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Abstract 

Background: Circulating tumor DNA (ctDNA) released from tumor cells carries the tumor-associated 
genetic and epigenetic characteristics of cancer patients. Next-generation sequencing (NGS) facilitates the 
application of ctDNA profiling for identification and monitoring of minimal residual disease (MRD) in cancer, 
and can serve as the guidance for precise treatment.  
Methods: In this study, we profiled genomic alterations in the baseline, relapsed, and progressive tumor 
samples of eight diffuse large B cell lymphoma (DLBCL) patients (NCT03118180) after chimeric antigen 
receptor T (CAR-T) cell therapy.  
Results: The median follow-up was 41 months. 4 (50%) patients achieved complete remission (CR), 1 (12.5%) 
patient achieved partial remission (PR), and the other 3 (37.5%) patients showed no response. 3 of 5 patients 
who achieved remission relapsed within 4 months after CAR-T therapy, while the rest 2 patients remained CR 
for more than 3 years. Based on the positron emission tomography-computed tomography (PET-CT) scan, the 
current gold standard for evaluating response to therapy in lymphoma, the sensitivity and specificity of our 
ctDNA profiling in detecting tumor-related ctDNA mutations were 94.7% and 83.3%, respectively. The median 
numbers of baseline plasma ctDNA mutations in patients who remained long-term CR and patients who 
relapsed or became refractory to CAR-T therapy were 3 and 14.3, respectively. GNA13, SOCS1, TNFAIP3 and 
XPO1 mutations appeared to be associated with poor prognosis after CAR-T cell therapy. Our results also 
suggested that lenalidomide might relieve relapsed lymphoma with mutations in NFKBIA 202C>T (p.Q68*) and 
NFKBIE 433A>T (p.K145*) by targeting NF-Kappa B signaling. In addition, the inhibitor selinexor may be 
another choice for refractory or relapse (r/r) DLBCL patients after CAR-T cell treatment. 
Conclusion: Serial ctDNA monitoring is an emerging technology for the surveillance of disease status and 
prognosis prediction. In this work, we demonstrated the use of serial ctDNA monitoring in r/r DLBCL patients 
after CD19-targeted CAR-T cell therapy. Our longitudinal NGS profiling revealed the changes of ctDNA 
mutation in accordance with prognosis, and shed some light on exploring more targeted treatment options 
together with CAR-T cell therapy. 
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Introduction 
DLBCL is the most common subtype of 

non-Hodgkin lymphoma [1]. Although it is an 
aggressive lymphoma, DLBCL is considered curable 
with about 43.5% 10-year overall survival, especially 
with the addition of rituximab.[2] However, 
approximately 30–40% of patients relapse or progress 
after rituximab [3]. In fact, more than half of DLBCL 
patients still cannot reach the goal of long-term 
survival, often due to the high heterogeneity of 
DLBCL and the absence of effective treatment [2]. 
Most DLBCL patients that relapse or become 
refractory to chemotherapy will die from progression 
disease [4].  

Lymphocyte depletion followed by autologous 
CAR-T cell infusion has already shown promising 
effectiveness in treating relapsed or refractory (r/r) 
DLBCL [5-8]. To date, five CAR-T therapies, including 
axicabtagene ciloleucel, tisagenlecleucel, brexucabta-
gene autoleucel, lisocabtagene maraleucel and 
idecabtagene vicleucel have been approved by the 
United States Food and Drug Administration (FDA) 
in October 2017, May 2018, July 2020, February 2021 
and March 2021, respectively. CAR-T cell therapy is 
usually used as the last resort for the treatment of 
refractory and relapsed B cell lymphoma. After the 
treatment of CAR-T therapy, patients are often 
monitored by PET-CT instead of other treatments. As 
the current gold standard, PET-CT plays an important 
role for initial evaluation, staging, and response 
assessment of lymphoma [9], but PET-CT cannot 
significantly improve the survival [10]. Besides, the 
high cost and risk of ionizing radiation also limit the 
use of PET-CT in follow-up surveillance of DLBCL 

[11]. Alternatively, the NGS technology can overcome 
such limitations, and provide swift and cost-efficient 
analysis for follow-up surveillance.  

