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Abstract

To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical
replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma
and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we dem-
onstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical rep-
licates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and
drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized dif-
ferential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell
line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher
sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for
analyzing small-scale cell line data.
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Introduction

Gene expression profiles with only two or three technical repli-
cates are commonly used for detecting differentially expressed
genes (DEGs) in a cell line after a certain treatment, given that
there is no biological difference among technical replicates
derived from a particular cell clone population. Current statisti-
cal methods such as the significance analysis of microarrays
(SAM) [1] and Student’s t-test often have insufficient statistical
power for this application scenario. More frequently, research-
ers use the fold change (FC) metrics, calculated as the ratios of
the average gene expression levels between the treated and
untreated cell lines, to detect the genes with FC values greater
than an arbitrary preset threshold as DEGs [2–4]. However, this
method does not provide any statistical control. Obviously, the
lowly expressed genes in both conditions may easily have large
FCs simply because of technical variations [1, 5, 6] and the
highly expressed genes in both conditions can hardly have large
FCs [7]. To address this problem, we have proposed an algo-
rithm to identify DEGs based on the significant reproducibility
of genes with top-ranked FCs or average expression differences
(ADs) between paired case-control replicates [7]. However, it still
cannot obtain DEGs with false discovery rate (FDR) control.

Recently, we developed another algorithm, RankComp [8], to
identify DEGs in an individual disease sample through finding
those genes whose upregulations or downregulations can lead
to the observed disrupted relative expression orderings (REOs)
of gene pairs within this sample, taking the highly stable REOs
predetermined in a large collection of samples for the corre-
sponding normal tissues as the background. Owing to the large
interindividual expression variations of human tissue samples,
it is necessary to use a large number of previously accumulated
normal samples to establish the stable normal REOs landscape
for a particular type of human tissue [9, 10]. In contrast, there
exist only measurement variations among technical replicates
of a cell line. Thus, it is possible that two or three technical rep-
licates are sufficient for constructing the stable REOs landscape
of samples for a cell line. Given the above consideration, if a
treatment widely disrupts the stable REOs found in untreated
cell lines, RankComp should be also applicable to detect DEGs
between the treated and untreated cell lines. RankComp adopts
a filtering process to reduce the potential effects of the upward
(or downward) expression changes of other genes on the down-
regulation or upregulation determination of a gene. However, as
described in the ‘Methods’ section, this filtering process cannot
minimize the potential effects of other genes confounding the
REOs comparison for a particular gene, which tends to reduce
the sensitivity of the algorithm.

In this study, using seven small-scale data sets for human
cancer cell lines, we demonstrated that the REOs of gene pairs
were highly stable among the technical replicates of a particular
cell line but were widely disrupted after a certain treatment.
Further, we improved the core algorithm of RankComp and cus-
tomized it to the identification of DEGs for small-scale cell data
with only two or three technical replicates. The new algorithm,
called CellComp, showed much higher sensitivity than the orig-
inal RankComp algorithm, the commonly used SAM [1], limma
[11, 12] and RankProd (RP) [13] methods as evaluated in both
simulated and real data.

Material and methods
Data and preprocessing

Seven small data sets for proliferation analyses of human can-
cer cell lines were obtained from Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/), as described in Table 1,
which were used to evaluate the reproducibility of REOs among
technical replicates of a cell line and compare the performances
of differential expression analysis methods. Another large data
set from GEO (Table 1) was used to evaluate the performance of
CellComp in small subsets derived from the full data set, taking
the DEGs detected from the full data set by SAM as the bench-
mark. For the data measured by the Affymetrix platform, the
raw data (.cel files) were downloaded and normalized using the
Robust Multichip Average algorithm [14]. For the data measured
by the Agilent and Illumina platforms, the normalized data
were downloaded. Probe IDs were mapped to gene IDs using the
corresponding platform files. If multiple probes were mapped to
the same gene, the arithmetic mean of the values of the multi-
ple probes was used as the expression value of this gene. For
the RNA sequencing (RNA-seq) data, the raw counts, the frag-
ments per kilobase of transcript per million fragments mapped
(FPKM) and the transcripts per million (TPM) values were down-
loaded. The genes with nonzero counts, nonzero FPKM and
nonzero TPM values in all samples were analyzed.

