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Abstract 

To enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner 
product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of 
such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks 
using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and con-
ventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine 
learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than 
conventional neural networks in this context, and potentially extendable to other relevant applications.
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Introduction
In machine learning, the mainstream approach is now 
artificial neural networks (ANNs), especially deep neu-
ral networks. Usually, a neural network consists of sev-
eral layers of neurons, each of which consists of a linear 
compartment in the form of the inner product of inputs 
and weights and a nonlinear unit known as an activation 
function to make a signal on (activated) or off (attenu-
ated). Deep neural networks have been recently shown 
to achieve remarkable successes in various applications 
such as natural language processing [1, 2], auto-driving 
[3–5], game-playing [6], image analysis [7, 8], and image 
reconstruction [9].

Classification/clustering is one of the essential pattern 
recognition techniques in machine learning, and has a 
wide arrange of applications such as bioinformatics [10, 
11] and medial imaging [12, 13]. It is well known that 
the Gaussian mixture model (GMM) is the most popular 

data model. Since the prior probability of each Gaussian 
component is typically not given, known as latent vari-
ables, the correct parameters of GMM are solved using 
the expectation-maximization (EM) algorithm. Alterna-
tively, a neural network approach can be used to classify 
GMM data. Clearly, the decision boundary for the clas-
sification can be viewed as a complicated function where 
a network with a large number of neurons can approxi-
mate that boundary. After the classification network 
is trained, the inference by the trained network is more 
efficient than the EM algorithm, which is iterative and 
time-consuming.

In our previous study [14–19], a new type of neu-
rons, referred to as quadratic neurons, was introduced, 
where the inner product inside a conventional neuron is 
upgraded to a quadratic function. The initial motivation 
is to enrich the diversity of artificial neurons, inspired by 
the fact that the biological diversity exists at the cellu-
lar level, and such diversity enables efficiency, flexibility, 
functionality, and other benefits. Hence, it is hypoth-
esized that a quadratic neural network would be advan-
tageous similarly, which can, for example, approximate 
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a given function with a lighter structure than a conven-
tional neural network.

The main purpose of this paper is to highlight the 
superiority of quadratic over conventional neural net-
works with the classification task as an illustrative exam-
ple. The rest of the paper is organized as follows. In the 
next section, we review the theoretical minimum error 
in the GMM classification and the EM algorithm that is 
traditionally used to reach that error bound. In the third 
section, we present our procedure for initializing and 
training the conventional and quadratic networks with an 
adapted backpropagation (BP) algorithm. In the fourth 
section, we perform numerical experiments systemati-
cally and establish the superiority of quadratic networks 
over the conventional counterparts in the GMM clas-
sification. Finally, in the last section we discuss relevant 
issues and conclude the paper.

Methods
GMM‑based classification error
In statistical classification, the Bayes error rate is theoret-
ically optimal. In practice, without knowing latent GMM 
parameters, the Bayes error rate cannot be directly calcu-
lated. To close the gap, the classic EM algorithm can be 
used to approximate the optimal error rate, which is the 
benchmark to evaluate the performance of classification 
neural networks.

Bayes error
Given the mean µ , covariance C , and prior probability π 
of each Gaussian component of GMM N  , the posterior 
probability p(zk = 1|xn) is calculated by

which means a D dimensional sample vector xn , 
n ∈ {1, . . . ,N } , should be assigned to the ŷxn Gaussian 
component,

where D, N, and K represent the dimensionality of the 
sample vector, the sample size and the number of Gauss-
ian components respectively. We can obtain the Bayesian 
inference results, a size N vector ŷ , by applying Eq. 2 to 
the entire sample pool x = [x1, . . . , xN ]

T and compare it 
with the ground truth labels t . However, in most of real 
cases all these GMM parameters are not directly known. 
Fortunately, we can use the EM algorithm to estimate 
them, as described in the following subsection.

