
Qi and Wang ﻿
Visual Computing for Industry, Biomedicine, and Art (2022) 5:23
https://doi.org/10.1186/s42492-022-00118-z

ORIGINAL ARTICLE

Superiority of quadratic over conventional
neural networks for classification of gaussian
mixture data
Tianrui Qi and Ge Wang*    

Abstract 

To enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner
product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of
such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks
using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and con-
ventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine
learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than
conventional neural networks in this context, and potentially extendable to other relevant applications.

Keywords:  Artificial neural networks, Quadratic neurons, Quadratic neural networks, Backpropagation, Classification,
Gaussian mixture models

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In machine learning, the mainstream approach is now
artificial neural networks (ANNs), especially deep neu-
ral networks. Usually, a neural network consists of sev-
eral layers of neurons, each of which consists of a linear
compartment in the form of the inner product of inputs
and weights and a nonlinear unit known as an activation
function to make a signal on (activated) or off (attenu-
ated). Deep neural networks have been recently shown
to achieve remarkable successes in various applications
such as natural language processing [1, 2], auto-driving
[3–5], game-playing [6], image analysis [7, 8], and image
reconstruction [9].

Classification/clustering is one of the essential pattern
recognition techniques in machine learning, and has a
wide arrange of applications such as bioinformatics [10,
11] and medial imaging [12, 13]. It is well known that
the Gaussian mixture model (GMM) is the most popular

data model. Since the prior probability of each Gaussian
component is typically not given, known as latent vari-
ables, the correct parameters of GMM are solved using
the expectation-maximization (EM) algorithm. Alterna-
tively, a neural network approach can be used to classify
GMM data. Clearly, the decision boundary for the clas-
sification can be viewed as a complicated function where
a network with a large number of neurons can approxi-
mate that boundary. After the classification network
is trained, the inference by the trained network is more
efficient than the EM algorithm, which is iterative and
time-consuming.

In our previous study [14–19], a new type of neu-
rons, referred to as quadratic neurons, was introduced,
where the inner product inside a conventional neuron is
upgraded to a quadratic function. The initial motivation
is to enrich the diversity of artificial neurons, inspired by
the fact that the biological diversity exists at the cellu-
lar level, and such diversity enables efficiency, flexibility,
functionality, and other benefits. Hence, it is hypoth-
esized that a quadratic neural network would be advan-
tageous similarly, which can, for example, approximate

Open Access

Visual Computing for Industry,
Biomedicine, and Art

*Correspondence: wangg6@rpi.edu

Department of Computer Science, Rensselaer Polytechnic Institute, NY 12180,
Troy, USA

http://orcid.org/0000-0002-2656-7705
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-022-00118-z&domain=pdf

Page 2 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23

a given function with a lighter structure than a conven-
tional neural network.

The main purpose of this paper is to highlight the
superiority of quadratic over conventional neural net-
works with the classification task as an illustrative exam-
ple. The rest of the paper is organized as follows. In the
next section, we review the theoretical minimum error
in the GMM classification and the EM algorithm that is
traditionally used to reach that error bound. In the third
section, we present our procedure for initializing and
training the conventional and quadratic networks with an
adapted backpropagation (BP) algorithm. In the fourth
section, we perform numerical experiments systemati-
cally and establish the superiority of quadratic networks
over the conventional counterparts in the GMM clas-
sification. Finally, in the last section we discuss relevant
issues and conclude the paper.

Methods
GMM‑based classification error
In statistical classification, the Bayes error rate is theoret-
ically optimal. In practice, without knowing latent GMM
parameters, the Bayes error rate cannot be directly calcu-
lated. To close the gap, the classic EM algorithm can be
used to approximate the optimal error rate, which is the
benchmark to evaluate the performance of classification
neural networks.

Bayes error
Given the mean µ , covariance C , and prior probability π
of each Gaussian component of GMM N  , the posterior
probability p(zk = 1|xn) is calculated by

which means a D dimensional sample vector xn ,
n ∈ {1, . . . ,N } , should be assigned to the ŷxn Gaussian
component,

where D, N, and K represent the dimensionality of the
sample vector, the sample size and the number of Gauss-
ian components respectively. We can obtain the Bayesian
inference results, a size N vector ŷ , by applying Eq. 2 to
the entire sample pool x = [x1, . . . , xN]

T and compare it
with the ground truth labels t . However, in most of real
cases all these GMM parameters are not directly known.
Fortunately, we can use the EM algorithm to estimate
them, as described in the following subsection.