CtDNA, released from apoptosis and/or 
necrosis tumor cells, is an emerging biomarker for 
lymphoma [12-15]. The convenience of extracting 
ctDNA from blood has facilitated the identification 
and serial monitoring of tumor mutations. Compared 
to the tissue biopsy, plasma ctDNA has shown several 
advantages, such as accessibility to the difficult tumor 
sites, and representation of the tumor heterogeneity 
[16]. The application of ctDNA surveillance includes 
MRD monitoring using immunoglobulin high- 
throughput sequencing [12, 13], which can also track 
the MRD of patients undergoing CAR T-cell therapy 
[17]. However, this method is only targeting 
immunoglobulin while other important genetic 
variations are missed. Therefore, it is necessary to 
explore alternative approaches for better coverage 
and prognostic biomarkers alongside CAR-T cell 

therapy.  
Thus, in this study, we conducted serial ctDNA 

monitoring and analysis using a cancer-related gene 
NGS panel for 8 DLBCL patients who underwent 
CAR-T cell therapy. The results provide insights into 
tumor evolution, prognosis and precision medicine 
for the DLBCL patients after CAR-T cell therapy.  

Methods and Materials  
Sample collection and DNA extraction  

In this study, we retrospectively collected clinical 
data, tumor sample preserved in formalin fixed 
paraffin-embedded (FFPE) tissue or liquid nitrogen 
storage and serum preserved in liquid nitrogen 
storage from the prospective clinical study 
(NCT03118180). We used the panel-based NGS 
approach to profile mutation landscapes ofthe 
baseline, relapsed, and progressive tumor sample 
after CAR-T therapy. 38 plasma samples and 9 tissue 
from 8 DLBCL patients received CAR-T therapy 
between December 2016 and November 2017 were 
collected for this study. 

The NGS tests were performed in a centralized 
clinical testing center (Nanjing Geneseeq Technology 
Inc.), according to protocols reviewed and approved 
by the ethical committee of the First Affiliated 
Hospital, Zhejiang University School of Medicine. 
8-10ml of peripheral blood was collected in 
EDTA-coated tubes (BD) and centrifuged at 1,800g for 
10 min within 2h of collection to separate the plasma 
and white blood cells. 5-10 ml pleural effusion, ascites 
or cerebrospinal fluid was centrifuged at 2,500g for 15 
min to separate supernatants from floating cells. The 
supernatant was isolated for the extraction of cell-free 
DNA (cfDNA) and cell pellets were used for genomic 
DNA extraction. cfDNA from plasma and the 
supernatants of body fluids was extracted using the 
QIAamp Circulating Nucleic Acid Kit (QIAGEN). 
Genomic DNA from the cell samples was extracted 
using the DNeasy Blood & Tissue Kit (QIAGEN), 
while FFPE genomic DNA was purified using the 
QIAamp DNA FFPE Tissue Kit (Qiagen). Oral swab 
DNA was prepared by QIAamp DNA Mini Kit 
(QIAGEN) as control for germline mutations. All 
DNA was quantified by Qubit 3.0 using the dsDNA 
HS Assay Kit (Life Technologies), and the quality was 
evaluated by a Nanodrop 2000 (Thermo Fisher). 

Library preparation and sequencing 
cfDNA or fragmented genomic DNA (300~350bp 

with Covaris M220 instrument) underwent 
sequencing library preparation using KAPA Hyper 
Prep kit (KAPA Biosystems). In brief, DNA was 
experienced with end-repairing, A-tailing, adapter 
ligation, size selection using Agencourt AMPure XP 
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beads (Beckman Coulter), and then was amplified by 
polymerase chain reaction (PCR) and purified before 
targeted enrichment. 

