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Abstract: Parkinson’s Disease (PD) is a widespread severe neurodegenerative disease that is char-
acterized by pronounced deficiency of the dopaminergic system and disruption of the function of
other neuromodulator systems. Although heritable genetic factors contribute significantly to PD
pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic
risk factors. Due to that, it could be inferred that changes in gene expression could be important for
explaining a significant percentage of PD cases. One of the ways to investigate such changes, while
minimizing the effect of genetic factors on experiment, are the study of PD discordant monozygotic
twins. In the course of the analysis of transcriptome data obtained from IPSC and NPCs, 20 and 1906
differentially expressed genes were identified respectively. We have observed an overexpression of
TNF in NPC cultures, derived from twin with PD. Through investigation of gene interactions and
gene involvement in biological processes, we have arrived to a hypothesis that TNF could play a
crucial role in PD-related changes occurring in NPC derived from twins with PD, and identified
INHBA, WNT7A and DKK1 as possible downstream effectors of TNF.

Keywords: transcriptome; Parkinson’s disease; monozygotic twins; differentiation; neuronal progenitor
cells; induced pluripotent cells

1. Introduction

Parkinson’s Disease (PD) is a severe neurodegenerative disease that affects one to two
individuals per thousand in the total population, and approximately 1% of the population
over 60 years of age [1]. Pronounced deficiency of the dopaminergic (DA) system and
disruption of the function of other neuromodulator systems are crucial traits of PD [2,3].
The classic motor symptoms of PD include bradykinesia, tremor, muscle rigidity, and
postural instability. In addition to motor symptoms, patients suffering from PD can
experience hyposmia, sleep disturbance, depression, and dysautonomic symptoms such
as constipation [4]. These symptoms develop against the background of an inevitable
progression to the death of DA neurons in the substantia nigra. Non-motor symptoms
usually develop at earlier stages of PD progression, whereas motor symptoms only appear
after the death of over 50% of DA neurons and a 70–80% reduction of dopamine levels in
the striatum [5,6].

It is widely known that heritable genetic factors, such as singular rare highly penetrant
variants or risk factors identified in association studies, contribute significantly to PD
pathogenesis [7–10]. Although most cases of PD are considered to be sporadic, only a small
percentage of sporadic cases of PD can be explained using known genetic risk factors [8].
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Due to that, it could be inferred that changes in gene expression could be important
for explaining a significant percentage of PD cases. One of the ways to investigate such
changes, while minimizing the effect of genetic factors on experiment, are the study of PD
discordant monozygotic twins.

Few studies have investigated molecular markers in discordant monozygotic twins
with PD. In a study published in 2014, Woodard et al. measured neuronal differentiation
efficiency, GBA enzyme activity, and alpha-synuclein levels in cells derived from discordant
twins with PD carrying an N370S mutation in the GBA gene. That study demonstrated
that the N370S mutation inhibits the transport of alpha-synuclein out of the cell [11].
In a study reported in 2017, Kaut et al. analyzed genomic methylation in a cohort of
62 discordant siblings with PD, including 24 monozygotic twins. Overall, 62 differential
methylation sites in proximity of 15 genes were identified in the twins. Concomitantly,
during validation using an independent population of patients with PD, only three genes
were identified as carrying multiple confirmed differential methylation sites: TRIM34,
PDE4D, and MIR886 [12]. In a 2020 study by Mazetti et al., the authors investigated the
accumulation of oligomeric alpha-synuclein in skin biopsies of patients with sporadic PD
and in 19 pairs of discordant monozygotic twins with PD. It was confirmed that oligomeric
alpha-synuclein accumulates in the synaptic terminals of autonomous nerve fibers in twins
suffering from PD [13]. In 2021, Dulovic-Mahlow et al. conducted full genome sequencing,
deep mitochondrial DNA sequencing, and mitochondria integrity assessment on fibroblasts
derived from five pairs of discordant twins with PD. In that study, changes in mitochondrial
morphology, upregulation of the SOD2 protein, and a reduction in cellular ATP levels were
observed in the fibroblasts derived from twins with PD [14]. As evidenced in the studies
mentioned above, no transcriptomic profiling of gene expression in discordant twins with
PD has been conducted. Therefore, such an investigation appears to be a novel, important
direction of research in this field.

In our previous study, we analyzed the transcriptomes of fibroblasts derived from
discordant twins with PD. We identified common differentially expressed genes (DEGs)
between discordant twins with PD, including genes related to biological processes such as
action potential, glutamatergic synaptic transmission, and adipocyte differentiation [15].

In the present study, we performed a transcriptomic analysis of induced pluripotent
stem cells (IPSCs) and neuronal progenitor cells (NPCs) derived from fibroblasts collected
from discordant twins with PD.

