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Background. For both the current and future pandemics, there is a need for high-throughput drug screening methods to identify 
existing drugs with potential preventive and/or therapeutic activity. Epidemiologic studies could complement laboratory-focused 
efforts to identify possible therapeutic agents.

Methods. We performed a pharmacopeia-wide association study (PWAS) to identify commonly prescribed medications and 
medication classes that are associated with the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older 
individuals (≥65 years) in long-term care homes (LTCHs) and the community, between 15 January 2020 and 31 December 2020, 
across the province of Ontario, Canada.

Results. A total of 26 121 cases and 2 369 020 controls from LTCHs and the community were included in this analysis. Many of 
the drugs and drug classes evaluated did not yield significant associations with SARS-CoV-2 detection. However, some drugs and 
drug classes appeared to be significantly associated with reduced SARS-CoV-2 detection, including cardioprotective drug classes 
such as statins (weighted odds ratio [OR], 0.91; standard P < .01, adjusted P < .01) and β-blockers (weighted OR, 0.87; standard 
P < .01, adjusted P = .01), along with individual agents ranging from levetiracetam (weighted OR, 0.70; standard P < .01, adjusted 
P < .01) to fluoxetine (weighted OR, 0.86; standard P = .013, adjusted P = .198) to digoxin (weighted OR, 0.89; standard P < .01, 
adjusted P = .02).

Conclusions. Using this epidemiologic approach, which can be applied to current and future pandemics, we have identified a va-
riety of target drugs and drug classes that could offer therapeutic benefit in coronavirus disease 2019 (COVID-19) and may warrant 
further validation. Some of these agents (eg, fluoxetine) have already been identified for their therapeutic potential.

Keywords. case-control; COVID-19; drug screening; epidemiology; SARS-CoV-2.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the agent of coronavirus disease 2019 (COVID-19), 
has caused substantial morbidity and mortality since its rec-
ognition in China in December 2019 [1]. Hundreds of mil-
lions of COVID-19 cases and millions of attributable deaths 
have been documented worldwide [2]. Mortality has been 
particularly high in elderly patients and those with comorbid 

conditions or residing in long-term care homes (LTCHs) [3]. 
For those patients who develop infection and recover, they re-
main at risk for longer-term sequelae that can impact on their 
physical and mental health as well as their economic produc-
tivity [4].

Significant resources have been invested into developing 
both effective vaccines for the prevention of disease and 
drugs for the treatment of those infected [5–7]. While vac-
cines have been shown effective at preventing most severe 
disease [8], there are still large populations of individuals, 
including young children, the vaccine-hesitant or ineligible, 
and those from areas with reduced access to vaccines, that 
are at particular risk for infection and/or complications of 
infection [8, 9]. Moreover, even individuals who have been 
vaccinated can develop severe disease from wild-type strains 
or emerging variants of concern (VoCs), although to a lesser 
extent [10–12].
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To date, many of the effective treatments for COVID-19 
have been discovered through the “reuse” of existing drugs 
that serve other indications [6]. These include drugs with an-
tiviral activity (eg, remdesivir, molnupiravir), those with local 
or systemic immunomodulatory properties (eg, dexametha-
sone, tocilizumab, baricitinib, budesonide, and sarilumab) [13, 
14], and those with still unclear mechanisms (eg, fluvoxamine). 
Many of these therapies have shown impressive impacts at re-
ducing morbidity and mortality in COVID-19, and the success 
of these agents supports the value of identifying active thera-
peutic agents from existing drugs. Moreover, the regulatory 
pipeline for trialing and then adopting an existing drug for an 
off-label indication is simpler than developing new agents for 
treatment [15]. Despite the significant progress that has been 
made to date with identifying effective agents, there are still 
major gaps for improving morbidity and mortality in both out-
patient and hospitalized patients; mortality can be as high as 
29% in patients receiving mechanical ventilation despite receipt 
of one of the most effective therapies to date (dexamethasone) 
[13].

A major hurdle in the reuse paradigm is efficiently screening 
candidate agents for prospective study. In vitro studies are used 
as a basis for justifying the clinical trials of many agents, but this 
approach is limited by assays that can assess the direct antiviral 
effect of agents on target cells or proteins [16] and do not nec-
essarily capture more complicated actions of drugs including 
immunomodulation [13, 14]. Additionally, developing in vitro 
or animal models of emerging pathogens in a timely manner 
may prove challenging.

