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ABSTRACT

The next generation sequencing technologies pro-
duce unprecedented amounts of data on the ge-
netic sequence of individual organisms. These se-
quences carry a substantial amount of variation that
may or may be not related to a phenotype. Phe-
notypically important part of this variation often
comes in form of protein-sequence altering (non-
synonymous) single nucleotide variants (nsSNVs).
Here we present StructMAn, a Web-based tool for
annotation of human and non-human nsSNVs in the
structural context. StructMAn analyzes the spatial lo-
cation of the amino acid residue corresponding to
nsSNVs in the three-dimensional (3D) protein struc-
ture relative to other proteins, nucleic acids and low
molecular-weight ligands. We make use of all experi-
mentally available 3D structures of query proteins,
and also, unlike other tools in the field, of struc-
tures of proteins with detectable sequence identity
to them. This allows us to provide a structural con-
text for around 20% of all nsSNVs in a typical hu-
man sequencing sample, for up to 60% of nsSNVs
in genes related to human diseases and for around
35% of nsSNVs in a typical bacterial sample. Each
nsSNV can be visualized and inspected by the user
in the corresponding 3D structure of a protein or pro-
tein complex. The StructMAn server is available at
http://structman.mpi-inf.mpg.de.

INTRODUCTION

The ever growing amount of genetic data generated with
the modern sequencing technologies presents a challenge
to the researchers who want to interpret them. Genetic se-
quence of an individual organism can substantially differ

from a reference sequence for the species, and these differ-
ences may or may not manifest themselves in the phenotype.
For example, an individual may carry up to 3 · 106 SNVs
and 3 · 105 insertions and deletions (1), with most muta-
tions in a disease-affected individual being not related to
the disease, except for a few that are causal. Distinguishing
between benign and pathogenic alleles even in the case of
a Mendelian phenotype is thus a major bottleneck in clin-
ical genetic diagnostics. The majority of sequence variants
causing Mendelian traits are coding (2–4), and, unlike syn-
onymous and stop-gain variants, non-synonymous single
nucleotide variants (nsSNVs) are difficult to interpret (5).
Structural context of a mutation can suggest the interpre-
tation of its predicted or observed functional effect. Addi-
tionally, analysis of functional effect of mutation may pro-
vide insight into potential drug resistance, and thus allow
for a more rapid and precise therapy choice.

In humans, ∼1.3% of all SNVs localize in translated pro-
tein regions, with 58.8% of them leading to a change of cor-
responding amino acid in the protein sequence (6). Several
databases exist that collect data on human genetic variation,
both related to a pathological state (OMIM (2), the Can-
cer Genome Atlas (6), COSMIC (7), ClinVar (3), HGMD
(4)) and of healthy individuals (dbSNP (8) and Exome Vari-
ation Server). For example, ClinVar (3) contains 125 017
SNVs associated with a clinical phenotype in 26 372 genes.
For most of these SNVs, the mechanism, by which they
are related to the phenotypes, is unknown. Several com-
putational methods and software tools aim to predict the
functional impact of SNVs. Some methods take into ac-
count protein sequence-based phylogenetic information (9–
11), other also rely on combination of protein structural
information, functional parameters and phylogenetic infor-
mation derived from multiple sequence alignments (12–17).
Meta-methods combining weighted outputs from several
prediction tools in a statistical learning predictor have been
also developed (18).
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There is a number of tools that map SNVs to the three-
dimensional (3D) structures of the corresponding proteins,
and some of them can also provide clinically-relevant infor-
mation (13,19–25), and some databases, such as dbNSFP
(26), store the functional annotation of potential nsSNVs
derived from several prediction algorithms. None of these
tools, except SNP2Structure and PolyPhen-2 (13,27), con-
sider other molecules interacting with the target proteins,
which may provide additional functional clues. PolyPhen-2
(13) analyzes 3D structures of homologs and reports multi-
ple structural features derived from them, but does not use
the information about their complexes for prediction.

Protein interactions are conserved over large evolution-
ary distances (28), and hence information on interaction
interfaces observed in some species can be relevant in
other species. dSysMap (29) collected all potential protein–
protein interactions, identified by homology to interacting
proteins in other species and the associated disease muta-
tions in human. Mechismo (30) provides a web-based in-
terface for structural characterization of single amino-acid
substitutions in any species. These resources advance our
understanding of the structural mechanisms of disease, but
they are typically restricted to a certain set of species or in-
teraction types.