2. Materials and Methods
2.1. Discordant Monozygotic Twins with PD

Two pairs of phenotypically and genetically discordant monozygotic twins with PD
were enrolled in the study. These individuals (of Russian ethnic origin and residing in
European Russia) were diagnosed at the State Public Health Institution Primorsk Regional
Clinical Hospital No. 1 and did not have any family history of PD. The participants
were assessed according to the International Parkinson and Movement Disorder Society-
sponsored Unified Parkinson’s Disease Rating Scale [16] and Hoehn–Yahr scores [17]. The
diagnosis of PD was based on the UK Parkinson’s Disease Society Brain Bank criteria [18].
Patients were at stages 2–4 of the Hoehn–Yahr scale and had a mixed form of PD. The
disease duration was at least 7 years. The healthy siblings did not have any signs of PD
at the time of collection of the biological material. The twins lived in the same area, and
their work was not associated with dangerous factors, such as pesticides or heavy metals.
There was no information about the presence of head injuries in their history [15]. Sex, age,
and stage of the disease are presented in Table S1. All patients were pre-typed using the
P051-50 (lot C2-0911) and P052-50 (lot C1-0809) probe sets and EK1-FAM reagent kit for
the SALSA MLPA MLPR (MRC-Holland, Amsterdam, The Netherlands) according to the
manufacturer’s recommendations; none of them had any frequent mutations associated
with pathogenesis of the PD.
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2.2. Skin Biopsy and Obtaining the Primary Culture of Skin Fibroblasts

The fibroblasts used in this study were obtained previously as described in reference [15].

2.3. IPSC Reprogramming and Cultivation

IPSC reprogramming was achieved using a non-integrational Sendai virus (CytoTune-
iPS 2.0 Sendai Reprogramming Kit, Invitrogen, Waltham, MA, USA), in accordance with
the manufacturer’s recommendations. Mouse embryonic fibroblasts (MEFs) were used as
a substrate. Live-cell TRA-1-60 antibody staining was carried out 21–29 days after IPSC
colony emergence using a mouse anti-human mAb and an AlexaFluor 488 Conjugate Kit
for Live Cell Imaging. TRA-1-60 is a surface protein that is considered to be a pluripotency
marker. Staining was used to identify individual clones for further propagation. Stained
colonies were mechanically transported to a 24-well plate containing a prepared substrate
of inactivated MEFs. To confirm the success of IPSC cell reprogramming, cell lines were
examined for the presence of pluripotency markers and the ability to form three germ
layers. The obtained IPSC lines were cultivated on Matrigel (BD Biosciences, San Jose,
CA, USA) substrate in mTeSR medium (STEM CELL Technologies, Vancouver, Canada) at
high humidity, 37 ◦C, and 5% CO2. Cells were passaged 1:2 or 1:3 every 5–6 days using
1 mg/mL of dispase (Invitrogen, Waltham, MA, USA). During reseeding, a ROCK inhibitor
(StemoleculeY27632, Stemgent, Beltsville, MD, USA) was added to the medium at a final
concentration of 5 µM.

2.4. Differentiation and Cultivation of Neuronal Progenitor Cells

After IPSCs had reached the monolayer stage, the mTeSR medium (STEM CELL
Technologies, Vancouver, Canada) was replaced with neuronal differentiation medium
((DMEM/F12 (Gibco, Waltham, MA, USA), 2% serum replacement (Gibco, Waltham, MA,
USA), 1% N2 additive (Gibco), 2 mM glutamine (ICN Biomedicals, Costa Mesa, CA, USA),
1% amino acid mix (PanEco, Moscow, Russia), 50 U/mL of penicillin–streptomycin (PanEco,
Russia), 80 ng/mL of Noggin (PeproTech, East Windsor, NJ, USA), and 10 µM SB431542
(Stemgent, Beltsville, MD, USA)). Cells were cultivated in this medium for 12–14 days.
Subsequently, cells were reseeded on Matrigel-treated dishes (BD Biosciences, San Jose,
CA, USA) in neuronal differentiation medium with addition of 5 µM ROCK inhibitor
(StemoleculeY27632, Stemgent, Beltsville, MD, USA). NPCs collected after three to five
passages were used for RNA isolation.

2.5. Embryoid Bodies Formation

IPSC colonies were detached using dispase (Gibco, Waltham, MA, USA). In order to
do that, the culture medium was removed, cells were rinsed using DMEM medium with
1 mL of added dipase (1 mg/mL) per 35 mm dish, incubated at 37 ◦C for 7–10 min. Then
dispase solution was removed and dish was rinsed 5 times with 1 mL of DMEM medium.
After that 1 mL of the mTeSr culutre medium was added.