(1)p(zk = 1|xn) =
πkN (xn|µk ,Ck)
K
i=1 πiN (xn|µi,Ci)

(2)ŷn = arg max
k∈{1,...,K }

p(zk = 1|xn)

Note that the inference ŷ cannot be directly used as
the predicting label of each sample since our task is
clustering instead of classification. For example, while
the ground truth parameters are θ = {θ1, θ2, θ3, θ4} , the
results from the EM algorithm can be θ̂ = {θ̂2, θ̂4, θ̂1, θ̂3} ,
θ̂k ≈ θk for k ∈ {1, 2, 3, 4} . Hence, we have to perform an
order correction, i.e., rearranging θ̂ as {θ̂1, θ̂2, θ̂3, θ̂4}.

A solution to this problem is to perform an exclusive
search so that the accuracy or loss can be optimized. By
doing so, the best match will be found as our final result.
More efficiently, the alternating variables method can be
used as described in Algorithm 1, a common derivative-
free method for numerical optimization, with the idea to
maximize the accuracy by exchanging two coordinates
each time and fixing all the remaining ones. We set the
MaxCycle according to the number of Gaussian compo-
nents K, and in our experiment MaxCycle = 20 , which is
sufficiently large for K = 8.

Then, we compute Eq. 2 using parameters after the
order correction we present above for the Bayesian infer-
ence results y and gain the Bayes error as the banchmark
of performance of neural networks.

EM algorithm
As a classic iterative method, the EM algorithm consists
of the following two steps: expectation (E) and maximiza-
tion (M). The E step evaluates the expectation function
based on the currently available intermediate parameters,
and the M step updates the intermediate parameters to
maximize the expectation function. To estimate all the
µ,C,π parameters, the expectation function in the E step
is the posterior probability p(zk = 1|x) for k = 1, . . . ,K .

To start the EM procedure, for k = 1, . . . ,K  , we initial-
ize µ(0)

k with a size D vector that filled with values from
the standard normal distribution, C(0)

k with D by D iden-
tity matrix and π(0)

k = 1/K  . Then, for the jth iteration,

Page 3 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23 	

j ≥ 0 , the posterior probability in the E step is computed
as

in terms of the current parameters µ
(j)
k ,C

(j)
k ,π

(j)
k  ,

k = 1, . . . ,K  . After this E step, the M step goes as follows:

The E and M steps are repeated until the parameters
being estimated converge within a pre-specified range or
a maximum number of iterations is finished. With these
estimated GMM parameters, Eq. 2 and Algorithm 1 can
be used for GMM-oriented classificaiton.

Neural network training
Training a neural network involves two steps: initializa-
tion which sets up network parameters appropriately, and
optimization which adjusts the neural parameters itera-
tively. An optimizer used in the second step is illustrated in

(3)p(j)(zk = 1|x) =
π
(j)
k N

(

x|µ
(j)
k ,C

(j)
k

)

∑K
i=1 π

(j)
i N

(

x|µ
(j)
i ,C

(j)
i

)

(4)

�
(j+1)
k

=

∑N

n=1
p(j)

�
zk = 1�xn

�
xn

∑N

n=1
p(j)

�
zk = 1�xn

�

�
(j+1)
k

=

∑N

n=1

�
xn − �k

�
p(j)

�
zk = 1�xn

��
xn − �k

�T
∑N

n=1
p(j)

�
zk = 1�xn

�

�
(j+1)
k

=
1

N

N�

n=1

p(j)
�
zk = 1�xn

�

Fig. 1. The key idea is to perform computational optimiza-
tion using the well-known BP algorithm with respect to an
objective or loss function.

While the conventional and quadratic neural networks
can be trained based on the same idea of computational
optimization, they differ in specific steps, since the chain
rule must be applied to different functions that summarize
data (i.e., inter product versus quadratic operation). Specif-
ically, let us formulate the forward and BP processes in the
following two subsections respectively, and then describe
the whole process in the third subsection.