Stable REOs

In each sample, the REO of a gene pair (i and j) is denoted as
either Gi>Gj or Gi<Gj exclusively, where Gi and Gj represent the
expression values of gene i and j, respectively. Among a large
set of samples of a state, whether the REO of a gene pair is sta-
ble or not is tested using the binomial test as described in the
original RankComp algorithm [8]. However, this test is not appli-
cable to cell line data sets, where the sample size is small. For
example, the probability to observe the same REO by chance is
1/2 among two technical replicates and 1/4 among three techni-
cal replicates under the hypothesis that a certain REO outcome
(Gi>Gj or Gi<Gj) has a probability of 1/2 to occur. This hypothe-
sis is true for those genes with the same or close expression lev-
els, but random measurement noise may lead to different
observed REOs. To address this problem, we made two modifi-
cations to identify stable REOs under each treatment state,
respectively. First, the REO of a gene pair must be identical
among all the samples under one treatment state. Second, a
parameter, e, is set in the judgment of stable REOs: a certain per-
centage (e.g. 5, 15 or 25%) of gene pairs, among all gene pairs in
building the background stable gene pairs, that have the small-
est rank differences in each sample are excluded. In principle,
the parameter e should be associated with the measurement
variation which is dependent on the expression levels [15].
However, the variation level for each gene is hard to be meas-
ured. Thus, we did simulation experiments to evaluate the
influence of e setting as described in ‘Results’ section.

For the microarray data, the gene expression values can be
directly used to evaluate REOs of gene pairs. For the RNA-seq
data, reads per kilobase per million (RPKM), FPKM and TPM,
which normalize the gene transcription length and the
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sequencing depth [16–18], can represent the actual gene expres-
sion abundance and thus can be applied to rank gene expres-
sion levels. However, the count value of a gene is proportional
not just to the expression level of this gene but also to its gene
transcript length and to the sequencing depth and counts per
million only considers sequencing depth [19, 20], and thus these
metrics are not suitable to rank gene expression levels.

The CellComp algorithm to detect DEGs

Figure 1 describes the flowchart for CellComp. First, with a pre-
settled parameter e, stable gene pairs, which have identical
REOs in all replicates of State 1 (here, the untreated samples)
and State 2 (here, the treated samples) are obtained, respec-
tively. The comparison of REOs between the two states is lim-
ited to the scope of the overlapped gene pairs of the two lists of
stable gene pairs, defined as the background gene pairs. The
gene pairs with unstable REOs in any of the two cell states are
discarded to minimize the influence of random experimental
factors.

For a given gene g, all the gene pairs including g are defined
as g-specific background gene pairs. Let f1 and f2 denote the fre-
quencies of the gene pairs in which g shows a higher expression
level than its partner genes in State 1 and State 2, respectively,
among all g-specific background gene pairs. Fisher’s exact test
is used to test the null hypothesis that f1 and f2 are equal. If the
null hypothesis is rejected at a given significance level, g is
judged as a potential DEG: if f2> f1, suggesting that the expres-
sion level of g is higher than significantly more genes in State 2
than in State 1, g is judged as upregulated, otherwise, downre-
gulated. The Benjamini–Hochberg procedure was used to con-
trol FDR in the multiple tests. This is a concise description for
the Fisher’s exact test in the original RankComp algorithm [8].
After all genes are judged as potential DEGs or non-DEGs, a fil-
tering process is iteratively performed to minimize the influ-
ence of other genes’ expression changes on the Fisher’s exact
test for a particular gene. For each gene g, the g-specific back-
ground gene pairs are renewed by excluding gene pairs com-
posed with g and those potential DEGs detected in the previous
step, and Fisher’s exact test is performed again. This filtering
process is iteratively performed until the number of DEGs, both
the upregulated and downregulated, stops changing.