Rather than using in vitro drug screening, we can use large 
databases of patients that have exposures to existing drugs 
and evaluate their relative risk of COVID-19 as a function 
of these drug exposures. Using techniques from genomic ep-
idemiology, we can perform a corollary of a genome-wide 
association study (GWAS) but using pharmaceuticals as the 
exposure. This has been termed a pharmacopeia-wide asso-
ciation study (PWAS) [17]. PWAS and related studies have 
typically been used for identifying drug harm, such as the 
evaluation of drug exposure and myocardial infarction risk, 
but the same approaches could also be used to discover thera-
peutic agents from existing drugs [17, 18]. PWAS and related 
studies [18] are not limited to evaluating drugs with direct 
antiviral activity and can capture immunomodulatory effects 
along with offering the benefit of assessing population-level 
impacts of particular exposures. These studies are not meant 
to achieve perfect adjustment/correction of all confounding 
or selection bias; rather, they are screening tools to identify 
targets with potential promise that warrant further evalua-
tion. Evaluating agents that reduce an individual’s risk of in-
fection can provide a window into potential prophylactic and 
therapeutic agents. Though these approaches represent a fun-
damentally different approach to drug screening compared 

to traditional laboratory-based methods, PWAS could be a 
promising and complimentary way of identifying candidate 
drugs for rapid clinical trials in epidemic and pandemic con-
texts, including the ongoing COVID-19 pandemic. In this 
study, we applied a PWAS approach to evaluate potential drug 
targets for COVID-19 infection that would benefit from fur-
ther study.

METHODS

Study Design

We performed a nested case-control study evaluating the as-
sociations between all drug exposures and the detection of 
SARS-CoV-2 in individuals across the province of Ontario, 
Canada. We used a PWAS with the aim of identifying poten-
tial drug targets for further evaluation and validation, but not 
to achieve perfect adjustment/correction of all confounding or 
selection bias. This is commensurate with drug screening ap-
proaches that seek to identify targets with promise, but not to 
definitively confirm effectiveness. We obtained study data from 
linked population-wide administrative datasets housed at ICES 
(formerly the Institute for Clinical Evaluative Sciences). These 
datasets were linked using unique encoded identifiers and ana-
lyzed at ICES.

Study Population/Cohort

We considered all Ontario residents aged 66–110 years be-
tween 15 January 2020 and 31 December 2020. We excluded 
residents who had (1) invalid birth or death dates; (2) non-
Ontario postal codes; (3) or were not eligible for Ontario 
universal health insurance program coverage. We classified 
individuals into community-dwelling residents and residents 
of LTCHs. The latter group was identified based on recent as-
sessments recorded in the Continuing Care Reporting System 
Long-Term Care database, or physician billings or prescrip-
tion drug claims recorded in the Ontario Health Insurance 
Plan database or the Ontario Drug Benefits (ODB) database, 
respectively. The ODB database provides near-complete in-
formation on all prescription drugs for residents ≥65 years of 
age in Ontario.

Cases

We defined a case as laboratory-confirmed molecular detection 
of SARS-CoV-2 from nasopharyngeal and/or other respiratory 
specimens recorded in the Ontario Laboratories Information 
System. We selected the index date as the specimen collection 
date of the earliest testing episode positive for SARS-CoV-2.

Controls

We defined a control as any other resident during the study 
period, this includes individuals that were and were not tested 
for SARS-CoV-2. We randomly assigned index dates from 15 
January 2020 through 31 December 2020.
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Exposures

We wished to identify chronic drug exposures, and for each oral 
prescription drug captured in the ODB database, we determined 
whether an individual was chronically exposed to the drug by 
looking for a prescription with sufficient days’ supply that over-
lapped with the index date and also 30 days prior to the index 
date. For the analyses, we only considered drugs with an expo-
sure prevalence of ≥0.1% in each group of residents. We classi-
fied drug exposures by the Anatomical Therapeutic Chemical 
(ATC) classification levels by linking the Drug Identification 
Number in the ODB database with the Drug Product Database, 
which is managed by Health Canada. The ATC4 level typically 
refers to a group of structurally and/or functionally related 
chemicals whereas the ATC5 level refers to individual drugs 
[19]. We chose to evaluate both drug classes to look for class 
effects, and also individual drugs (nested within drug classes) 
for drug-specific effects.