Forward computation
An exemplary feed-forward neural network is shown in
Fig. 2, including input, hidden, and output layers. There are
L layers in total, in each of which there is a number of neu-
rons. A typical layer first implements affine transforms for
conventional neurons and quadratic operations for quad-
ratic neurons, and then nonlinear activations σ (l) are per-
formed, which are common for conventional and quadratic
neurons.

An illustration of the affine layer of conventioinal and
quadratic neurons is shown in Fig. 3. For a conventional
neural network, the affine transform can be expressed in
terms of a input matrix a(l) and a weight matrix w(l) plus a
bias row vector b(l) as follows:

For a quadratic neural network, the quadratic transform
can be expressed as

(5)z(l) = a(l)w(l) + b(l)

Fig. 1  Neural network training as a computational optimization process with respect to an objective function which is the error rate for
classification, without loss of generality

Fig. 2  Forward computation of a feed-forward neural network with L layers of neurons

Page 4 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23

where a(l)w(l) stands for matrix multiplication and ◦
means an element-wise square operation. In this study,
the ReLU function is used as the activation function, but
if the l-th layer is the last layer of the network, i.e., l = L ,
the softmax function is computed instead. Therefore, the
output of each layer is computed as follows:

In other words, the input to the forward process is a
N by D sample matrix a(1) = x , and output is a N by K
matrix a(L+1) . The prediction of each sample vector xn is
quantified by

The loss or error is produced when the prediction differs
from the ground truth. Note that in the forward compu-
tation we compute and store the output of each affine
transform, which are subsequently used for the gradient
descent search in the BP process described in the follow-
ing subsection.

BP formulation
To optimize a neural network, we perform numeri-
cal optimization. Specifically, we first find the partial

(6)
z(l) =

(

a(l)w(l)
r + b(l)r

)

◦
(

a(l)w(l)
g + b(l)g

)

+
(

a(l) ◦ a(l)
)

w
(l)
b + c(l)

(7)a(l+1) = σ (l)
(

z(l)
)

=

{

max
(
z(l), 0

)
l �= L

ez
(l)
/
∑

ez
(l)

l = L

(8)yn = arg max
k∈{1,··· ,K }

a
(L+1)
n,k

derivatives with respect to each of the parameters and
update them via gradient descent search at a suitable
step size (learning rate). Using the chain rule, this pro-
cess was formulated as the well-known BP algorithm,
which is widely used to train a neuronal network. As
its name indicates, the BP process computes the partial
derivatives layer-wise from the output layer to the input
layer. A brief BP diagram is shown in Fig. 4.

Let Q stand for the cross-entropy loss value defined
as

where N is the number of sample vectors, yn is the pre-
dicted result, and tn is the ground truth label for each of
the samples xn . Recall that the activation function of the
output layer is the softmax function, hence the gradient
of the output layer can be computed as

If l = L , the activation function is the ReLU function, and
we have

For a conventional neural network, we know that

Q = −

N∑

n=1

tn log yn

(9)
∂Q

∂z(L)
= y − t

(10)

∂Q

∂z(l)
=

∂Q

∂a(l+1)

∂a(l+1)

∂z(l)

=

{
∂Q/∂a(l+1) a(l+1) > 0

0 a(l+1) ≤ 0
, l �= L

Fig. 3  Illustration of the affine layer of conventioinal (left) and quadratic (right) neurons respectively

Fig. 4  BP process to train a neural network of L layers

Page 5 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23 	

where

The same chain rule can be applied to optimize a quad-
ratic neural network layer-wise. Specifically, let us con-
sider Eq. 6 in the following three parts:

and we have

Then, the gradients with respect to the parameters in the
three parts can be respectively found as follows:

and

(11)

∂Q

∂w(l)
=

∂Q

∂z(l)
∂z(l)

∂w(l)
=

(

a(l)
)T ∂Q

∂z(l)

∂Q

∂b(l)
=

∂Q

∂z(l)
∂z(l)

∂b(l)
=

∑ ∂Q

∂z(l)

(12)∂Q

∂a(l)
=

∂Q

∂z(l)
∂z(l)

∂a(l)
=

∂Q

∂z(l)

(

w(l)
)T

z(l) =
(

a(l)w(l)
r + b(l)r

)

︸ ︷︷ ︸

z
(l)
r

◦
(

a(l)w(l)
g + b(l)g

)