When genes are widely altered in a cancer cell line by a cer-
tain treatment, the upregulation or downregulation of a gene g
could be falsely indicated by its paired potential DEGs. To
reduce this confound effect, the iterative process is designed to
use those potential non-DEGs involved in the g-specific back-
ground gene pairs to determine whether g is differentially
expressed. In another perspective, if the expression level of g’s
paired gene (gp) is not differentially expressed between two cell
states, the reversal REO pattern of (g, gp) must result from the

differential expression of g. The above filtering process fixes
two potential defects of the original RankComp algorithm. First,
the filtering process of RankComp adjusts the gene-specific
background gene pairs for a given gene g by excluding gene
pairs composed with g and only those potential DEGs with the
opposite dysregulation direction of g detected in the previous
step. This is based on the consideration that only the downre-
gulated or upregulated genes could falsely indicate the upregu-
lation or downregulation of g. However, this unbalanced
practice may decrease the chance of selecting g as a DEG
because the potential DEGs with the same dysregulation direc-
tion of g tend to form nonreversal REOs with g, which is biased
to indicate that g is unchanged. Second, RankComp performs
only one filtering step, which reduces only partially the influ-
ence of other genes’ expression changes on the Fisher’s exact
test for a particular gene.

The CellComp and the original RankComp algorithms are
implemented in C language for efficiency and tested on Linux,
which are freely available online at https://github.com/pathint/
reoa. All the other statistical analyses are performed with the
aid of the R language package version 3.2.3.

Concordance score

To compare the REOs of two gene pair lists, which have k over-
laps, among which s pairs have the same REO directions, the
ratio s/k is defined as the concordance score between the two
lists, which is used to evaluate the consistency of REOs of gene
pairs among technical replicates. Obviously, the score ranges
from 0 to 1. The probability of observing a concordance score of
s/k by chance is evaluated by the cumulative binomial distribu-
tion as follows,

P ¼ 1�
Xs�1

i¼0

k

i

 !
ðPeÞið1� PeÞk�i;

where Pe is the probability of one gene pair having the concord-
ant REO pattern between two technical replicates by chance
(here, Pe¼0.5).

Similarly, if two lists of DEGs identified by two methods in a
data set have k overlaps, among which s genes have the same
dysregulation directions (upregulation or downregulation) in
the two DEGs lists, the concordance score s/k is used to evaluate
the consistency of DEGs between the two lists. The frequently
used percentage of overlapping genes between two lists of DEGs
will be apparently low when any of the two methods in compar-
ison has insufficient power to detect all DEGs in a data set [21].
Here, the cumulative binomial distribution is used to evaluate
the probability of observing a concordance score of s/k by
chance.

Table 1. Data sets for human cancer cell lines analyzed in this study

Data accession Cell line Cancer type Treatment Size

GSE29084 HepG2 Liver cancer HNF4A knockdown 2 VS 2
GSE38581 MKN45 Gastric cancer Hsa-miR-29c transfection 2 VS 2
GSE38581 MKN74 Gastric cancer Hsa-miR-29c transfection 2 VS 2
GSE31450 SNU638 Gastric cancer LAP2b transfection 3 VS 3
E-MEXP-1691 HCT116 Colon cancer 5-FU-treatment for 24h 3 VS 3
GSE35004 Hep3B Liver cancer YAP knockdown 3 VS 3
GSE78167 MCF7 Breast cancer Estrogen-treatment for 2h 3 VS 3
GSE15709 A2780 Ovarian cancer Cisplatin-induced resistance 5 VS 5
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Performance evaluation

In simulation experiments (see ‘Results’ section for details),
sensitivity, specificity and F-score were used to evaluate the
performance of a method. Sensitivity was calculated as the pro-
portion of correctly identified DEGs among all DEGs, and specif-
icity was calculated as the proportion of correctly identified
non-DEGs among all non-DEGs. F-score, the harmonic mean of
sensitivity and specificity, was calculated as follows:

F� score ¼ 2 � sensitivity � specificity
sensitivityþ specificity

:

In the real data analysis, we evaluated the precision of a DEG
identification method according to the concordance score
between the identified upregulation or downregulations and
the observed upregulated or downregulated directions judged
directly by the expression values between the treated and
untreated cell lines. If a gene was identified as an upregulated

Figure 1. The flowchart for the CellComp algorithm. We use a given gene g to elucidate this algorithm. The first step is to extract the g-specific background gene pairs,

each including g, which are stable in both State 1 and State 2. The second step is to perform Fisher’s exact test to test the null hypothesis that f1 and f2 are equal, where

f1 and f2 denote the frequencies of gene pairs, among all g-specific background gene pairs, in which g shows a higher expression level than its partner genes in State 1

and State 2, respectively. After all genes are judged as potential DEGs or non-DEGs, the third step is to renew the g-specific background gene pairs. Only the gene pairs

each including g and potential non-DEGs identified from Step 2 are retained. Step 2 and Step 3 are repeated until the number of detected DEGs stops changing.
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(or downregulated) DEG in treated cell line samples, its average
expression level in the treated cell line samples should be larger
(or smaller) than that in the untreated cell line samples.
Apparently, this criterion serves a necessary but not sufficient
condition for a gene to be DEG.