Covariates

We identified a number of covariates that could act as potential 
confounders of the association of medication use and SARS-
CoV-2 detection. These include demographic (age, sex), geo-
graphic (census tract or census subdivision for rural areas for 
community-dwelling residents), facility (for LTCH residents), 
comorbidity (Charlson Comorbidity Index, asthma, cancer, 
chronic kidney disease including dialysis, chronic obstructive 
lung disease, coronary artery disease, dementia, depression, 
diabetes, congestive heart failure, hypertension, history of is-
chemic stroke, immunocompromised [as either diagnosis of 
human immunodeficiency virus, organ/bone marrow trans-
plant, or immunosuppression condition/therapy], hypothy-
roidism, advanced liver disease, lupus, hospitalization for 
pneumonia in the prior year, rheumatoid arthritis), healthcare 
utilization (number of hospitalizations, number of physician 
visits, number of emergency department visits, number of pre-
scriptions, receipt of homecare services in the past year) in the 
past year, quantity of drug exposure (number of unique ATC4 
exposures, number of unique ATC5 exposures), and calendar 
month of index date. Comorbidity data were identified using 
a previously developed and validated multimorbidity macro 
[20–25].

Data Analysis
For each drug, we performed conditional logistic regression 
analyses evaluating the odds ratio (OR) of drug exposure among 
cases and controls; we applied separate models for the com-
munity and LTCH groups of interest. To account for geographic 
variability in case rates and drug exposures, we conditioned 
upon either (1) census tracts for community-dwelling individ-
uals, or (2) facility for LTCH residents. We subsequently com-
bined our effect estimates for community and LTCHs using an 
inverse variance weighted meta-analytic approach (described 
below). With the exception of the Charlson Comorbidity Index, 

which was not available for all individuals, all other covariates 
were included in the model for each of the 2 populations of in-
terest. We reported adjusted ORs, standard and multiple-testing 
adjusted P values (see below), and in some instances, 95% con-
fidence intervals (CIs).

Meta-analyzed Effect Estimates 
To provide a single effect estimate across the 2 studied popu-

lations, we combined the adjusted ORs of drug exposure (when 
a drug had an exposure prevalence of ≥0.1% in both LTCH and 
community populations) for the community and LTCH resi-
dent populations using an inverse variance weighting approach 
to generate a weighted OR (wOR). Variances were pooled to 
compute the variance, 95% CIs, and standard P values of the 
weighted estimates.

Multiple Testing

We used the conservative Benjamini-Yekutieli procedure to ad-
just for multiple testing in a fashion assuming an arbitrary P 
value dependence [26]. Recently there has been a concerted ef-
fort to present CIs instead of P values in scientific reports; how-
ever, we have retained our P values here as we feel they are an 
important component of a GWAS-inspired analysis.

Visualization

Rainforest plots [27] were constructed to present drug-specific 
wORs of exposure and 95% CIs as well as associated standard 
and adjusted P values. Scatterplots were used to compare ad-
justed ORs of exposure between community and LTCH resi-
dents, by drug (ATC5) and drug class (ATC4).

Research Ethics and Patient Consent

ICES is an independent, nonprofit research institute whose 
legal status under Ontario’s health information privacy law al-
lows it to collect and analyze healthcare and demographic data, 
without consent, for health system evaluation and improve-
ment. The use of the data in this project is authorized under 
section 45 of Ontario’s Personal Health Information Protection 
Act and does not require review by a research ethics board.