Colonies were scraped off using 200 µL plastic tip. After scraping off they were
carefully dissociated in 400–600 cell fragments and transferred into 24-well Ultra low
adhesion plates (Costar, Moscow, Russia, Ultra-Low Attachment Surface). Next day, when
IPSC have formed embryoid bodies (EB) half of the volume of medium were replaced
with EB cultivation medium (DMEM/F12 (Gibco, Waltham, MA, USA), 20% FBS (Hyclone,
Logan, UT, USA), 2 mM L-glutamin (ICN Biomedicals, Costa Mesa, CA, USA), 0.1 mM
β-mercaptoethanol (SIGMA, Saint Louis, MO, USA), 1% mix of non-essential amino acids
(PanEco, Moscow, Russia), penicillin-streptomycin (PanEco, Moscow, Russia) (50 µL/mL).
This partial replacement was conducted daily, until the cultural medium was completely
replaced with EB cultivation medium. After that medium was replaced bi-daily.

2.6. Spontaneous IPSC Differentiation into Derivates of Three Germ Layers

To obtain meso-, ecto- and ento-dermal derivates of germ layers 3–4 days old EB
were transferred to gelatine coated Petri dishes with the EB cultivation medium. EB were
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cultivated for 21 days. Medium was replaced every 48 h. On 22 day of cultivation cells
were fixed using 4% paraformaldehyde (SIGMA, Saint Louis, MO, USA),

2.7. Immunocyto Chemical Staining of Cell Cultures

Cells were rinsed with PBS solution (ICN Biomedicals, Costa Mesa, CA, USA) and
fixed in 4% paraformaldehyde (SIGMA, Saint Louis, MO, USA) for 20 min at room temper-
ature. After fixation they were rinsed three more times in PBS solution and incubated in
PBS—0.1% Triton x-100—5% serum for 15 to permeabilize them and reduce the non-specific
anti-body sorbtion.

Following that, cells were incubated in PBS—0.1% Triton x-100—5% solution with
specific anti-bodies for a night at +4 ◦C. Then cells were rinsed in PBS—0.1% Tween 20
solution three times. After that they were incubated in PBS—0.1% Triton x-100—5% with
secondary anti-bodies, stained with fluorescent marker for 1.5 h at room temperature.

Following incubation with secondary antibodies they were again rinsed three times in
PBS—0.1% Tween 20 solution, they were incubated in solution of 0.1 µg/mL solution of
DAPI (SIGMA, Saint Louis, MO, USA) for 1 min, and then once again rinsed three times in
PBS—0.1% Tween 20 solution.

Results were visualized using AxioImage (ZEISS, Oberkochen, Germany) microscope.

2.8. Primary Anti-Bodies

To identify expression of pluripotency markers following antibodies were used (Ab-
cam, Cambridge, MA, USA):

- rabbit polyclonal Anti- OCT4
- mice monoclonal Anti-SSEA-4

To identify the potency os IPSC to differentiate into derivatives of three germ layers
following antibodies were used (Abcam, Cambridge, MA, USA):

- mice monoclonal anti-Sox1—ectodermal marker
- rabbit polyclonal anti-desmine—mesodermal marker
- mice monoclonal anti-AFP—entodermal marker

To confirm the differentiation into NPC following antibodies were used (Abcam,
Cambridge, MA, USA):

- mice monoclonal Anti-Sox1

2.9. Secondary Antibodies

Following antibodies were used as secondary:

- goat anti-mice Alexa Fluor 488, (A11001) 1/2000
- goat anti-rabbit Alexa Fluor 546, (A11010), 1/2000
- goat anti-chicken Alexa Fluor 546, (A11040), 1/3000 (Invitrogen, Waltham, MA, USA)

2.10. Karyotype Analysis

Karyotype of iPSCs was defined using G-banding at a resolution of 400 bands with
20 metaphase plates being analyzed. Colcemid was used in the final concentration of
0.2 µg/mL. Metaphases were scored using a Metafer semi-automated system and IKAROS
software (MetaSystems GmbH, Altlussheim, Germany).

2.11. RNA Isolation and Sequencing

Three replications for each sample and each cell culture (2 patients × 2 conditions
× 2 cultures × 3 replicates = 24 total) were used for isolation and sequencing. RNA was
isolated using Trisol (Invitrogen, Waltham, MA, USA) in accordance to manufacturer’s
recommendations.

Quality and quantity of isolated RNA was evaluated using «BioAnalyser» tool and
RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). Poly(A) fraction was extracted from
total RNA for sequencing. Libraries for sequencing were prepared from poly(A) fraction
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using NEBNext® mRNA Library Perp Reagent Set (NEB, Rowley, MA, USA). Sequencing
was performed using HiSeq1500 (Illumina, San Diego, CA, USA), obtaining no less than
10 mln. 50 bp reads per library.

2.12. RNA-Seq Data Analysis

FASTQ file, generated during sequencing were trimmed for ambiguous and low qual-
ity bases using AdapterRemovalV2 [19]. Transcriptome for mapping was generated using
human genome GRCH38 and gene annotation GRCH38.92 using RSEM [20] command
rsem-prepare-reference with –star option enabled to also generate STAR indices [21].

Mapping was performed using STAR and RSEM, command rsem-calculate-expression
with —star option enabled. Obtained pseudocounts were normalized using TMM algo-
rithm, implemented in command «calcNormFactors» from R package «edgeR», [22] and
CPM algorithm, implemented in “voom” command from R package “limma” [23].