︸ ︷︷ ︸

z
(l)
g

+
(

a(l) ◦ a(l)
)

w
(l)
b + c(l)

︸ ︷︷ ︸

z
(l)
b

∂Q

∂z
(l)
r

=
∂Q

∂z(l)
∂z(l)

∂z
(l)
r

= z(l)g
∂Q

∂z(l)

∂Q

∂z
(l)
g

=
∂Q

∂z(l)
∂z(l)

∂z
(l)
g

= z(l)r
∂Q

∂z(l)

∂Q

∂z
(l)
b

=
∂Q

∂z(l)
∂z(l)

∂z
(l)
b

=
∂Q

∂z(l)

(13)

∂Q

∂w
(l)
r

=
∂Q

∂z
(l)
r

∂z
(l)
r

∂w
(l)
r

=
(

a(l)
)T ∂Q

∂z
(l)
r

∂Q

∂b
(l)
r

=
∂Q

∂z
(l)
r

∂z
(l)
r

∂b
(l)
r

=
∑ ∂Q

∂z
(l)
r

∂Q

∂w
(l)
g

=
∂Q

∂z
(l)
g

∂z
(l)
g

∂w
(l)
g

=
(

a(l)
)T ∂Q

∂z
(l)
g

∂Q

∂b
(l)
g

=
∂Q

∂z
(l)
r

∂z
(l)
r

∂b
(l)
g

=
∑ ∂Q

∂z
(l)
g

∂Q

∂w
(l)
b

=
∂Q

∂z
(l)
b

∂z
(l)
b

∂w
(l)
b

=
(

a(l) ◦ a(l)
)T ∂Q

∂z
(l)
b

∂Q

∂c(l)
=

∂Q

∂z
(l)
r

∂z
(l)
r

∂c(l)
=

∑ ∂Q

∂z
(l)
b

In contrast to the forward computation, the input to the
BP procedure is the predicted result y , which is the out-
put of the forward process. For layer l = L, . . . , 1 , one
layer at a time, we compute ∂Q/∂z(l) using Eqs. 9 or 10
depending on whether it is the last layer, the same for the
conventional and quadratic neural networks. Then, we
compute ∂Q/∂θ(l) according to Eqs. 11 (for conventional
neurons) or 13 (for quadratic neurons) respectively,
where θ denotes a vector of all trainable parameters of the
network. Finally, we compute ∂Q/∂a(l) , which is used in
Eqs. 12 (for conventional neurons) and 14 (for quadratic
neurons) respectively for the next iteration. After the gra-
dient of the network is obtained, we update the param-
eters via ’Adam’ in this study.

Whole training process
Initiation. Let us use a series of integers to describe a
feed-forward neural network architecture of our interest,

where d(l) represents the dimension of a(l) . Then, the total
number of neurons used in the network is

∑L
l=1 d

(l+1) .
Note that d(1) = D , the dimension of input samples, and
d(L+1) = K  , the number of classes.

Then, the network can be randomly initialized with
a vector of parameters θ(l) for each layer. Specifically,
for each layer l ∈ [1, L] , let d_from be the input dimen-
sion d(l) and d_to the output dimension d(l+1) Setting
all weights – w(l) for a conventional neural network and
w

(l)
r ,w

(l)
g ,w

(l)
b for a quadratic neural network – and biases

– b(l) for a conventional network and b(l)r ,b
(l)
g , c(l) for a

quadratic network – as follows:

where np stands for NumPy (version 1.23.0), a Python
package. That is, the bias is a 1 by d(l+1) zero matrix, and
the weight is a d(l) by d(l+1) matrix.
Optimization. As shown in Fig. 1, given a neural net-

work we just initialized and a training dataset contain-
ing samples x including the corresponding labels t , we

(14)

∂Q

∂a(l)
=

∂Q

∂z
(l)
r

∂z
(l)
r

∂a(l)
+

∂Q

∂z
(l)
g

∂z
(l)
g

∂a(l)
+

∂Q

∂z
(l)
b

∂z
(l)
b

∂a(l)

=
∂Q

∂z
(l)
r

(

w(l)
r

)T
+

∂Q

∂z
(l)
g

(

w(l)
g

)T

+ 2a(l)

[

∂Q

∂z
(l)
b

(

w
(l)
b

)T
]

(15)d = d(1), · · · , d(l), · · · , d(L+1)

weight = 0.01 · np.random.randn(d_from,d_to)

bias = np.zeros([1,d_to])

Page 6 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23

can repeat the forward computation and BP processes
described in the above two subsections until the stop-
ping criteria are satisfied. The cross-entropy losses on
the training and validation samples will be estimated
during the training process.