RESULTS

Our analysis included 2 395 141 individuals from the province 
of Ontario from 15 January 2020 to 31 December 2020. There 
were 2 326 441 community-dwelling residents, of which 17 
300 (0.7%) had detection of SARS-CoV-2. There were 68 700 
LTCH residents, of which 8821 (13%) had detection of SARS-
CoV-2 (Supplementary Figure 1). The baseline characteristics 
of both populations, cases and controls, are shown in Table 
1. In LTCH residents, the median age was 86 years in both 
cases and controls, and the majority of cases and controls were 
female (67% and 70%, respectively). Cases tended to have a 
higher mean number of hospitalizations, prescriptions, and 
some specific comorbidities (Table 1). In the community, the 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
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Table 1. Baseline Characteristics of Cases and Controls From Long-Term Care Homes and Community Populations

Variable 

Long-term Care Home Residents Community Residents

Cases (COVID-19  
Positive) Controls 

Std Diff 

Cases (COVID-19  
Positive) Controls 

Std Diff (n = 8821) (n = 59 879) (n = 17 300) (n = 2 309 141)

Age at index date, y

  Mean ± SD 85.05 ± 8.23 85.47 ± 8.18 0.05 76.35 ± 8.44 75.73 ± 7.25 0.08

  Median (IQR) 86 (79–91) 86 (80–92) 0.05 74 (69–82) 74 (70–80) 0.01

Sex

  Female 5903 (66.9) 41 756 (69.7) 0.06 8883 (51.3) 1 247 321 (54.0) 0.05

  Male 2918 (33.1) 18 123 (30.3) 0.06 8417 (48.7) 1 061 820 (46.0) 0.05

Charlson Comorbidity Indexa

  Mean ± SD 1.83 ± 1.60 1.67 ± 1.58 0.10 1.73 ± 1.78 1.29 ± 1.62 0.26

  Median (IQR) 1 (1–3) 1 (1–3) 0.12 1 (0–3) 1 (0–2) 0.29

No. of hospitalizationsa

  Mean ± SD 0.34 ± 0.76 0.31 ± 0.70 0.05 0.24 ± 0.71 0.11 ± 0.43 0.22

  Median (IQR) 0 (0–0) 0 (0–0) 0.05 0 (0–0) 0 (0–0) 0.23

No. of physician visitsa

  Mean ± SD 14.36 ± 8.67 13.83 ± 9.69 0.06 7.27 ± 8.22 5.23 ± 6.15 0.28

  Median (IQR) 13 (12–15) 12 (11–14) 0.18 5 (2–10) 4 (1–7) 0.34

No. of ED visitsa

  Mean ± SD 0.81 ± 1.53 0.72 ± 1.48 0.06 0.89 ± 1.87 0.45 ± 1.21 0.28

  Median (IQR) 0 (0–1) 0 (0–1) 0.09 0 (0–1) 0 (0–0) 0.36

No. of prescriptionsa

  Mean ± SD 12.11 ± 5.76 11.88 ± 5.76 0.04 8.65 ± 5.97 6.12 ± 5.03 0.46

  Median (IQR) 11 (8–15) 11 (8–15) 0.04 8 (4–12) 5 (2–9) 0.46

Receipt of home carea 2925 (33.2) 20 387 (34.0) 0.02 4259 (24.6) 265 241 (11.5) 0.35

Comorbidities

  Asthma 1437 (16.3) 8721 (14.6) 0.05 3141 (18.2) 308 143 (13.3) 0.13

  Cancer 105 (1.2) 867 (1.4) 0.02 481 (2.8) 61 232 (2.7) 0.01

  CKD 1695 (19.2) 9002 (15.0) 0.11 2668 (15.4) 183 944 (8.0) 0.23

  COPD 1370 (15.5) 9455 (15.8) 0.01 1754 (10.1) 179 541 (7.8) 0.08

  CAD 758 (8.6) 4705 (7.9) 0.03 1353 (7.8) 111 391 (4.8) 0.12

  Dementia 7393 (83.8) 47 924 (80.0) 0.1 2224 (12.9) 112 680 (4.9) 0.28

  Depression 3358 (38.1) 21 183 (35.4) 0.06 5141 (29.7) 567 629 (24.6) 0.12

  Diabetes 3687 (41.8) 22 328 (37.3) 0.09 7397 (42.8) 694 427 (30.1) 0.27

  CHF 2137 (24.2) 13 988 (23.4) 0.02 2514 (14.5) 198 384 (8.6) 0.19

  Hypertension 7482 (84.8) 49 675 (83.0) 0.05 13 183 (76.2) 1 557 102 (67.4) 0.20

  History of ischemic stroke 1069 (12.1) 6821 (11.4) 0.02 653 (3.8) 52 408 (2.3) 0.09