In this study, we present StructMAn, a web server that
provides as much structural information for a given SNV as
possible. Our tool searches for all 3D structures of the cor-
responding protein and other proteins with significant se-
quence homology to it and analyzes the location of the mu-
tated amino acid with respect to its structural environment,
such as other components of the protein complex, bound
nucleic acids and low molecular-weight ligands. Addition-
ally, the tool can perform GO enrichment as well as pathway
enrichment analysis of a given gene set. To study drug resis-
tance in connection with SNVs, we have included the possi-
bility to search for structures that include a compound with
a certain degree of similarity to a particular drug.

Input data

The input data for StructMAn comprises a list of genes or
proteins and SNVs in them. This list can be submitted in the
form of a standard VCF file, or in a simplified custom for-
mat that we call SMLF (simple mutation list format), see
Figure 1. The gene or protein identifier in the SMLF for-
mat is the Uniprot identifier. The mutations are encoded in
the form <amino acid in the wildtype><position><amino
acid in the mutant>.

Structural templates

An automated pipeline selects 3D structures in order to per-
form analysis. For each protein, the pipeline extracts the
corresponding amino acid sequence from UniProt (31) and
performs a BLAST (32) search against all proteins with re-
solved 3D structures from the Protein Data Bank (PDB)
(33) (e-value < 10−10, the alignment is longer than 50 posi-
tions or spans over more than 50% of the target protein se-
quence, sequence identity >35%). The resulting list of PDB
entries, which function now as template candidates, are fil-
tered and sorted based on the following four attributes: (i)

Figure 1. Example input of StructMAn.

the sequence identity, (ii) the relative alignment length, (iii)
resolution and (iv) the R-value. For each template, a global
pairwise sequence alignment with the target sequence is per-
formed to map the position of the SNV onto the template
sequence. If it is mapped to a gap, the template is discarded.
All the data are stored in a relational MySQL database for
two weeks, so subsequent queries with the same set of pro-
teins will be executed significantly faster.

In order to collect as much information as possible, the
structural analysis is now performed for each template, even
if the 3D structure of the target protein is available. We com-
pute (i) the shortest distance of the mutated residue to a lig-
and molecule in any template structure, and (ii) the shortest
distance to any other macromolecule chain in any template.
A typical analysis of a dataset consisting of 100 mutations
in 100 proteins will take <15 min.

Interaction score

A score assessing the relative importance of mutations for
protein structure and interactions was developed. For that
we assumed, that the functional influence of a mutation is
larger if the corresponding residue interacts with a ligand
or another macromolecule. First, we compute the structure
quality score that describes how well the template represents
the query protein (structure quality score):

SQS = w1v1 + w2v2 + w3v3 + w4v4

w1 + w2 + w3 + w4
, (1)

where w1 = sequence identity weight factor, w2 = coverage
weight factor, w3 = resolution weight factor, w4 = r-value
weight factor, v1 = (1 + exp 10(0.4 − ID))−1 (ID is the sequence
identity between template and target), v2 = coverage, v3 =
(1 + exp 1.5 · Resolution − 4)−1, v4 = 1 − R-value.

Then we compute a score that accounts for the interac-
tions with other components in the complex (annotation
candidate score):

ACS = w1v1 + w2v2

w1 + w2
, (2)

where w1 = ligand distance weight factor, w2 = chain dis-
tance weight factor, v1 = (1 + exp SLD − 10)−1, v2 = (1 +



Nucleic Acids Research, 2016, Vol. 44, Web Server issue W465

exp SCD − 10)−1, where SLD is the shortest distance between
the substituted residue and an arbitrary ligand molecule,
SCD is the shortest distance between the substituted residue
and any other macromolecule.

We assume that the physical contact occurs if the distance
to the interacting molecule is below 5 Å, so the function was
designed in such a way, that values <5 Å are mapped to a
score close to 1, values >5 Å are mapped to scores below
1 and values >10 Å get scores close to 0 (Supplementary
Figure S1), using a typical logistic function of the distances
with an intercept of 10 and a regression coefficient of 1 (see
v1 and v2 in (2)). This results in two scores in the segment
[0,1], one for the shortest residue-ligand distance and one
for the shortest residue-macromolecule distance. The two
scores are combined and normalized with the help of the
weight vector. The weights w1 and w2 can be tuned to give
the user an opportunity to favor a specific kind of interac-
tion in the ranking.