Functional enrichment analysis

Functional enrichment analyses were performed based on gene
ontology (GO) [22]. The hypergeometric distribution was used to
calculate the statistical significance of biological pathways
enriched with genes of interest [23]. The Go-function algorithm
was adopted to reduce the redundancy pathways [24]. The
Benjamini–Hochberg procedure was used to estimate FDR.

Results
Reproducible REOs of gene pairs among technical
replicates of a cell line

Seven data sets for human cancer cell lines, HepG2 [4], MKN45,
MKN74 [3], SNU638 [25], HCT116 [26], Hep3B [27] and MCF7 [28]
(Table 1), were used to evaluate the reproducibility of REOs of
gene pairs among technical replicates of a cell line. We labeled
the untreated and treated cell line samples with their GEO or
ArrayExpress accession numbers in each data set, as described
in Table 2 and Supplementary Table S1.

In the HepG2 data set with two technical replicates in the
untreated state, 95.32% of all the 205 689 903 possible gene pairs
showed the same REOs in both untreated replicates. That is, the
concordance score is 95.32%. Similarly, the concordance scores of
the REOs between two untreated replicates were 96.55 and
96.69% in the MKN45 and MKN74 data sets, respectively. The sta-
ble REOs detected in small data (here two technical replicates)
might include some falsely ‘stable’ REOs observed by random
chance. If it does exist stable REOs in technical replicates of a cell
line, then the stable REOs detected in small data will be increas-
ingly reproducible in additional samples. To test this assumption,
we evaluated the concordance scores stepwise using the data
sets with three technical replicates. For three pairs of samples
formed by the three untreated replicates from the SNU638 data
set, with sample numbers described in Table 2, the concordance
scores of the REOs were 93.74% for the paired Samples 1 and 2,
93.36% for the paired Samples 1 and 3 and 94.04% for the paired
Samples 2 and 3. As expected, 96.62, 97.01 and 96.31% of the con-
sistent REOs in the three paired replicates, respectively, were
reproducible in the third remained replicate for each pair. Similar
results were observed in the HCT116, Hep3B and MCF7 data sets
(Supplementary Results). These results were highly unlikely to
happen by chance (binomial test, all P< 1.11E-16). Highly stable

REOs were also observed in the treated cell line samples in each
of these data sets (Supplementary Results).

For each data set, all measured genes were involved in the
stable gene pairs obtained from the technical replicates of a cell
line, indicating that widely stable gene expression ranking is an
inherent feature of a cell line in a state. Besides, millions of the
background stable REOs in the untreated cell line samples were
reversed in the treated cell line samples, making it possible to
identify DEGs through REO comparison between the treated and
untreated cell lines.

Performance tests on null data sets

We first tested our method on the null data sets, where no DEGs
were expected. From each of the above seven data sets, a null
data set with the same sample sizes as the original data set was
created through adding Gaussian noise to the mean log2-
transformed expression value of each gene in all the untreated
samples. The variances of technical noises in the original data
sets were estimated with a previously proposed method [29]
based on the assumption that the measurement noise is inten-
sity dependent [15] and the noises of genes with similar log2-
transformed intensities have independently and identically
normal distribution. By dividing all genes into bins, each with
200 genes with similar expression levels, this method quantifies
the variance of the normal noise distribution by calculating the
mean variance of 200 genes in each bin, which can provide a
good estimate for parameters of the noise distribution [29].
Then, CellComp was applied to each simulated data set to
detect DEGs. The experiments were repeated 1000 times for
each of the seven cell lines.