  Immunocompromised 592 (6.7) 4360 (7.3) 0.02 1431 (8.3) 160 581 (7.0) 0.05

  Hypothyroidism 1032 (11.7) 5966 (10.0) 0.06 2447 (14.1) 261 966 (11.3) 0.08

  Advanced liver disease 239 (2.7) 1109 (1.9) 0.06 361 (2.1) 33 743 (1.5) 0.05

  Lupus 171 (1.9) 1084 (1.8) 0.01 446 (2.6) 56 451 (2.4) 0.01

  Pneumonia hospitalizationa 327 (3.7) 1929 (3.2) 0.03 328 (1.9) 15 523 (0.7) 0.11

  Rheumatoid arthritis 308 (3.5) 2035 (3.4) 0.01 501 (2.9) 61 579 (2.7) 0.01

No. of unique ATC4 exposures

  0 drug exposures 466 (5.3) 3611 (6.0) 0.03 3844 (22.2) 647 912 (28.1) 0.13

  1–5 drug exposures 3977 (45.1) 27 184 (45.4) 0.01 9151 (52.9) 1 297 823 (56.2) 0.07

  6–10 drug exposures 3764 (42.7) 25 235 (42.1) 0.01 3866 (22.3) 337 366 (14.6) 0.20

  >10 drug exposures 614 (7.0) 3849 (6.4) 0.02 439 (2.5) 26 040 (1.1) 0.11

No. of unique ATC5 exposuresa

  0 drug exposures 466 (5.3) 3611 (6.0) 0.03 3844 (22.2) 647 912 (28.1) 0.13

  1–5 drug exposures 3897 (44.2) 26 527 (44.3) 0 9123 (52.7) 1 294 145 (56.0) 0.07

  6–10 drug exposures 3783 (42.9) 25 398 (42.4) 0.01 3867 (22.4) 339 154 (14.7) 0.20

  >10 drug exposures 675 (7.7) 4343 (7.3) 0.02 466 (2.7) 27 930 (1.2) 0.11

If not otherwise specified, values are shown as frequency (%).

Abbreviations: ATC, Anatomical Therapeutic Chemical classification system; CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstruc-
tive pulmonary disease; COVID-19, coronavirus disease 2019; ED, emergency department; IQR, interquartile range; SD, standard deviation; Std Diff, standardized difference.
aIn the past year.
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median age was 74 years for cases and controls, and the ma-
jority of cases and controls were female (51% and 54%, re-
spectively). There was a trend toward a higher mean number 
of hospitalizations, physician visits, and prescriptions in cases 
vs controls (Table 1).

The wORs of individual drug exposure (ATC5) are shown in 
Figure 1, along with standard P values and multiple testing–ad-
justed P values. Drug exposures are ordered according to effect 
size, and there are a small subset of individual drugs showing 
strong associations with either decreased or increased odds of 
SARS-CoV-2 detection. In total, there are 25 drugs associated 
with reduced detection of SARS-CoV-2 (wORs, <.9), many 
of which were found to have multiple-testing P values < .05. 
Adjusted ORs for the specific population (LTCH and 
community-dwelling residents) are shown in Supplementary 
Figure 2.

The wORs of drug class exposure (ATC4) are shown in 
Supplementary Figure 3, along with standard P values and 
multiple testing–adjusted P values. Drug class exposures are 
ordered according to effect size, with some classes showing 
strong associations with either decreased or increased odds 
of SARS-CoV-2 detection. In total, there are 17 drug classes 
associated with reduced detection of SARS-CoV-2 (wORs, 
<.9), many of which were found to have multiple-testing 
P values < .05. Adjusted ORs for the specific population 
(LTCH and community-dwelling residents) are shown in 
Supplementary Figure 4.

We plotted the adjusted ORs of drug exposure by ATC level 
for LTCH vs community-dwelling residents (Figure 2), where a 
null association was hypothesized as we expect the majority of 
effect estimates to be noise with the exception of the strongest 
associations. Quantile-quantile plots of wORs by drug and drug 
class are shown in Supplementary Figures 5 and 6.