(1)p(zk = 1|xn) =
πkN (xn|µk ,Ck)
K
i=1 πiN (xn|µi,Ci)

(2)ŷn = arg max
k∈{1,...,K }

p(zk = 1|xn)

Note that the inference ŷ cannot be directly used as 
the predicting label of each sample since our task is 
clustering instead of classification. For example, while 
the ground truth parameters are θ = {θ1, θ2, θ3, θ4} , the 
results from the EM algorithm can be θ̂ = {θ̂2, θ̂4, θ̂1, θ̂3} , 
θ̂k ≈ θk for k ∈ {1, 2, 3, 4} . Hence, we have to perform an 
order correction, i.e., rearranging θ̂ as {θ̂1, θ̂2, θ̂3, θ̂4}.

A solution to this problem is to perform an exclusive 
search so that the accuracy or loss can be optimized. By 
doing so, the best match will be found as our final result. 
More efficiently, the alternating variables method can be 
used as described in Algorithm 1, a common derivative-
free method for numerical optimization, with the idea to 
maximize the accuracy by exchanging two coordinates 
each time and fixing all the remaining ones. We set the 
MaxCycle according to the number of Gaussian compo-
nents K, and in our experiment MaxCycle = 20 , which is 
sufficiently large for K = 8.

Then, we compute Eq.  2 using parameters after the 
order correction we present above for the Bayesian infer-
ence results y and gain the Bayes error as the banchmark 
of performance of neural networks. 

EM algorithm
As a classic iterative method, the EM algorithm consists 
of the following two steps: expectation (E) and maximiza-
tion (M). The E step evaluates the expectation function 
based on the currently available intermediate parameters, 
and the M step updates the intermediate parameters to 
maximize the expectation function. To estimate all the 
µ,C,π parameters, the expectation function in the E step 
is the posterior probability p(zk = 1|x) for k = 1, . . . ,K .

To start the EM procedure, for k = 1, . . . ,K  , we initial-
ize µ(0)

k  with a size D vector that filled with values from 
the standard normal distribution, C(0)

k  with D by D iden-
tity matrix and π(0)

k = 1/K  . Then, for the jth iteration, 
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j ≥ 0 , the posterior probability in the E step is computed 
as

in terms of the current parameters µ
(j)
k ,C

(j)
k ,π

(j)
k  , 

k = 1, . . . ,K  . After this E step, the M step goes as follows:

The E and M steps are repeated until the parameters 
being estimated converge within a pre-specified range or 
a maximum number of iterations is finished. With these 
estimated GMM parameters, Eq. 2 and Algorithm 1 can 
be used for GMM-oriented classificaiton.

Neural network training
Training a neural network involves two steps: initializa-
tion which sets up network parameters appropriately, and 
optimization which adjusts the neural parameters itera-
tively. An optimizer used in the second step is illustrated in 

(3)p(j)(zk = 1|x) =
π
(j)
k N

(

x|µ
(j)
k ,C

(j)
k

)

∑K
i=1 π

(j)
i N

(

x|µ
(j)
i ,C

(j)
i

)

(4)
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Fig. 1. The key idea is to perform computational optimiza-
tion using the well-known BP algorithm with respect to an 
objective or loss function.

While the conventional and quadratic neural networks 
can be trained based on the same idea of computational 
optimization, they differ in specific steps, since the chain 
rule must be applied to different functions that summarize 
data (i.e., inter product versus quadratic operation). Specif-
ically, let us formulate the forward and BP processes in the 
following two subsections respectively, and then describe 
the whole process in the third subsection.

Forward computation
An exemplary feed-forward neural network is shown in 
Fig. 2, including input, hidden, and output layers. There are 
L layers in total, in each of which there is a number of neu-
rons. A typical layer first implements affine transforms for 
conventional neurons and quadratic operations for quad-
ratic neurons, and then nonlinear activations σ (l) are per-
formed, which are common for conventional and quadratic 
neurons.