To identify the differential expression, normalized reads were processed using com-
mands “voom” (estimating mean/dispersion ratio, calculating observation weights), “lm-
Fit” (fitting a linear model for contrasts) and “eBayes” (calculating parameters of the linear
model) from R package “limma” [23].

Genes were considered to be differentially expressed based on criteria of FC > 1.5 and
p-value of moderated t test from limma with FDR correction < 0.05.

2.13. GO BP Term Enrichment

Gene Ontology Biological Processes (GO BP) [24] term enrichment was conducted
using apps ClueGO v. 2.5.3 [25] and Cluepedia v. 1.5.3 [26] for Cytoscape v. 3.6.1.

Significantly enriched terms were selected based on one sided hypergeometric tests
with Bonferroni correction (corrected p–value < 0.001). Term groups were formed based on
common genes per term (>40%). Only GO BP terms of higher than 4th level with at least
3 DEGs associated with them were considered for enrichment. Also terms, for which at
least 10% of total associated genes were not differentially expressed were not considered
for enrichment.

Visualization of relations between terms and associated genes was performed by
ClueGO v. 2.5.3 and Cluepedia v. 1.5.3.

2.14. Network of Interaction of Genes and Metabolic Processes

Gene and metabolic process interaction networks were created using Pathway Studio®

v. 12.1.0.9 (Elsevier, Amsterdam, The Netherlands). While creating networks only interac-
tions, supported by at least 2 sources, were considered.

3. Results
3.1. Cell Culture Characterization

Cell culture characterization can be found in Supplementary Text S1.
Whole-transcriptome analyses of IPSCs and NPCs obtained from two pairs of dis-

cordant twins with PD were performed. A comparison of the levels of gene expression
between the twins who were healthy and those who had PD was carried out, and DEGs
were identified.

3.2. IPSC Transcriptome Analysis

In the course of the IPSC transcriptome analysis, 20 DEGs (DEG IPSC) were identified.
A full list of DEG IPSC is provided in Table S2. Top 3 genes up- and down-regulated by fold
change are provided in Table 1. A Gene Ontology Biological Processes (GO BP) enrichment
was conducted for DEG IPSC; however, no significantly enriched terms were identified.

Gene interaction networks were built based on PW Studio information about the
interaction of DEGs and PD, their expression in neurons and neural stem cells, and their in-
teraction with biological processes, as identified using the key words “neurodegeneration”,
“transport”, “vesicular”, “mitochondria”, “lysosome”, “oxidative stress”, “apoptosis”, and
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“autophagy”. Four DEGs (NR2F2, P2RY12, DDX43, and BLNK) were connected to afore-
mentioned biological processes: two were connected to neurons (NR2F2 and P2RY12) and
one to PD (Figure 1).

Table 1. Top 3 DEGs up- and down-regulated by fold change in IPSC.

Ensembl_ID Gene Symbol

FC
(Gene Expression in IPSC, Derived from
Twins with PD/Gene Expression in IPSC,

Derived from Healthy Twins)

p-Value with FDR
Adjustment

ENSG00000279483 AC090498.1 195 2.91 × 10−4

ENSG00000188985 DHFRP1 91 3.61 × 10−3

ENSG00000273213 H3-2 11 3.20 × 10−2

ENSG00000263798 AC018521.1 0.023 2.27 × 10−3

ENSG00000196350 ZNF729 0.016 1.13 × 10−3

ENSG00000263711 LINC02864 0.003 1.61 × 10−4
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Figure 1. DEG IPSC interaction with neurons, neural stem cells, PD and biological processes, identified using key
words “neurodegeneration”, “transport”, “vesicular”, “mitochondria”, “lysosome”, “oxidative stress”, “apoptosis” and
“autophagy” according to Pathway Studio data. Genes, overexpressed in IPSC derived from twins with PD, as compared
to IPSC derived from healthy twins are highlighted red. Genes, underexpressed in IPSC derived from twins with PD, as
compared to IPSC derived from healthy twins are highlighted green.

3.3. NPC Transcriptome Analysis

In the course of the NPC transcriptome analysis, 1906 DEGs (DEG NPC) were identi-
fied. A full list of DEG NPC is provided in Table S3. Top 5 genes up- and down-regulated
by fold change are provided in Table 2.
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Table 2. Top 5 DEGs up- and down-regulated by fold change in NPC.