The interaction score is the product of the structure qual-
ity score and the annotation candidate score:

IS = SQS · ACS (3)

The interaction score displays the potential impact of the
substitution corresponding to the SNV on the protein inter-
actions. The structures are sorted eventually using the pro-
tein score:

PS = max
s∈Sg

∑

m∈Ms

IS(m, s) (4)

where PS is the protein pcore, s ∈ Sg, if template structure s
is homologous to protein p, m ∈ Ms, if mutation m can be
mapped to structure s.

The design of the candidate scores provides that genes
containing a small number of high scoring mutations have
a higher combined score than genes containing hundreds of
low scoring mutations.

GO term- and pathway-enrichment analysis

StructMAn is capable of grouping the proteins that con-
tain mutations from the input set according to recurring
GO terms or pathways that are associated with them. The
output in this case is sorted in such a way that the pro-
teins corresponding to the most frequent GO terms in the
dataset are reported first. The GO term specific groups are
then scored by the sum of their protein scores, normalized
by total number of proteins of the input set. This analysis
reflects the over-representation of critical mutations in pro-
teins with a certain biological function, process or localiza-
tion. The pathway enrichment analysis is done similarly us-
ing the pathways from the Reactome Database (34).

To eliminate bias in the input dataset, one might prefer
to perform a differential GO term analysis of a given input
set versus a reference dataset. In this case, two sets of muta-
tions have to be uploaded. The server performs the simple
GO term analysis on both sets and then compares the re-
sults to each other. The protein scores for each protein an-
notated with a particular GO term are summed to produce
a GO term score. The output is sorted by the difference of
the scores for the GO terms that appear in both sets. This

allows studying the relative over- or under-representation of
certain GO terms corresponding to the mutations.

Ligand-centered analysis

StructMAn presents a possibility to focus on mutations that
lie in the vicinity of particular ligands of interest or a chem-
ically similar ligand. The user can upload a ligand structure
in any format recognized by the OpenBabel (35) toolkit.
These include the common SMILES, SDF and MOL2 for-
mats, as well as the PDB format. The ligand file has to have
a specific extension as specified by OpenBabel. Then an ad-
ditional set of annotations is created by selecting only 3D
structures that contain one of the specified ligands or a lig-
and that lies within a certain distance from the mutated
amino acid residue and is similar to one of them with a Tan-
imoto score larger than a threshold. The distance and the
Tanimoto score thresholds can also be adjusted by the user.

Visualization of the results

The results of the analysis are presented in the form of a ta-
ble sorted by the interaction score. The table contains the
following fields: ‘Protein’ (displays the Uniprot-ID of the
protein containing the SNV), ‘Structure’ (PDB-ID of the
3D structure used for the structural annotation), ‘Muta-
tions’ (all amino acid variants for the position provided in
the input dataset), ‘Score’ (interaction score), ‘3D-Viewer’.
The latter field is a button that opens a new tab in your
browser with a visualization of the 3D structure of the
corresponding template. The residue corresponding to the
SNV and the nearest ligand molecule is shown in a balls-
and-sticks model, while the rest of the protein chains are
displayed as cartoons. The chain corresponding to the tar-
get protein is in green, while the chain with shortest distance
to the substituted residue is colored yellow, all other chains
are in different colors. The distances to all interaction part-
ners are shown in angstrom. We use the JSmol plugin for the
visualization, since it is a JavaScript application that does
not require Java installation and runs in all browsers sup-
porting HTML5.

Benchmarking

We have benchmarked StructMAn using a set of
non-synonymous disease-causing mutations with
experimentally-verified effect on protein–protein inter-
actions (36). In this work, these mutations were classified
as quasi-WT (wild-type, no apparent change of interac-
tions), quasi-null (complete loss of interactions) or edgetic
(specific loss of some interactions). We have calculated
interaction scores (IS) and annotation candidate scores
(ACS) for these mutations with weights tuned to favor
protein-protein contacts (for ACS, w1 = 0 and w2 = 1).
ACS for quasi-null mutations are significantly lower than
for both quasi-WT and edgetic mutations (in one-sided
Wilcoxon test, P = 0.0098 and P = 0.0227, respectively,
Supplementary Figure S2A). This indicates that the mu-
tations of the quasi-null class are outside the interaction
interfaces and probably buried inside the protein, in line
with the lower conformational stability of such mutants



W466 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Figure 2. Protein kinase inhibitors considered in this study. The common
substructure in the JAK3 inhibitor VI and EphB4 inhibitor is marked in
red.