An illustration of the affine layer of conventioinal and 
quadratic neurons is shown in Fig.  3. For a conventional 
neural network, the affine transform can be expressed in 
terms of a input matrix a(l) and a weight matrix w(l) plus a 
bias row vector b(l) as follows:

For a quadratic neural network, the quadratic transform 
can be expressed as

(5)z(l) = a(l)w(l) + b(l)

Fig. 1  Neural network training as a computational optimization process with respect to an objective function which is the error rate for 
classification, without loss of generality

Fig. 2  Forward computation of a feed-forward neural network with L layers of neurons
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where a(l)w(l) stands for matrix multiplication and ◦ 
means an element-wise square operation. In this study, 
the ReLU function is used as the activation function, but 
if the l-th layer is the last layer of the network, i.e., l = L , 
the softmax function is computed instead. Therefore, the 
output of each layer is computed as follows:

In other words, the input to the forward process is a 
N by D sample matrix a(1) = x , and output is a N by K 
matrix a(L+1) . The prediction of each sample vector xn is 
quantified by

The loss or error is produced when the prediction differs 
from the ground truth. Note that in the forward compu-
tation we compute and store the output of each affine 
transform, which are subsequently used for the gradient 
descent search in the BP process described in the follow-
ing subsection.

BP formulation
To optimize a neural network, we perform numeri-
cal optimization. Specifically, we first find the partial 

(6)
z(l) =

(

a(l)w(l)
r + b(l)r

)

◦
(

a(l)w(l)
g + b(l)g

)

+
(

a(l) ◦ a(l)
)

w
(l)
b + c(l)

(7)a(l+1) = σ (l)
(

z(l)
)

=

{

max
(
z(l), 0

)
l �= L

ez
(l)
/
∑

ez
(l)

l = L

(8)yn = arg max
k∈{1,··· ,K }

a
(L+1)
n,k

derivatives with respect to each of the parameters and 
update them via gradient descent search at a suitable 
step size (learning rate). Using the chain rule, this pro-
cess was formulated as the well-known BP algorithm, 
which is widely used to train a neuronal network. As 
its name indicates, the BP process computes the partial 
derivatives layer-wise from the output layer to the input 
layer. A brief BP diagram is shown in Fig. 4.

Let Q stand for the cross-entropy loss value defined 
as

where N is the number of sample vectors, yn is the pre-
dicted result, and tn is the ground truth label for each of 
the samples xn . Recall that the activation function of the 
output layer is the softmax function, hence the gradient 
of the output layer can be computed as

If l  = L , the activation function is the ReLU function, and 
we have

For a conventional neural network, we know that

Q = −

N∑

n=1

tn log yn

(9)
∂Q

∂z(L)
= y − t

(10)

∂Q

∂z(l)
=

∂Q

∂a(l+1)

∂a(l+1)

∂z(l)

=

{
∂Q/∂a(l+1) a(l+1) > 0

0 a(l+1) ≤ 0
, l �= L

Fig. 3  Illustration of the affine layer of conventioinal (left) and quadratic (right) neurons respectively

Fig. 4   BP process to train a neural network of L layers
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where

The same chain rule can be applied to optimize a quad-
ratic neural network layer-wise. Specifically, let us con-
sider Eq. 6 in the following three parts:

and we have

Then, the gradients with respect to the parameters in the 
three parts can be respectively found as follows:

and

(11)

∂Q

∂w(l)
=

∂Q

∂z(l)
∂z(l)

∂w(l)
=

(

a(l)
)T ∂Q

∂z(l)

∂Q

∂b(l)
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∂Q

∂z(l)
∂z(l)
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=

∑ ∂Q

∂z(l)