In the null data sets based on the SNU638, HCT116, Hep3B and
MCF7 data each with three technical replicates, on average, 10.07,
5.68, 0.41 and 1.37 DEGs were identified by CellComp with
FDR< 5%, respectively. The results indicate that the method will
detect minimum number of false discoveries in the null data sets
with three technical replicates. However, in the null data sets
based on the HepG2, MKN45 and MKN74 data each with two tech-
nical replicates, 3506.26, 2802.05 and 2605.12 DEGs were identified
by CellComp with the same FDR control, respectively, which indi-
cated that there might be too many gene pairs with falsely stable
REOs detected by chance in data sets with two replicates. To
address this issue, we introduced a parameter, e, to filter out a
certain percentage of gene pairs with the closest expression lev-
els in each sample (see ‘Methods’ section). By setting e from 5 to
25%, the numbers of false DEGs decreased sharply, and the num-
bers became acceptably small in all simulated data sets when e
was set at 25% (Table 3). Therefore, 25% was used in the following
analyses of data sets with two replicates.

Additionally, we evaluated the performance of CellComp
with a 10% increase of the SDs of Gaussian noise estimated
from the untreated samples for each cell line. On average, 16.09,

Table 2. GEO or ArrayExpress accession numbers of the untreated
samples

Data set Untreatment 1 Untreatment 2 Untreatment 3

HepG2 GSM720616 GSM720618 –
MKN45 GSM945747 GSM945748 –
MKN74 GSM945751 GSM945752 –
SNU638 GSM781665 GSM781666 GSM781667
HCT116 S0114F032 S0114F040 S0114F042
Hep3B GSM860172 GSM860173 GSM860174
MCF7 GSM2068643 GSM2068653 GSM2068663

Table 3. The average numbers of DEGs identified from the null data
sets based on the HepG2, MKN45 and MKN74 data each state with
two technical replicates

e (%) Null data set

HepG2 MKN45 MKN74

5 2231.35 1689.44 1837.88
15 18.16 326.85 373.11
25 0 32.32 31.05
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11.36, 2.99, 7.38, 0, 51.97 and 50.91 DEGs were identified in the
null data sets based on the SNU638, HCT116, Hep3B, MCF7,
HepG2, MKN45 and MKN74 data, respectively. The result sug-
gested that the algorithm could tolerate higher noise levels
than the estimated ‘actual’ noise levels. Obviously, when the
noise level is high, the FC method will inevitably find many
false DEGs with large FCs by random chance.

Performance of comparisons in simulated data

We performed simulation experiments based on the expression
profiles of two and three untreated cell line samples for the
HepG2 and SNU638 data sets, respectively. For each of the two
cell lines, the expression profiles of two and three mocked
treated samples were generated by randomly selecting 4000
genes, and changing their measured values in each of the
untreated samples with FC levels of 1.4, 1/1.4, 1.6, 1/1.6, 1.8, 1/
1.8, 2 and 1/2, 500 genes were assigned for each FC level, while
the measured values of the rest genes were kept unchanged.
The FC levels were calculated based on the expression values
without log-transformation, which can represent more institu-
tively the change magnitude than log-FC [5]. The methods,
CellComp, RankComp, SAM, limma and RP, were applied to
identify DEGs between the simulated treated and untreated
samples with FDR< 1, 5 and 10%, respectively. The simulation
experiments were repeated 100 times for each cell line data.

As shown in Table 4, CellComp had higher average sensitivity
scores than the other methods at each FDR level, while the aver-
age specificity scores were �1. When FDR was increased from 1
to 10%, the ranges of average sensitivity of CellComp increased
from 70.9 to 79.8% in the simulation experiments based on the
HepG2 data and from 95.6 to 97.0% in the simulation experiments
based on the SNU638 data, whereas the corresponding ranges of
average sensitivity of RankComp were 62.8–75.5% and 73.6–75.5%,
respectively. Apparently, RP failed to identify any DEG for the
simulated data at FDR< 1%, while limma performed worse than
CellComp but better than SAM and RP at each FDR control, espe-
cially, in the simulated data with three replicates.

