertheless our approach has important advantages:

it is fully automated, produces lesion images in a common MNI space

which is useful for lesion–symptom mapping, can deliver significant

time savings and eliminates inter-operator differences that are intrin-

sic to the manual approach. These benefits may prove critical for the

development of novel applications, such as the creation of large-scale

lesion databases for use in neuropsychological research. Our method

can also provide quantitative information about lesion extent and lo-

cation, which may be used to trace longitudinal changes in damaged

tissue in a reproducible and objective manner. 
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