(12)∂Q
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(
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z
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r
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In contrast to the forward computation, the input to the 
BP procedure is the predicted result y , which is the out-
put of the forward process. For layer l = L, . . . , 1 , one 
layer at a time, we compute ∂Q/∂z(l) using Eqs. 9 or 10 
depending on whether it is the last layer, the same for the 
conventional and quadratic neural networks. Then, we 
compute ∂Q/∂θ(l) according to Eqs. 11 (for conventional 
neurons) or 13 (for quadratic neurons) respectively, 
where θ denotes a vector of all trainable parameters of the 
network. Finally, we compute ∂Q/∂a(l) , which is used in 
Eqs. 12 (for conventional neurons) and 14 (for quadratic 
neurons) respectively for the next iteration. After the gra-
dient of the network is obtained, we update the param-
eters via ’Adam’ in this study.

Whole training process
Initiation. Let us use a series of integers to describe a 
feed-forward neural network architecture of our interest,

where d(l) represents the dimension of a(l) . Then, the total 
number of neurons used in the network is 

∑L
l=1 d

(l+1) . 
Note that d(1) = D , the dimension of input samples, and 
d(L+1) = K  , the number of classes.

Then, the network can be randomly initialized with 
a vector of parameters θ(l) for each layer. Specifically, 
for each layer l ∈ [1, L] , let d_from be the input dimen-
sion d(l) and  d_to  the output dimension d(l+1) Setting 
all weights – w(l) for a conventional neural network and 
w

(l)
r ,w

(l)
g ,w

(l)
b  for a quadratic neural network – and biases 

– b(l) for a conventional network and b(l)r ,b
(l)
g , c(l) for a 

quadratic network – as follows:

where  np  stands for NumPy (version 1.23.0), a Python 
package. That is, the bias is a 1 by d(l+1) zero matrix, and 
the weight is a d(l) by d(l+1) matrix.
Optimization. As shown in Fig. 1, given a neural net-

work we just initialized and a training dataset contain-
ing samples x including the corresponding labels t , we 

(14)

∂Q

∂a(l)
=

∂Q

∂z
(l)
r

∂z
(l)
r

∂a(l)
+

∂Q

∂z
(l)
g

∂z
(l)
g

∂a(l)
+

∂Q

∂z
(l)
b

∂z
(l)
b

∂a(l)

=
∂Q

∂z
(l)
r

(

w(l)
r

)T
+

∂Q

∂z
(l)
g

(

w(l)
g

)T

+ 2a(l)

[

∂Q

∂z
(l)
b

(

w
(l)
b

)T
]

(15)d = d(1), · · · , d(l), · · · , d(L+1)

weight = 0.01 · np.random.randn(d_from,d_to)

bias = np.zeros([1,d_to])
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can repeat the forward computation and BP processes 
described in the above two subsections until the stop-
ping criteria are satisfied. The cross-entropy losses on 
the training and validation samples will be estimated 
during the training process.

Results and discussion
Using the training methods in the preceding section, we 
optimized conventional and quadratic neural networks to 
solve a number of GMM-based classification problems. 
At the beginning, we solved a three-class problem in the 
two-dimensional (2D) space to illustrate the working 
principle. Then, we performed a systematic comparison 
between conventional and quadratic neural networks on 
samples with different numbers of classes and dimen-
sions. Finally, we applied all methods on three real data 
sets. Meanwhile, we used the EM algorithm and Bayes 
inference to obtain the Bayes error rate as the perfor-
mance benchmark of the neural networks.

Illustrative classification example
Our initial classification problem assumes a finite num-
ber of classes (the first example, K = 3) in the 2D space 
( D = 2 ): two Gaussian clusters plus a background, which 
can be viewed as a special case of the Gaussian distribu-
tion. As in other network-based classification networks, 
a one-hot vector was used in our networks as well. The 
parameters of the background were set to

µb =

[
0
0

]

,Cb =

[
40 0
0 40

]

where b indicates the background. Then, we randomly set 
the parameters of the other Gaussian clusters as

for k = 1, . . . ,K − 1 where aaT stands for matrix mul-
tiplication and np stands for NumPy (version 1.23.0), a 
Python package. Given the mean µk and covariance Ck , 
we generated Nk points for each class except the back-
ground where Nk ∈ [20000, 30000] was chosen randomly. 
Then, we generated Nb =

∑K−1
k=1 Nk points for the back-

ground. The entire dataset was shuffled and split into 
the three parts: 50% as training samples, 20% as valida-
tion samples, and 30% as test samples. Figure 5 shows the 
scatter plot of sample points.