We performed a sensitivity analysis of the community 
population, stratifying by age <80 years and age ≥80 years. 
These adjusted ORs of drug exposure (ATC5) are shown in 
Supplementary Figure 7. These generally show the strongest as-
sociation measure as consistent across these age strata. We did 
not perform this analysis for the LTCH group because the me-
dian age was 86 years.

DISCUSSION

In this large, nested case-control study across the entire phar-
macopeia of commonly prescribed medications, we demon-
strate that PWAS can be used to identify drugs and drug classes 
that are associated with laboratory-confirmed detection of 
SARS-CoV-2. We found that the vast majority of commonly 
used drugs are not associated with either increased or reduced 
detection of SARS-CoV-2. However, as is the potential power of 
large drug screens [28], we have identified some existing agents/
classes that warrant further investigation as potential COVID-
19 therapeutics.

While a number of individual agents showed associations with 
reduced detection of SARS-CoV-2, we highlight 4 agents that 
demonstrated particularly pronounced reduced SARS-CoV-2 
detection and are also commonly used: ezetimibe, fluoxetine, 
levetiracetam, and diazepam. Ezetimibe inhibits cholesterol 
absorption from the small intestine, and this alteration of the 
cholesterol synthesis pathway (as occurs also with statins and 
fibrates) may be a mechanism for beneficial effect in COVID-
19 [29]. A large case-control study from Israel identified that 
drugs related to the cholesterol synthesis pathway, including 
ezetimibe, ubiquinone, and rosuvastatin, were associated with 
reduced risk of hospitalization with COVID-19 and support 
our findings [18]. The association between fluoxetine and re-
duced COVID-19 diagnosis may have a foundation in a unique 
immunomodulatory effect found with selective serotonin re-
uptake inhibitors (SSRIs), due to σ-1 receptor (S1R) agonism 
[30], which may act to reduce proinflammatory cytokine pro-
duction. The SSRI fluvoxamine has shown promise for treating 
outpatients with COVID-19 infection [31]; therefore, fluox-
etine, which shares similar mechanistic properties including 
potent S1R agonism, could reduce symptoms of COVID-19 
infection and thus yield reduced diagnosis. Levetiracetam 
(an anti-epileptic agent) and diazepam (an anxiolytic) both 
have no known antiviral activity against SARS-CoV-2 or clear 
immunomodulatory effects and may benefit from further eval-
uation (along with the many other agents demonstrating re-
duced association with SARS-CoV-2 detection).

We also identified a number of drug classes that showed 
strong associations with reduced SARS-CoV-2 identifica-
tion, and the majority of these appeared to be cardioprotective 
agents, including lipid-modifying agents such as statins, inhibi-
tors/blockers of the renin-angiotensin system (eg, angiotensin-
converting enzyme [ACE] inhibitors and angiotensin receptor 
blockers [ARBs]), and β-blockers. There are multiple reasons 
these agents may have shown reduced associations with SARS-
CoV-2 detection. First, they may play a role in protecting in-
dividuals from acquiring COVID-19 [32]. In particular, ACE 
inhibitors and ARBs have been the focus of much speculation 
in the literature given that SARS-CoV-2 binds to the ACE2 re-
ceptor, and there are a number of ongoing and completed pro-
spective clinical trials to evaluate the clinical impact of these 
drugs [33]. Second, they may reduce the severity of illness, and 
thus reduce the likelihood of case identification (diagnosis). 
Other cardioactive classes that showed a reduced association 
with SARS-CoV-2 identification were the digitalis glycosides, 
specifically digoxin. This may be due to reduced case finding 
through a stabilizing effect on cardiac function and thus re-
duced symptomatology. Interestingly, this could also be due to a 
direct antiviral effect of digoxin, which has been noted in prior 
in vitro studies [34].