Ensembl_ID Gene Symbol

FC
(Gene Expression in NPC, Derived from
Twins with PD/Gene Expression in NPC,

Derived from Healthy Twins)

p-Value with FDR
Adjustment

ENSG00000279483 AC090498.1 264 4.96 × 10−6

ENSG00000214548 MEG3 162 2.99 × 10−3

ENSG00000181634 TNFSF15 105 2.99× 10−3

ENSG00000130300 PLVAP 31 1.38 × 10−5

ENSG00000181885 CLDN7 28 1.31 × 10−3

ENSG00000197705 KLHL14 0.033 2.02 × 10−2

ENSG00000022556 NLRP2 0.032 3.70 × 10−3

ENSG00000110077 MS4A6A 0.012 4.87 × 10−4

ENSG00000196109 ZNF676 0.012 1.64 × 10−4

ENSG00000263711 LINC02864 0.002 1.33 × 10−8

The obtained DEG NPC were used for GO BP enrichment. Significantly enriched
terms were grouped based on the percentage of common genes (>40% common genes).
Three groups consisting of 12 significantly enriched terms were identified (Table 3, Figure 2).

Groups I and II were identified as being most promising for further investigation
because they are directly linked to neuronal differentiation. An additional analysis of
these groups was performed (Figure 3). A total of 90 DEGs were associated with at least
two terms, including 27 associated with terms from groups I and II simultaneously, as well
as 23 associated with at least two terms from group I and 40 with at least two terms from
group II.

Twenty-seven DEG NPC associated with terms from groups I and II were selected
for further investigation. An interaction network was built in Pathway Studio for these
genes using key words such as “Parkinson”, “neurodegeneration”, “transport”, “vesicular”,
“mitochondria”, “lysosome”, “oxidative stress”, “apoptosis”, and “autophagy” (Figure 4).
For visual clarity regarding processes and genes, those connected to only a single or no
other genes were removed from the analysis. Excessive and redundant terms and diseases
not connected to PD were also removed.

Twenty of 27 genes interacted with PD or the aforementioned biological processes.
Those genes were selected for further investigation as the most promising candidates from
the standpoint of their connection to PD.

Table 3. Significantly enriched GO BP terms for DEG NPC.

GO Term GO Group Number Of DEG,
Associated with Term

Percentage of DEG
among All Genes,

Associated with the Term

Bonferroni
Adjustment p-Value of
Hypergeometric Test

for Enrichment

nervous system development

I

60 18.93 6.39 × 10−3

neurogenesis 46 22.89 3.78 × 10−4

generation of neurons 41 22.40 2.88 × 10−3

neuron differentiation 37 22.70 6.29 × 10−3
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Table 3. Cont.

GO Term GO Group Number Of DEG,
Associated with Term

Percentage of DEG
among All Genes,

Associated with the Term

Bonferroni
Adjustment p-Value of
Hypergeometric Test

for Enrichment

anatomical structure
morphogenesis

II

88 19.13 2.10 × 10−5

tube development 37 23.57 2.47 × 10−3

tube morphogenesis 33 24.26 4.34 × 10−3

animal organ morphogenesis 46 23.96 8.95 × 10−5

regulation of
metabolic process

III

202 14.09 3.52 × 10−3

cellular biosynthetic process 167 15.24 2.42 × 10−4

organic substance
biosynthetic process 169 15.21 2.22 × 10−4

regulation of cellular
metabolic process 174 14.49 4.23 × 10−3
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Six genes were identified as being differentially expressed in the same direction in
both NPCs and IPSCs: DDX43, P2RY12, ZNF729, LINC02864, AC018521.1, and AC090498.1.

An interaction network of the previously identified most promising DEG IPSC (DEG
in Figure 1) and DEG NPC (DEG in Figure 4) was constructed (Figure 5). After identifying
all interactions between genes, PD, and neurodegeneration, all genes that did not exhibit
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any interaction with at least one other gene or term were removed from the analysis. As
a result, two DEG IPSC (P2RY12 and NR2F2) and nine DEG NPC (P2RY12, TNF, PITX3,
GRID2, INHBA, DLL4, WNT7A, DKK1, and FGF19) were identified. NR2F2 has been shown
to interact with TNF and DLL4, whereas P2RY12 interacts only with TNF.
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green. Non highlighted genes are underexpressed in IPSC, derived from twins with PD as compared to IPSC, derived from
healthy twins.

4. Discussion

Despite the fact that PD mostly affects the central nervous system (CNS), PD patho-
genesis can also affect peripheral tissues and non-neuronal cells [27]. This is also consistent
with the results obtained in our previous work, which demonstrated significant differences
between the expression profiles obtained from the fibroblasts of discordant monozygotic
twins with PD [15]. One of the explanations for this observation would be that those differ-
ences are the result of subtle changes that occur at the earliest states of disease ontogenesis.
To test this hypothesis, a transcriptomic profiling of IPSCs and NPCs differentiated from
IPSCs obtained from discordant monozygotic twins with PD was performed.