Results and discussion
Using the training methods in the preceding section, we
optimized conventional and quadratic neural networks to
solve a number of GMM-based classification problems.
At the beginning, we solved a three-class problem in the
two-dimensional (2D) space to illustrate the working
principle. Then, we performed a systematic comparison
between conventional and quadratic neural networks on
samples with different numbers of classes and dimen-
sions. Finally, we applied all methods on three real data
sets. Meanwhile, we used the EM algorithm and Bayes
inference to obtain the Bayes error rate as the perfor-
mance benchmark of the neural networks.

Illustrative classification example
Our initial classification problem assumes a finite num-
ber of classes (the first example, K = 3) in the 2D space
( D = 2 ): two Gaussian clusters plus a background, which
can be viewed as a special case of the Gaussian distribu-
tion. As in other network-based classification networks,
a one-hot vector was used in our networks as well. The
parameters of the background were set to

µb =

[
0
0

]

,Cb =

[
40 0
0 40

]

where b indicates the background. Then, we randomly set
the parameters of the other Gaussian clusters as

for k = 1, . . . ,K − 1 where aaT stands for matrix mul-
tiplication and np stands for NumPy (version 1.23.0), a
Python package. Given the mean µk and covariance Ck ,
we generated Nk points for each class except the back-
ground where Nk ∈ [20000, 30000] was chosen randomly.
Then, we generated Nb =

∑K−1
k=1 Nk points for the back-

ground. The entire dataset was shuffled and split into
the three parts: 50% as training samples, 20% as valida-
tion samples, and 30% as test samples. Figure 5 shows the
scatter plot of sample points.

We trained conventional and quadratic neural net-
works with different numbers of neurons for GMM clas-
sification. The decreasing loss is shown in Fig. 6 on the
validation samples during the training process. The deci-
sion boundaries are shown in Fig. 7 for the conventional
and quadratic neural networks as well as EM algorithm
respectively. It took hundreds of neurons for the con-
ventional network to approach the elliptical boundaries,
while the quadratic network accurately fitted them with
only three quadratic neurons.

The lighter the network structure, the higher the
computation efficiency. Table 1 shows time spent to
train the conventional and quadratic neural networks,
and the accuracies of the EM and neural networks on
the test samples. Our quadratic neural network with
only one neural layer produced a performance closer
to the EM benchmark than the conventional neu-
ral network of more than one hundred conventional

µk = (np.random.random(D)− 0.5) ∗ 10

a = np.random.random((D,D)) ∗ 2− 1

Ck = 2aaT

Fig. 5  Scatter plot of sample points which contains three classes: two Gaussian clusters plus a background

Page 7 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23 	

neurons. Also, the time need for the quadratic neu-
ral network is only about 7% that of the conventional
counterpart.

Systematic comparation
To systematically compare conventional and quadratic
networks, we tested conventional and quadratic networks
in 2D and three-dimensional (3D) spaces with K = 5 and
8 Gaussian clusters. In each case, we randomly generated
50 samples using the aforementioned method except we
replaced the background by a Gaussian cluster and set
Nk ∈ [6000, 9000] . Typical scatter plots of these samples
are represented in Fig. 8.

We trained and tested the EM algorithm, conven-
tional and quadratic networks with different numbers
of layers/neurons in terms of the average accuracy. The
resutls are summarized in Table 2. Very interestingly, in
all cases, the accuracy of the quadratic networks with
only output layer of few neurons is higher than that of
the conventional network of over one hundred neu-
rons. Meantime, the training time needed for quadratic
neural networks is only about 26.82% , on average, of
that taken by the much more complicated conventional
network. Generally speaking, the quadratic neural net-
works delivered a performance very close to that of the
EM algorithm.