Figure 3. The screenshot from StructMAn displaying the complex of
EphB4 with its inhibitor (PDB ID: 4AW5). The residue corresponding to
the T790M mutation in EGRF and the inhibitor are shown in the all-atom
stick model. The shortest distance is marked in yellow.

confirmed by the LUMIER assay (36). IS show the same
trend (Supplementary Figure S2B), although the statistical
significance is lower (in one-sided Wilcoxon test, P =
0.0332 and P = 0.2176 between the distribution of IS for
quasi-null mutations and the distributions for quasi-WT
and edgetic mutations, respectively).

The distributions of both scores for quasi-WT and
edgetic categories are not significantly different in the
Wilcoxon test with the significance threshold of 0.05, al-
though the median distance to the nearest chain for edgetic
mutations is slightly lower (3.63 Å versus 5.34 Å for quasi-

WT). This indicates that disease-causing mutations that do
not render the affected protein completely incapable to par-
ticipate in interactions (i.e. edgetic and quasi-WT classes)
are located relatively close to protein–protein interaction in-
terfaces, even in cases when they do not cause a phenotype
in Y2H screens performed in (36).

We have also compared interaction scores to PolyPhen-2
(13) calculated for the same set of mutations. In this case,
we have used the default parameters for ACS (w1 = 1 and
w2 = 1). The correlation between them is low, but signifi-
cantly positive (0.16, P = 0.0191, 95% confidence interval
(0.03, 0.29)). The interaction scores for PolyPhen-2 ‘prob-
ably damaging’ and ‘possibly damaging’ classes pooled to-
gether are significantly higher than for ‘benign’ class (P =
0.0087 in Wilcoxon one-sided test, Supplementary Figure
S3).

Finally, we investigated the relationship between the in-
teraction scores and protein–protein interaction hotspots
(37), defined as residues whose mutation greatly contributes
to decrease of the binding energy between two interacting
proteins. For all mutations from (36), we have predicted the
energetic change cause by the disease-associated mutations
compared to the WT using FoldX (38). We observe signifi-
cant correlation between the estimated change of the bind-
ing energy in both IS and ACS: Pearson’s correlation 0.39
and 0.35, 95% CI (0.13, 0.60) and (0.08, 0.58), P = 0.0049
and 0.1162, respectively. This demonstrated that the inter-
action score is a good predictor for the energetic impact of
a nsSNV on the interaction of two proteins.

Example: protein kinase inhibitor-resistant EGFR kinase

The T790M substitution in EGFR (39) is associated with
resistance toward gefitinib and other protein kinase in-
hibitors (Figure 2A) in non-small cell lung carcinoma. The
mutated kinase, however, is sensitive to JAK3 inhibitor VI
(Figure 2B) (40). We have queried StructMAn with the
EGFR T790M mutation and the JAK3 inhibitor VI to
search for similar ligands bound in the proximity to the
mutated residue. We have identified a 3D structure of the
cytoplasmic kinase domain of Ephrin type-B receptor 4
(EphB4) bound to an inhibitor (PDB ID: 4AW5, Figure
2C) (41). The Tanimoto score between this inhibitor and
the JAK3 inhibitor VI is 0.56, so the two molecules share
a common substructure (Figure 2B and C). As well as the
WT EGFR, EphB4 has a threonine in the position 692,
which is structurally analogous to position 790 of EGFR.
The distance between Thr692 and the bound inhibitor is
3.16 Å (Figure 3). This is a credible explanation of the
fact that mutation at this position impacts binding. How-
ever, WT EGFR is resistant toward the JAK3 inhibitor VI,
while EphB4 can be inhibited by a related compound. This
might be due to the fact that the EphB4 inhibitor has an
additional substructure coordinated by the loop formed by
residues 693–699, which is very evolutionary not conserved
in EGFR. The relatively small threonine in the WT EGFR
might not provide enough contacts for this substructure,
while a larger methionine residue in EphB4 may make ad-
ditional interactions. This is an example of how StrucMAn
can help generate a hypothesis that may require a more de-
tailed experimental and computational investigation.
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Supplementary Data are available at NAR Online.
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