Performance comparisons in real data

Seven real data sets, HepG2, MKN45, MKN74, SNU638, HCT116,
Hep3B and MCF7, were used to further evaluate the perform-
ance of CellComp, SAM for microarray data or SAMseq [30] for
RNA-seq data, limma and RP (Figure 2). To identify DEGs for
RNA-seq data, the input data of SAMseq [30] and voom/limma
[20] should be the count values. For the data sets with two tech-
nical replicates, we set e at 25% to minimize the falsely stable
REOs. In the HepG2, MKN45 and MKN74 data sets, the

concordance scores of the REOs between two untreated repli-
cates increased from 95.32 to 99.27%, 96.55 to 99.72% and 96.69
to 99.86%, respectively, after controlling e. All measured genes
were also involved in the stable gene pairs obtained from the
technical replicates of a cell line after controlling e. With
FDR< 5%, there were 1335, 849, 941, 1323, 1067, 753 and 2949
DEGs detected by CellComp from the seven data sets,
respectively.

In the three data sets with two technical replicates, there
were only 0–57 DEGs detected by SAM (with 1000 permutations),
limma and RP (with 1000 permutations) with FDR< 5%. In the
SNU638 data set with three technical replicates, SAM, limma
and RP found 64, 17 and 221 DEGs, respectively, and 79.69% (51),
82.35% (14) and 83.71% (185) of these DEGs were also detected by
CellComp. In contrast, 96.15% (1272), 98.94% (1309) and 86.02%
(1138) of the DEGs identified by CellComp were missed by SAM,
limma and RP, respectively, and the apparent precision of these
DEGs was 100% according to the observed average differences
between the treated and untreated cell lines in each data set. In
the HCT116 data set with three technical replicates, SAM, limma
and RP found 249, 95 and 222 DEGs, respectively, and 69.08%
(172), 65.26% (62) and 86.49% (192) of these DEGs were also
detected by CellComp. In contrast, 83.88% (895), 94.19% (1005)
and 82.01% (875) of the DEGs identified by CellComp were
missed by SAM, limma and RP, respectively, and the precision
of these DEGs was also 100%. Similar results were also observed
in the Hep3B data set (Figure 2A). In the MCF7 data set with the
count, TPM and FPKM values, we first compared the perform-
ance of CellComp based on the TPM and FPKM values. With
FDR< 5%, CellComp identified 2949 and 2980 DEGs based on
FPKM and TPM, respectively. The two DEGs lists had 2936 over-
laps and 100% of these genes had the same dysregulation direc-
tions across the two lists, suggesting that using TPM and FPKM
to rank the genes, CellComp generates almost the same result.
Then, we compared the performance of CellComp using TPM or
FPKM with SAMseq, voom/limma and RP. Notably, the input
data should be the count values when applying SAMseq [30]
and voom/limma [20] to RNA-seq data. With FDR< 5%, SAMseq,
voom/limma and RP (with TPM values) found 2777, 1129 and
501 DEGs, respectively, and 66.55% (1848), 97.08% (1096) and
98.00% (491) of these DEGs were detected by CellComp. In con-
trast, 37.33% (1101), 62.83% (1853) and 83.35% (2458) of the DEGs
identified by CellComp were missed by SAMseq, voom/limma
and RP, respectively, and the precision of these DEGs was 100%.
Similar results were observed when comparing the performance
of CellComp using FPKM with other methods, as described in
the Supplementary Results. These results suggest that SAM,

Table 4. Sensitivity, specificity and F-score of DEGs identified by CellComp, RankComp, SAM, limma and RP for simulated data

FDR (%) Evaluation HepG2 SNU638

CellComp RankComp SAM limma RP CellComp RankComp SAM limma RP

1 Sensitivity 0.709 0.628 0 0.025 0 0.956 0.736 0.475 0.648 0
Specificity 1 1 1 1 1 0.999 0.999 1 1 1
F-score 0.829 0.772 0 0.049 0 0.977 0.848 0.644 0.786 0

5 Sensitivity 0.726 0.644 0.041 0.197 0.015 0.965 0.744 0.635 0.878 0.288
Specificity 1 1 1 1 1 0.999 0.999 1 1 1
F-score 0.842 0.784 0.079 0.328 0.029 0.982 0.853 0.777 0.935 0.447

10 Sensitivity 0.798 0.755 0.345 0.393 0.058 0.970 0.755 0.802 0.936 0.506
Specificity 1 1 0.994 1 1 0.999 0.999 1 1 1
F-score 0.888 0.860 0.508 0.564 0.109 0.984 0.860 0.890 0.967 0.672
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limma and RP often lack the statistical power for data sets with
only two or three replicates.