Real data
Finally, we applied conventional and quadratic networks
on three real data sets from the UCI Machine Learning
repository [20]: protein localization sites (yeast), pen-
based recognition of handwritten digits (pendigits), and

isolated letter speech recognition (isolet). All three data
sets’ attribute types are numerical. Some basic informa-
tion about these datasets are in Table 3. For the yeast
dataset, we split the whole dataset in the same pro-
portions as that described in the first subection. Typi-
cal yeast cell (Saccharomyces cerevisiae cell) images
the Cell Image Library [21] are shown in Fig. 9, visual-
ized through transmission electron microscopy. For
the pendigits and isolet datasets, with the test samples
already provided, 30% of training samples were used for
validation.

We trained and tested the EM algorithm, conventional
and quadratic networks with different numbers of layers/
neurons on each dataset 20 times. The average accuracy
of and time needed by each method are shown in Table 4.
In each application, the quadratic neural network with
only layer of few neurons has the highest accuracy while
its training time is about half of the conventional net-
works orders of magnitude larger than the quadratic
version.

Conclusions
Although it has been well tested with a solid theoretical
foundation, the EM algorithm needs to take an entire
dataset into the memory, processes them iteratively,
and is time-consuming, under the restriction that data
must come from GMM. Furthermore, when new sam-
ples become available, parameters need to be adjusted
again. A neural network approach can be much more
desirable, effective and efficient, workable with many
data models in principle thanks to its universal approxi-
mation nature. After a network is well trained, new

Fig. 6  Decreasing loss on the validation samples during the training process of conventional (C) and quadratic (Q) neural networks with different
numbers of neurons. The notation (·) stands for the architecture of a neural network as described in Eq. 15

Page 8 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23

samples can be used to fine-tune the network or pro-
cessed to inference in a feed-forward fashion, being
extremely efficient and generalizable to cases much
more complicated than GMM. Very interestingly, com-
pared to conventional networks, quadratic networks
can deliver a performance close to that of the EM algo-
rithm in the GMM cases and yet be orders of magnitude
simpler than conventional networks for the same clas-
sification task.

In conclusion, in this paper we have numerically and
experimentally demonstrated the superiority of quad-
ratic networks over conventional ones. It is underlined

Fig. 7  Decision boundaries of EM and neural networks, including C and Q neural networks with different numbers of neurons. The notation (·)
stands for the architecture of a neural network as described in Eq. 15

Table 1  The average accuracy of and time needed by EM
algorithm, Q and C neural networks with different numbers
of neurons in 2D spaces with two Gaussian clusters plus a
background. The notation (·) stands for the architecture of a
neural network as described in Eq. 15

Accuracy (%) Time (s)

C(2-3) 31.1752 2.44

C(2-10-3) 91.8122 23.15

C(2-100-3) 91.8391 213.61

Q(2-3) 91.8525 16.30

EM 91.8625

Page 9 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23 	

that the quadratic neural network of a much lighter
structure rivals the conventional network of a com-
plexity orders of magnitude more in solving the same
classification problems. Clearly, the superior clas-
sification performance of quadratic networks could
be translated to medical imaging tasks, especially
radiomics.

Fig. 8  Typical scatter plots of samples in 2D (left) and 3D (right) spaces with K = 5 (top) and K = 8 (bottom)

Table 2  The average accuracy of and time needed by EM
algorithm, Q and C neural networks with different numbers of
neurons in 2D and 3D spaces with K = 5 and 8 Gaussian clusters.
The notation (·) stands for the architecture of a neural network as
described in Eq. 15

Accuracy (%) Time (s) Accuracy (%) Time (s)

D = 2, K = 5 D = 3, K = 5

C(2-3) 92.36± 7.89 11.5± 5.0 84.72± 10.32 13.7± 5.8

C(2-10-3) 95.36± 5.66 23.3± 14.1 92.15± 8.04 24.8± 8.6

C(2-100-3) 95.47± 5.68 62.7± 27.9 92.54± 8.01 71.8± 29.2

Q(2-3) 95.53± 5.66 15.8± 6.7 92.74± 7.98 17.6± 7.4

EM 95.60± 5.65 92.90± 7.97

D = 2, K = 8 D = 3, K = 8

C(2-3) 83.84± 5.53 22.8± 8.0 76.47± 6.31 28.8± 10.6

C(2-10-3) 87.90± 3.75 47.6± 17.1 82.45± 5.36 62.6± 18.5

C(2-100-3) 88.06± 3.70 122.6± 39.2 82.68± 5.34 151.8± 41.4

Q(2-3) 88.13± 3.67 33.3± 11.0 82.79± 5.31 46.2± 13.3

EM 88.19± 3.64 82.86± 5.32

Table 3  Basic information about three real data sets: protein
localization sites (yeast), pen-based recognition of handwritten
digits (pendigits), and isolated letter speech recognition (isolet)