In the course of the transcriptomic profiling of IPSCs, 20 DEGs (DEG IPSC) were
identified between the twins who were healthy and those who had PD. No significantly en-
riched GO BP were identified for DEG IPSC. Thus, no involvement of metabolic processes
at the genomic level could be identified. In the next step, investigations of the interactions
between DEG IPSC, PD, neurons and neuronal stem cells, and various PD-relevant biologi-
cal processes were performed using Pathway Studio (Figure 1). We detected interactions of
four of 20 DEG IPSC with biological processes that are important for PD, such as apoptosis,
oxidative stress, and mitochondrial damage. Moreover, a direct interaction between NR2F2
and PD was identified. An additional literature analysis identified interactions between
those four genes and PD, thereby uncovering a possible connection between P2RY12 and
PD [28,29]. Interactions between NR2F2 and P2RY12 and neurons have been also identified.
Because of the potential link between PD, neurons, NR2F2, and P2RY12, these two genes
were identified as being most promising for further investigation.
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P2RY12 encodes the purinergic receptor P2RY12. P2RY12 is expressed in a variety of
tissues [30,31]. This receptor is also expressed during CNS development, starting from
the embryonic stage [32]; moreover, in the adult CNS, it is expressed in microglia [32,33].
The P2RY12 protein can be considered a marker of activated microglia, as its expression is
reduced during neuroinflammation [32].

Several studies have demonstrated a putative relationship between P2RY12 and PD.
Using a meta–analysis of genome-wide association study data, Andersen et al. identified a
significant association between P2RY12 and PD [29]. Using machine learning models, Shen
et al. found that changes in the expression of P2RY12 were a predictor of PD [28].

In general, such associative data do not allow the understanding of how a specific
gene is involved in the pathogenesis of a particular disease. To elucidate the potential role
of genes in PD pathogenesis, the interactions between genes and biological processes with
known relation to PD, such as apoptosis [34–36], autophagy [34,35], vesicular transport [37],
mitochondria damage [38] and oxidative stress [39], have been investigated.

Currently, the data linking P2RY12 to apoptosis are ambiguous. Sun et al. demon-
strated that the activation of P2RY12 is a pro-apoptotic factor [40]; conversely, Mame-
dova et al. showed that the activation of P2RY12 could be an anti-apoptotic factor [41].
Nevertheless, these two studies can be taken as evidence that P2RY12 is a regulator of
TNF-alpha-mediated apoptosis.

Furthermore, it has been demonstrated that the suppression of P2RY12 expression
leads to autophagy-mediated cell death [42] and to the suppression of oxidative stress
during inflammation [43].

Thus, data currently exist that point to a link between P2RY12 and PD and the regula-
tion of PD-relevant processes such as apoptosis, autophagy, and oxidative stress. Therefore,
its differential expression in IPSCs obtained from discordant monozygotic twins with PD
is probably specific to PD and may reflect processes occurring in the CNS, particularly
in microglia.

The NR2F2 gene encodes an orphan nuclear receptor that is an important differentia-
tion regulator and plays a role in the homeostasis of various tissues. Despite the fact that
its expression peaks during the embryonic stage of development, changes in its expression
could be linked to various diseases [44].

Other sets of data suggest that overexpression of NR2F2 could be associated with
PD. In several works involving PD models and tissues derived from patients with PD,
its overexpression was identified in the substantia nigra [45] and DA neurons [46–50]. In
addition, the association between NR2F2 overexpression and oxidative stress has been
demonstrated [49]. The important role that oxidative stress plays in the pathogenesis of
PD suggests that NR2F2 is linked to PD through oxidative stress.

Despite the fact that the literature implies a link between the increased expression
of NR2F2 and PD, in our data, a significant decrease in the expression of this gene was
identified in IPSCs derived from twins with PD. A possible explanation for this fact could
be that the downregulation of NR2F2 is a compensatory mechanism that occurs in response
to oxidative stress. This hypothesis is supported by the fact that a reduction in NR2F2
expression in vivo slows down the progression of motor symptoms and neurodegeneration
and supports the level of dopamine in the striatum [49]. Thus, the observed decrease
in the expression of NR2F2 in IPSCs derived from twins with PD could be related to a
compensatory reaction to oxidative stress in this disease.

In the course of the analysis of transcriptome data obtained from NPCs, 1906 DEGs
(DEG NPC) were identified. It is noteworthy that this represents a significant increase com-
pared with that observed for IPSCs: from 20 DEG IPSC to 1906 DEG NPC (Tables S2 and S3).
It is also noteworthy that such significant differences between IPSCs and NPCs cannot be
related to genomic differences, as the cell lines were derived from monozygotic twins. A
possible explanation for this observation would be the involvement of additional genes reg-
ulated by DEG IPSC during differentiation. First, one or more DEG IPSC themselves could
be “master regulators” of genes that are enabled at the NPC level and directly regulate
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the expression of multiple NPC genes. Alternatively, DEG IPSC could regulate a “master
regulator” of NPC genes. It is noteworthy that NR2F2 was not differentially expressed at
the NPC level, which precludes it from acting as a putative “master regulator”. To explore
which genes could act as this putative master regulator of NPC genes and cause such
massive increases in the number of DEG NPC compared with DEG IPSC, we analyzed the
functions, interactions, and relationships to DEG IPSC of DEG NPC further.