We further compared the performance of CellComp with the
original RankComp algorithm in the seven data sets. With
FDR< 5%, 970, 716, 759, 934, 912, 697 and 1958 DEGs were
detected by RankComp, respectively. All the DEGs identified by
RankComp were detected by CellComp in all the seven data sets
(Figure 2B). On average, the number of DEGs identified by
CellComp is 1.33 times of the number of DEGs identified by
RankComp. The apparent precision of the DEGs exclusively
detected by CellComp for the seven data sets were all 100%,
evaluated according to the observed average differences
between the treated and untreated cells in each data set. The
results indicate that the statistical power is greatly enhanced in
CellComp compared with RankComp.

To further evaluate the performance of CellComp in small
data sets, from a large data set with five technical replicates for
each cell state [31], denoted as A2780 (Table 1), we selected
paired untreated and treated samples to form two subsets with
three replicates (Subsets 1 and 2) and two subsets with two rep-
licates (Subsets 3 and 4), as described in Supplementary Table
S2. First, with FDR< 5%, we identified 6087, 3527, 1427, 1760 and

1412 DEGs from the complete A2780 data set using SAM (with
1000 permutations), limma, RP (with 1000 permutations),
CellComp and RankComp, respectively. In the large A2780 data
set, SAM achieved the highest power and the DEGs detected by
SAM covered 96.88% of the DEGs detected by CellComp, indicat-
ing that CellComp is more suitable for small data sets when the
commonly used methods lack statistical power. Then, using the
6087 DEGs detected from the full A2780 data set as the bench-
mark, we evaluated the performance of CellComp in small data
sets. In the Subsets 1 and 2, using CellComp with FDR< 5%, we
were able to find �50% of the DEGs, on average, detected by
SAM in the full data set and 87% DEGs identified by CellComp
were also identified by SAM, while 92% of the remaining DEGs
exclusively identified by CellComp can be identified by SAM
with FDR< 20%. The remaining 8% had an apparent precision
rate of 96% as judged by the observed average differences
between the two groups of the full data set. Using CellComp in
the Subsets 3 and 4 with FDR< 5% and e¼ 25%, we were able to
find 22% of the DEGs detected by SAM in the full data set. On
the other hand, 84% DEGs identified by CellComp were also
identified by SAM, while 85% of the remaining DEGs exclusively
identified by CellComp can be identified by SAM with

Figure 2. Concordance analyses of the detected DEGs. The precision of DEGs is marked in the brackets. (A) The concordance of DEGs identified by CellComp and SAM

(or SAMseq), limma or RP. (B) The concordance of DEGs identified by CellComp and RankComp.
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FDR< 20%. The remaining 15% had an apparent precision rate
of 91%. The results further support that CellComp can capture
DEGs with relatively high statistical power in small data sets.
Furthermore, we also compared the performance of CellComp
with RankComp, SAM, limma and RP in the above four small
subsets and the results further demonstrated that CellComp
exhibited much higher sensitivity than the other methods in
small data, as described in Supplementary Results.

Because both the MKN45 and MKN74 cell lines were treated
by has-miR-29c transfection, we made a concordance analysis
of DEGs identified from the two data sets. The DEGs identified
from the two data sets by CellComp had 391 overlaps, among
which 99.74% (390) had the same dysregulation directions
across the two data sets, significantly more than expected by
chance (binomial test, P< 1.11E-16). Functional enrichment
analysis showed that the DEGs consistently detected from these
two data sets were significantly enriched in cell cycle, double-
strand break repair via homologous recombination, protein–
DNA complex assembly and organelle organization pathways
(FDR< 10%). Among the 459 DEGs detected by CellComp from
the MKN45 data set but not from the MKN74 data set, 78.21%
showed concordant dysregulation directions in MKN74 data set,
evaluated by the observed average differences between the
treated and untreated cell lines in MKN74 data set. Similarly,
among the 551 DEGs detected by CellComp from the MKN74
data set but not from MKN45 data set, 86.75% showed concord-
ant dysregulation directions in the MKN45 dataset. This sug-
gested that, although the MKN45 and MKN74 cell lines may
represent different subtypes of gastric cancer [32, 33], hsa-miR-
29c may induce similar transcriptional alternations in these two
cell lines. Furthermore, the DEGs exclusively detected from the
MKN45 data set were significantly enriched in programmed cell
death, carboxylic acid metabolic process and cellular ketone
metabolic process pathways, while the DEGs exclusively detect
from the MKN74 data set were significantly enriched in cell
cycle, cell division and immune-related pathways (type I
interferon-mediated signaling pathway and interferon-gamma-
mediated signaling pathway) (FDR< 10%). These results pro-
vided additional evidence that these nonoverlapped genes are
truly function-related DEGs.