Datasets Train Test Dimensions Classes

yeast 1484 8 10

pendigits 7494 3498 16 10

isolet 6238 1559 617 26

Page 10 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23

Abbreviations
ANN: Artificial neural network; BP: Backpropagation; EM: Expectation-
maximization; GMM: Gaussian mixture model; 2D: Two-dimensional; 3D:
Three-dimensional.

Acknowledgements
Not applicable.

Authors’ contributions
GW suggested this research topic. TRQ designed the networks and experiments,
and drafted the paper. Both discussed data analysis and revised the paper. All
authors read and approved the final manuscript.

Funding
This work was supported in part by NIH, Nos. R01CA237267, R01HL151561,
R21CA264772, and R01EB032716.

Availability of data and materials
The datasets analysed during the current study are available in the UCI
Machine Learning repository, http://​archi​ve.​ics.​uci.​edu [20]. Applications and
source codes are available at https://​github.​com/​tianr​ui-​qi/​Quadr​aticN​eurons.

Declarations

Consent for publication
All authors give consent for publication.

Competing interests
The authors declare that they have no competing interests.

Received: 6 June 2022 Accepted: 16 August 2022

References
	1.	 Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al (2020)

Language models are few-shot learners. Adv Neural Informat Proc Syst
33:1877-1901

	2.	 Sakaguchi, K., Le Bras, R., Bhagavatula, C., Choi, Y.: Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI
Conference on Artificial Intelligence 34(05), 8732-8740 (2020)

	3.	 Di Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection
in complex driving scenes. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 16918-16927 (2021)

	4.	 Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction
with stacked transformers. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 7577-7586 (2021)

	5.	 Ma, X., Zhang, Y., Xu, D., Zhou, D., Yi, S., Li, H., et al.: Delving into localiza-
tion errors for monocular 3d object detection. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, 4721-4730
(2021)

	6.	 Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J,
et al (2019) Grandmaster level in starcraft II using multi-agent reinforce-
ment learning. Nature 575(7782):350-354. https://​doi.​org/​10.​1038/​
s41586-​019-​1724-z.

	7.	 Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D (2019) Deep
learning for cellular image analysis. Nat Methods 16(12):1233-1246.
https://​doi.​org/​10.​1038/​s41592-​019-​0403-1.

	8.	 Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-net:
a self-configuring method for deep learning-based biomedical image
segmentation. Nat Methods 18(2):203-211. https://​doi.​org/​10.​1038/​
s41592-​020-​01008-z.

	9.	 Wang G, Ye JC, De Man B (2020) Deep learning for tomographic image
reconstruction. Nat Mach Intell 2(12):737-748. https://​doi.​org/​10.​1038/​
s42256-​020-​00273-z.

	10.	 Bennett KP, Brown EM, De Los Santos H, Poegel M, Kiehl TR, Patton EW,
et al (2019) Identifying windows of susceptibility by temporal gene
analysis. Sci Rep 9(1):2740. https://​doi.​org/​10.​1038/​s41598-​019-​39318-8.

	11.	 Petegrosso R, Li ZL, Kuang R (2020) Machine learning and statistical
methods for clustering single-cell RNA-sequencing data. Brief Bioinform
21(4):1209-1223. https://​doi.​org/​10.​1093/​bib/​bbz063.

	12.	 Arunkumar N, Mohammed MA, Ghani MKA, Ibrahim DA, Abdulhay E,
Ramirez-Gonzalez G, et al (2019) K-means clustering and neural network
for object detecting and identifying abnormality of brain tumor. Soft
Comput 23(19):9083-9096. https://​doi.​org/​10.​1007/​s00500-​018-​3618-7.

	13.	 Huang H, Meng FZ, Zhou SH, Jiang F, Manogaran G (2019) Brain image
segmentation based on FCM clustering algorithm and rough set. IEEE
Access 7:12386-12396. https://​doi.​org/​10.​1109/​ACCESS.​2019.​28930​63.