The GO BP enrichment analysis identified three groups of biological processes that
were significantly enriched among DEG NPC (Figure 2). Group I included processes
related to neurogenesis and the differentiation of neurons; group II encompassed processes
related to the morphogenesis of anatomical structures, particularly the neural tube; and
group III included processes related to biosynthetic and metabolic regulation. The most
promising entities for further investigation were the genes that were involved in both
group I and group II (Figure 3) because they are directly related to differentiation and
their presence implies that neuron-predecessor differentiation is proceeding in different
directions between the twins who are healthy and those who have PD. Overall, 27 such
genes were identified. The links between these genes and PD and biological processes that
are important for PD were investigated (Figure 4), and as a result, 20 genes exhibiting such
links were identified.

As mentioned previously, the increased divergence between healthy and PD transcrip-
tomes from IPSCs to NPCs could be explained by the existence of a “master regulator”
and/or regulator of the “master regulator” of NPC genes among DEG IPSC. To investigate
this hypothesis, links between DEG IPSC related to PD and biological processes important
for PD (Figure 1) and the DEG NPC involved in groups I and II of GO BP and related to
PD and biological processes significant for PD (Figure 4) were investigated. As a result, an
interaction network of those genes was constructed (Figure 5).

NR2F2 and P2RY12 are the only genes among DEG IPSC for which a link to PD has
been previously identified. These genes are only connected to DEG NPC through TNF
and DLL4 (Figure 5), which is incongruent with the hypothesis of them being “master
regulators” of DEG NPC related to PD. In turn, TNF was linked to five of eight genes in the
interaction network, which renders it a better candidate for the role of putative “master
regulator” of DEG NPC related to PD.

Currently, data exist that suggest a connection between NR2F2, P2RY12, and TNF. As
mentioned above, P2RY12 is involved in TNF-mediated apoptosis [40,41]. Moreover, it
has been demonstrated that P2RY12 regulates the expression of several pro-inflammatory
cytokines, including TNF, in microglial cell culture [51]. Yi et al. reported a co-dependent
and co-directed change in the expression of P2RY12 and TNF [52].

Data also exist that link NR2F2 and TNF. In 2014, Litchfield et al. demonstrated
that the overexpression of NR2F2 leads to the downregulation of TNF-alpha-induced
NFκB [53]. Moreover, the introduction of TNF-alpha led to a decrease in NR2F2 expression
in endometrial stroma [54]. These data imply that NR2F2 suppresses TNF-mediated
signaling, and that TNF in turn suppresses NR2F2 expression.

The TNF gene encodes the pro-inflammatory cytokine TNF, also known as TNF-alpha,
which plays a major role in multiple diseases and conditions, including neurodegenerative
diseases such as PD and Alzheimer’s disease [55].

Currently, a large body of data exists in support of a connection between TNF
and PD [55]. Some of the most significant points among those data are the studies
that demonstrated that the suppression of TNF expression leads to a reduced risk of
PD [56,57], a reduction of DA neuron loss in the substantia nigra, and the amelioration of
neuroinflammation [58]. Furthermore, several works revealed an association between TNF
polymorphisms and the risk of developing PD [59–63]. Increased levels of TNF have been
detected in the spinal fluid [64], blood serum [65] and tears [66] of patients with PD.

Therefore, the correlation between TNF overexpression and PD development appears
to be undoubtable. Our data also support this relationship, as TNF expression was increased
in NPCs derived from twins with PD. The importance of TNF overexpression and its
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potential role as a “master regulator” of DEG NPC related to PD is supported by its
involvement in both groups I and II of GO BP terms (Figure 3), and is linked to the
higher number of DEGs with connections to PD and biological processes important for PD
(five of 20) observed in these groups (Figure 5).

DEG NPC were linked to TNF, PD, and biological processes important for PD, and
were involved in groups I and II of GO BP processes. The relation between those genes
and TNF will be reviewed below. As mentioned previously, increased expression of TNF
was observed in NPCs obtained from twins with PD. Considering our hypothesis about
the role of TNF as a “master regulator” of the PD-related DEG NPC, we assumed that
the expression of those genes is defined by their relation to TNF. In cases in which TNF
inhibits the expression of these genes, their expression should be reduced in twins with PD
in our data. In turn, the opposite should be observed in cases in which TNF induces the
expression of those genes (Table 4).

Table 4. Relation between DEG NPC, involved in groups I and II of GO BP with TNF based on data, found in literature.

Gene Protein Protein Function
Direction of

Interaction with TNF
(Gene or Protein)

Expected Direction of
Expression Change in
NPC, Derived Twins

with PD as Compared
to NPC Derived

Healthy Twins Based
on Overexpression of

TNF in Litrearure Data

Observed
Direction of

Expression Change
in NPC, Derived
from Twins with

PD as Compared to
Healthy Twins

Relation
with PD

DLL4 DLL4

Transcription factor regulating the
evolutionarily conserved Notch

pathway, which plays a significant
role in cellular differentiation,

proliferation, and apoptosis [67].