We also identified classes of drugs associated with in-
creased SARS-CoV-2 detection. Some of these classes include 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac156#supplementary-data
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Drug(ATC5) Benjamini-Yekutieli p wOR of drug exposure [95%]
DIAZEPAM 0 0.61 [0.50, 0.75]

0.67 [0.59, 0.75]
0.70 [0.64, 0.77]
0.71 [0.59, 0.86]
0.76 [0.63, 0.91]
0.76 [0.67, 0.87]
0.79 [0.69, 0.91]
0.81 [0.69, 0.96]
0.83 [0.74, 0.93]
0.84 [0.77, 0.92]
0.84 [0.70, 1.02]
0.85 [0.81, 0.90]
0.86 [0.76, 0.97]
0.86 [0.80, 0.93]
0.86 [0.83, 0.89]
0.86 [0.81, 0.92]
0.87 [0.79, 0.96]
0.87 [0.79, 0.95]
0.87 [0.78, 0.97]
0.88 [0.79, 0.97]
0.88 [0.72, 1.08]
0.88 [0.79, 0.99]
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Figure 1. Rainforest plots of the weighted odds ratios (wORs) and 95% confidence intervals (CIs) of drug exposure by ATC5 (Anatomical Therapeutic Chemical classifica-
tion) drug, along with standard P values and Benjamini-Yekutieli–adjusted P values.
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immunomodulatory drugs (eg, sulfasalazine and leflunomide) 
that may alter the predisposition of patients for developing 
severe disease. Other classes associated with increased SARS-
CoV-2 detection include antibiotics (eg, macrolides and sulfa 
agents), proton pump inhibitors, and iron. The association with 
antibiotics may be reflective of residual confounding among 
populations with chronic lung disease or other chronic diseases 
that require frequent or continuous antibiotic use, and may be 
at risk of more symptomatic/severe disease. It is unlikely that 
these findings represent reverse causation, as our exposure def-
inition requires the use of the agent at 1 month prior to the 
index diagnosis. The harmful association with iron may be due 
to worse outcomes associated with iron deficiency (with iron 
use a proxy for iron deficiency) [35, 36], and the harmful asso-
ciation with proton pump inhibitors could relate to suspected 
detrimental effects of hypochlorhydria [37, 38].

When comparing all drugs or drug classes, we did not find an 
association between adjusted odds ratios of exposure for LTCH 
and community-dwelling individuals. This is expected, because 
only a minority of estimates should be truly concordant be-
tween the populations (representing signal) and the rest should 
be random (representing noise).

As with any epidemiologic study, associations that have 
been outlined here could be due to residual confounding or 
selection bias. However, we did adjust for a large array of po-
tential confounders in our analysis. Moreover, we used an ap-
proach that offered the least risk of collider stratification bias 
[39, 40]. Nevertheless, we expect residual confounding or se-
lection bias to be driving many of the protective and harmful 

associations in this PWAS analysis, and the goal of PWAS is as a 
high-throughput screening test to highlight potential targets for 
further epidemiologic, in vitro, or in vivo validation. Another 
potential limitation of our study was the selection of the out-
come, namely SARS-CoV-2 detection, which is not a direct 
measure of symptomatic COVID-19 infection, nor the impacts 
on outcomes in patients who are diagnosed with COVID-19. 
However, we chose this outcome to identify drug exposures 
that might act to prevent acquisition or detection of acquisition, 
for which there would be an underlying important drug effect 
that could be repurposed for either prevention or treatment of 
COVID-19. Last, our study occurred largely in pre-VoC time 
periods, and findings here may be less generalizable to a viral 
landscape made up of predominantly VoCs.

Additional steps can be taken to evaluate these candidate 
drugs, depending upon the agent and other supporting evi-
dence, and may include in vitro confirmation of antiviral ac-
tivity (if suspected), additional observational studies to confirm 
effects in separate settings/regions, or possibly prospective trial 
evaluations.

In summary, we present an approach for using large epi-
demiologic cohorts, in a manner akin to genome-wide asso-
ciation studies, to screen for possible drug candidates for the 
prevention and treatment of COVID-19 that would benefit 
from further evaluation. These approaches can be used now 
to search for possible active agents for the ongoing COVID-19 
pandemic, as well as in the future as we experience the emer-
gence of new pathogens of global concern with epidemic/pan-
demic spread.
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Figure 2. Scatterplot of the adjusted odds ratios (aORs) of drug exposure in long-term care home (LTCH) residents vs community residents, by Anatomical Therapeutic 
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