Fig. 9  Typical yeast images from the Cell Image Library (http://​celli​magel​ibrary.​org/​groups/​50815)

Table 4  The average accuracy of and time needed by Q and C neural networks with different numbers of neurons for three real
datasets. The notation (·) stands for the architecture of a neural network as described in Eq. 15

Yeast Pendigits Isolet

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

C(2-3) 57.17± 1.79 0.5± 0.3 90.01± 1.54 3.3± 2.7 89.94± 3.30 11.2± 0.2

C(2-10-3) 58.21± 1.93 0.7± 0.2 93.23± 2.39 4.0± 1.9 92.00± 0.60 11.8± 0.7

C(2-100-3) 59.69± 2.96 0.9± 0.2 96.66± 0.29 14.8± 27.4 94.47± 0.30 49.8± 2.6

Q(2-3) 60.99± 1.27 0.5± 0.1 97.04± 0.30 6.1± 0.2 95.01± 0.17 21.2± 0.2

http://archive.ics.uci.edu
https://github.com/tianrui-qi/QuadraticNeurons
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.1038/s41598-019-39318-8
https://doi.org/10.1093/bib/bbz063
https://doi.org/10.1007/s00500-018-3618-7
https://doi.org/10.1109/ACCESS.2019.2893063
http://cellimagelibrary.org/groups/50815

Page 11 of 11Qi and Wang ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:23 	

	14.	 Fan FL, Cong WX, Wang G (2018) A new type of neurons for machine
learning. Int J Numer Methods Biomed Eng 34(2):e2920. https://​doi.​org/​
10.​1002/​cnm.​2920.

	15.	 Fan FL, Cong WX, Wang G (2018) Generalized backpropagation algorithm
for training second-order neural networks. Int J Numer Methods Biomed
Eng 34(5):e2956. https://​doi.​org/​10.​1002/​cnm.​2956.

	16.	 Fan FL, Shan HM, Kalra MK, Singh R, Qian GH, Getzin M, et al (2019)
Quadratic autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans Med
Imaging 39(6):2035-2050. https://​doi.​org/​10.​1109/​TMI.​2019.​29632​48.

	17.	 Fan, F., Shan, H., Gjesteby, L., Wang, G.: Quadratic neural networks for CT
metal artifact reduction. Developments in X-Ray Tomography XII 11113,
111130 (2019). International Society for Optics and Photonics.

	18.	 Fan FL, Wang G (2020) Fuzzy logic interpretation of quadratic networks.
Neurocomputing 374:10-21. https://​doi.​org/​10.​1016/j.​neucom.​2019.​09.​
001.

	19.	 Fan FL, Xiong JJ, Wang G (2020) Universal approximation with quadratic
deep networks. Neural Netw 124:383-392. https://​doi.​org/​10.​1016/j.​
neunet.​2020.​01.​007.

	20.	 Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://​archi​ve.​
ics.​uci.​edu/​ml. Accessed 2022-05-28.

	21.	 Höög, J., Panagaki, D., Croft, J.: CIL:50813 - 50817, Saccharomyces cerevi-
siae (baker’s yeast, budding yeast), Mixed population of S. cerevisiae cells.
CIL. Dataset. (2020).http://​celli​magel​ibrary.​org/​groups/​50815. Accessed
2022-05-28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/cnm.2920
https://doi.org/10.1002/cnm.2920
https://doi.org/10.1002/cnm.2956
https://doi.org/10.1109/TMI.2019.2963248
https://doi.org/10.1016/j.neucom.2019.09.001
https://doi.org/10.1016/j.neucom.2019.09.001
https://doi.org/10.1016/j.neunet.2020.01.007
https://doi.org/10.1016/j.neunet.2020.01.007
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://cellimagelibrary.org/groups/50815

	Superiority of quadratic over conventional neural networks for classification of gaussian mixture data
	Abstract
	Introduction
	Methods
	GMM-based classification error
	Bayes error
	EM algorithm

	Neural network training
	Forward computation
	BP formulation
	Whole training process

	Results and discussion
	Illustrative classification example
	Systematic comparation
	Real data

	Conclusions
	Acknowledgements
	References