We trained conventional and quadratic neural net-
works with different numbers of neurons for GMM clas-
sification. The decreasing loss is shown in Fig.  6 on the 
validation samples during the training process. The deci-
sion boundaries are shown in Fig. 7 for the conventional 
and quadratic neural networks as well as EM algorithm 
respectively. It took hundreds of neurons for the con-
ventional network to approach the elliptical boundaries, 
while the quadratic network accurately fitted them with 
only three quadratic neurons.

The lighter the network structure, the higher the 
computation efficiency. Table  1 shows time spent to 
train the conventional and quadratic neural networks, 
and the accuracies of the EM and neural networks on 
the test samples. Our quadratic neural network with 
only one neural layer produced a performance closer 
to the EM benchmark than the conventional neu-
ral network of more than one hundred conventional 

µk = (np.random.random(D)− 0.5) ∗ 10

a = np.random.random((D,D)) ∗ 2− 1

Ck = 2aaT

Fig. 5  Scatter plot of sample points which contains three classes: two Gaussian clusters plus a background
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neurons. Also, the time need for the quadratic neu-
ral network is only about 7% that of the conventional 
counterpart.

Systematic comparation
To systematically compare conventional and quadratic 
networks, we tested conventional and quadratic networks 
in 2D and three-dimensional (3D) spaces with K = 5 and 
8 Gaussian clusters. In each case, we randomly generated 
50 samples using the aforementioned method except we 
replaced the background by a Gaussian cluster and set 
Nk ∈ [6000, 9000] . Typical scatter plots of these samples 
are represented in Fig. 8.

We trained and tested the EM algorithm, conven-
tional and quadratic networks with different numbers 
of layers/neurons in terms of the average accuracy. The 
resutls are summarized in Table 2. Very interestingly, in 
all cases, the accuracy of the quadratic networks with 
only output layer of few neurons is higher than that of 
the conventional network of over one hundred neu-
rons. Meantime, the training time needed for quadratic 
neural networks is only about 26.82% , on average, of 
that taken by the much more complicated conventional 
network. Generally speaking, the quadratic neural net-
works delivered a performance very close to that of the 
EM algorithm.

Real data
Finally, we applied conventional and quadratic networks 
on three real data sets from the UCI Machine Learning 
repository [20]: protein localization sites (yeast), pen-
based recognition of handwritten digits (pendigits), and 

isolated letter speech recognition (isolet). All three data 
sets’ attribute types are numerical. Some basic informa-
tion about these datasets are in Table  3. For the yeast 
dataset, we split the whole dataset in the same pro-
portions as that described in the first subection. Typi-
cal yeast cell (Saccharomyces cerevisiae cell) images 
the Cell Image Library [21] are shown in Fig. 9, visual-
ized through transmission electron microscopy. For 
the pendigits and isolet datasets, with the test samples 
already provided, 30% of training samples were used for 
validation.

We trained and tested the EM algorithm, conventional 
and quadratic networks with different numbers of layers/
neurons on each dataset 20 times. The average accuracy 
of and time needed by each method are shown in Table 4. 
In each application, the quadratic neural network with 
only layer of few neurons has the highest accuracy while 
its training time is about half of the conventional net-
works orders of magnitude larger than the quadratic 
version.