For the above eight real data sets about proliferation-related
studies, their DEGs identified by CellComp were significantly
enriched in proliferation-related pathways, such as cell cycle,
DNA replication, DNA repair, cell division, cell differentiation
and cell adhesion (FDR< 10%, Supplementary Table S3–S13).
Taking together, these results reveal that CellComp can effi-
ciently identify meaningful pathways dysregulated by experi-
mental factors.

Discussion

Current methods lack statistical control or statistical power for
differential expression analysis in small-scale cell line data
commonly with only two or three technical replicates. Here, we
improved the core algorithm of RankComp and customized it to
the analysis of small-scale cell data based on the REOs compari-
son. As evaluated in both simulated and real data, the new algo-
rithm, CellComp, can detect DEGs with enhanced sensitivity
than RankComp at a given FDR control parameter, while SAM,
limma and RP often lack statistical power in such small-scale
data. Functional enrichment analyses with a strict FDR control
show that the DEGs identified by CellComp in the small-scale
cell line data sets are significantly enriched in many biological
pathways related to the treatments of interest, which provides

us additional confidence on the reliability of the DEGs identified
by CellComp [34, 35].

If and only if a certain treatment for a cell line can widely
disrupt the background stable REOs in this cell line, which is the
prerequisite of using REOs comparison to identify DEGs,
CellComp can be applied to detect DEGs. Because functionally
related genes tend to express coordinately, genes tend to be
widely altered in a disease state [36] or in a cancer cell line after
a certain treatment. However, there are some cases in which

the influence of treatments might be too weak to widely disrupt
the background REOs landscape in the untreated cell lines. For
example, with FDR< 5%, CellComp only identified 54 DEGs in
HepG2 cell line after has-miR-30a-3p knockdown based on the
E-MEXP-456 data set [37] collected from the ArrayExpress data-
base. In such cases, we suggest to identify DEGs based on the
significant reproducibility of genes with top-ranked FCs or ADs
between paired case-control replicates [7]. Moreover, in the
cases with a large number of technical replicates, we recom-
mend to use the commonly used methods such like SAM to
identify DEGs, while CellComp can be used as a complementary
tool for small data sets when the commonly used methods lack
statistical power. In principle, when the expression change of a
gene is too small to change its REO with many other genes, this
differential expression cannot be detected by rank comparison.
In other words, only those DEGs with sufficiently large expres-
sion changes can be detected by CellComp based on rank com-
parison, and such DEGs might be of special biological
significance because their changes can disrupt the rank or cor-
relation structure of the transcriptome.

We are aware that CellComp is basically an empirical algo-
rithm with an iteratively filtering process, where the FDR con-
trol parameter is adopted in the algorithm to reduce the false
discoveries. Because currently no approach for adjusting the
P-values of discrete statistics has been widely accepted, we
choose to use the Benjamini–Hochberg procedure, which tends
to be conservative with insufficient power to adjust P-values of
the discrete test statistics [38–40], as shown in Supplementary

Figures S1 and S2. However, compared with the arbitrary FC
method without any statistical control and the conventional
SAM, limma and RP methods often with low statistical power in
small data, CellComp compensates these deficiencies in differ-
ential expression analysis in small-scale cell experiments.
Therefore, the algorithm is valuable to mine more reliable and
comprehensive transcriptional alterations relevant to the bio-
logical factors of interest.

Key Points

• The REOs of gene pairs are highly stable among techni-
cal replicates of a cell line but often widely disrupted
after certain treatments, which is the basis of using
REOs comparison to identify DEGs.

• Compared with the original RankComp method and the
commonly used SAM, limma and RP methods,
CellComp exhibits high precision with much higher
sensitivity.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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