TNF inhibits DLL4
[68,69] ↓ ↑ Not shown

previously

FGF19 FGF19

FXR receptor ligand playing a role
in processes such as protein

synthesis and carbohydrate/lipid
metabolism [70].

TNF inhibits FGF19
[71] ↓ ↑ Not shown

previously

INHBA Activin-A

Member of the family of TGF-beta
factors playing a role in

inflammation, fibrosis, and
immunoregulation [72].

TNF induces INHBA
[73–79] ↑ ↑ In vivo [80]

WNT7A Wnt7a

Activates the canonical and
non-canonical Wnt signaling

pathways. The Wnt pathway and
this protein in particular are

involved in multiple biological
processes, including differentiation,
proliferation, wound healing, and
inflammation suppression [81,82].

TNF induces WNT7A
[83,84] ↑ ↑

Through
canonical Wnt
signaling [85]

DKK1 DKK1 Antagonist of the canonical Wnt
pathway [86].

TNF inhibits [87,88] or
induces [89–93] DKK1

based on tissue
↑↓ ↑ In vivo [94]

Table 2 shows that the direction of the expression change observed in our data is in full
accordance with that expected from literature data only for two genes, INHBA and WNT7A.
It is worth mentioning that an involvement in PD pathogenesis has been demonstrated
previously for these genes. We have also created barplots with by normalized counts by
sample in order to investigate if differential expression is driven by a single differentiation
or a distinct expression in a single twin (Supplementary Text S2).

The INHBA gene, which encodes the activin-A protein (a member of the TGF-beta
factor family), plays a role in biological processes such as inflammation, fibrosis, and
immunoregulation [72]. As mentioned previously, there exist data linking this gene to PD.
Activin-a introduction leads to a significant increase in the survivability of DA neurons and
neurons of the substantia nigra in a mouse model of PD, as assessed based on 6-OHDA
injections [80]. Activin-A also has a neuroprotective effect in other forms of neurodegener-
ation. For instance, the introduction of activin-A yielded neuroprotective effects in a rat
model of Huntington’s disease [95]. Moreover, intake of activin-A caused amelioration of
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neurogenesis after neurodegeneration caused by lipopolysaccharide injection in a mouse
model [96].

WNT7A encodes the secreted protein Wnt7a, which is an activator of the canonical and
non-canonical Wnt signaling pathways. This protein in particular and the Wnt pathway as a
whole are involved in multiple biological processes, including differentiation, proliferation,
wound healing, and inflammation suppression [81,82].

Moreover, data exist that suggest that this signaling pathway is involved in the
pathogenesis of PD [85].

Table 2 also shows that the data pertaining to the interaction between DKK1 and
TNF are ambiguous. The DKK1 gene encodes the DKK1 protein, which is an antagonist
of WNT7A and the canonical Wnt pathway. WNT7A inhibits its expressing [86,97], and
DKK1 inhibits WNT7A-mediated signaling [98]. Several studies have demonstrated that
TNF intake upregulates DKK1 in several human cell cultures [89–93] and inhibits DKK1
expression in others [87,88]. The upregulation of WNT7A observed in our data could also
affect the expression of DKK1. The upregulation of TNF and Wnt7a and the downregulation
of DKK1 observed in NPCs derived from twins with PD support this contention. The
differential expression of DKK1 and WNT7A points to a possible role for the Wnt pathway
in the pathogenesis of PD.

5. Conclusions

Based on the data obtained here, we suggest a role for TNF as a “master regulator” of
PD-involved DEG NPC. The possible mediation of the differential expression of TNF in
NPCs by the differential expression of NR2F2 and/or P2RY12 could explain the divergence
between the transcriptomic profiles of healthy and PD twins in the process of NPC differ-
entiation. Overall, the data obtained here suggest the paramount importance of changes in
the expression of TNF in PD pathogenesis.

Involvement of DEG in the process of differentiation from IPSC to NPC through TNF
as an NPC DEG master regulator demonstrates a possible mechanism of exacerbation of
minor differences in the process of tissue differentiation. Further studies on monozygotic
twins, including more stages of tissue differentiation are required to further elucidate
that mechanism.

Limitations: differences in gene expression could be caused by mutations and genetic
variations, or by epigenetic changes. Due to the fact that in this paper we are examining
monozygous twins, the most likely explanation of differential expression is epigenetic
changes. However, cellular reprogramming necessarily affect the epigenetic markers within
cells. Therefore, there inevitably exists a risk that differences in obtained transcriptomic
profiles are not entirely representative of differences in transcriptomic profiles of original
tissues in twins, discordant by PD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10123478/s1, Figure S1: Interactions between DEG NPC, connected to both GO DP
Groups I and II and PD and PD relevant biological processes., Table S1: Patients characteristics,
Table S2: Full list of DEG IPSC, Table S3: Full list of DEG NPC, Text S1—cell culture characterization.
Text S2—per sample gene expression for genes from Table 4 and TNF.
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