Conclusions
Although it has been well tested with a solid theoretical 
foundation, the EM algorithm needs to take an entire 
dataset into the memory, processes them iteratively, 
and is time-consuming, under the restriction that data 
must come from GMM. Furthermore, when new sam-
ples become available, parameters need to be adjusted 
again. A neural network approach can be much more 
desirable, effective and efficient, workable with many 
data models in principle thanks to its universal approxi-
mation nature. After a network is well trained, new 

Fig. 6  Decreasing loss on the validation samples during the training process of conventional (C) and quadratic (Q) neural networks with different 
numbers of neurons. The notation (·) stands for the architecture of a neural network as described in Eq. 15



Page 8 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art            (2022) 5:23 

samples can be used to fine-tune the network or pro-
cessed to inference in a feed-forward fashion, being 
extremely efficient and generalizable to cases much 
more complicated than GMM. Very interestingly, com-
pared to conventional networks, quadratic networks 
can deliver a performance close to that of the EM algo-
rithm in the GMM cases and yet be orders of magnitude 
simpler than conventional networks for the same clas-
sification task.

In conclusion, in this paper we have numerically and 
experimentally demonstrated the superiority of quad-
ratic networks over conventional ones. It is underlined 

Fig. 7  Decision boundaries of EM and neural networks, including C and Q neural networks with different numbers of neurons. The notation (·) 
stands for the architecture of a neural network as described in Eq. 15

Table 1  The average accuracy of and time needed by EM 
algorithm, Q and  C neural networks with different numbers 
of neurons in 2D spaces with two Gaussian clusters plus a 
background. The notation (·) stands for the architecture of a 
neural network as described in Eq. 15

Accuracy (%) Time (s)

C(2-3) 31.1752 2.44

C(2-10-3) 91.8122 23.15

C(2-100-3) 91.8391 213.61

Q(2-3) 91.8525 16.30

EM 91.8625
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that the quadratic neural network of a much lighter 
structure rivals the conventional network of a com-
plexity orders of magnitude more in solving the same 
classification problems. Clearly, the superior clas-
sification performance of quadratic networks could 
be translated to medical imaging tasks, especially 
radiomics.

Fig. 8  Typical scatter plots of samples in 2D (left) and 3D (right) spaces with K = 5 (top) and K = 8 (bottom)

Table 2  The average accuracy of and time needed by EM 
algorithm, Q and C neural networks with different numbers of 
neurons in 2D and 3D spaces with K = 5 and 8 Gaussian clusters. 
The notation (·) stands for the architecture of a neural network as 
described in Eq. 15

Accuracy (%) Time (s) Accuracy (%) Time (s)

D = 2, K = 5 D = 3, K = 5

C(2-3) 92.36± 7.89 11.5± 5.0 84.72± 10.32 13.7± 5.8

C(2-10-3) 95.36± 5.66 23.3± 14.1 92.15± 8.04 24.8± 8.6

C(2-100-3) 95.47± 5.68 62.7± 27.9 92.54± 8.01 71.8± 29.2

Q(2-3) 95.53± 5.66 15.8± 6.7 92.74± 7.98 17.6± 7.4

EM 95.60± 5.65 92.90± 7.97

D = 2, K = 8 D = 3, K = 8

C(2-3) 83.84± 5.53 22.8± 8.0 76.47± 6.31 28.8± 10.6

C(2-10-3) 87.90± 3.75 47.6± 17.1 82.45± 5.36 62.6± 18.5

C(2-100-3) 88.06± 3.70 122.6± 39.2 82.68± 5.34 151.8± 41.4

Q(2-3) 88.13± 3.67 33.3± 11.0 82.79± 5.31 46.2± 13.3

EM 88.19± 3.64 82.86± 5.32

Table 3  Basic information about three real data sets: protein 
localization sites (yeast), pen-based recognition of handwritten 
digits (pendigits), and isolated letter speech recognition (isolet)

Datasets Train Test Dimensions Classes

yeast 1484 8 10

pendigits 7494 3498 16 10

isolet 6238 1559 617 26
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