Indexed DNA libraries were pooled up to 2 µg 
together with Human cot-1 DNA (Life Technologies) 
and xGen Universal blocking oligos (Integrated DNA 
Technologies) as blocking reagents. Customized xGen 
lockdown probes panel (Integrated DNA 
Technologies) covering 413 predefined cancer-related 
genes was used to perform hybridization capture. 
Enriched libraries were sequenced on Hiseq 4000 NGS 
platforms (Illumina) to targeted mean coverage 
depths of at least 100x for swab control samples, 500x 
for tumor or cell genomic DNA and 3000x for 
cfDNAs. 

Data processing and analysis 
Sequencing data were demultiplexed by 

bcl2fastq (v2.19), analyzed by Trimmomatic to 
remove low-quality (quality<15) or N bases.[18] Then 
the data were aligned to the hg19 reference human 
genome with the Burrows-Wheeler Aligner 
(bwa-mem) [19] and further processed using the 
Picard suite (available at: https://broadinstitute 
.github.io/picard/) and the Genome Analysis Toolkit 
(GATK).[20] SNPs and indels were called by VarScan2 
[21] and HaplotypeCaller/UnifiedGenotyper in 
GATK. Common SNPs were removed using dbSNP 
and the 1000 Genome data sets. Germline mutations 
were filtered out by comparing to the oral swab 
controls. A mutation was called when the mutant 
allele frequency (MAF) cutoff was ≥ 0.5% for tissue 
samples, 0.3% for liquid biopsy samples, and a 
minimum of three unique mutant reads on different 
strands with good quality scores and manually 
inspected in Integrative Genomics Viewer Software 
(IGV, Broad Institute). Gene fusions were identified 
by FACTERA[22] and copy number variations 
(CNVs) were analyzed with ADTEx.[23] 

Statistical analysis 
Overall survival (OS) was defined as the time 

from CAR-T cell infusion to death. Patients who did 
not experience an event were censored at the date of 
the final follow-up. Kaplan-Meier (KM) curves for OS 
were generated, and the log-rank test was used to 
compare differences between subgroups. The median 
follow-up time was estimated using reverse 
Kaplan-Meier curves.[24] The results of PET-CT scan 
was the current gold standard for evaluating response 
to therapy in lymphoma. Sensitivity is equal to the 
rate of both detection methods being positive and 
PETCT being positive. Specificity is equal to the rate 
that both detection methods are negative and PETCT 

is negative. All quoted P values are two-tailed, with 
values less than 0.05 considered to be statistically 
significant. All calculations were performed using R 
software (version 4.0.3). 

Results 
Patient overview 

Eight patients with r/r DLBCL were treated with 
CAR-T cell therapy targeting CD19. The patient 
characteristics were summarized in Table 1. The 
median age and the average number of prior lines of 
therapy were 36.5 years (range, 27 to 60), and 3.5 
(range, 2 to 7), respectively. Patient 1 and Patient 5 
received autologous stem cell transplantation (ASCT).  

Figure 1 showed the overall survival (median: 41 
months), the response of individuals, and the 
duration of follow-up for patients. Briefly, four 
patients (50%) achieved CR, one patient (12.5%) 
achieved partial remission (PR) and the rest three 
(37.5%) showed no response at 1 month after infusion 
of CAR-T cell. Three of the five patients who achieved 
remission (2 CR and 1 PR) relapsed within 4 months 
after CAR-T cell therapy, while the other 2 patients 
remained CR for more than 36.4 months and 39.2 
months, respectively. Six patients experienced 
cytokine release syndrome (CRS), whereas Grade 1, 2, 
and 3 CRS occurred in two, one, and three patients, 
respectively.  

Serial monitoring of ctDNA mutational status 
We performed targeted NGS detection of 89 and 

446 cancer hotspot genes for Patient 8 and the other 7 
patients, respectively. The DNA sequencing of 9 
tissue samples were basically consistent with the 
ctDNA results in plasma at the same time point. The 
median number of baseline ctDNA mutation is 3 and 
14.3 in the patients who remained long-term CR and 
the ones who achieved relapse/refractory after 
CAR-T therapy, respectively (Figure 2A). Due to the 
limited size of this study, we manually inspected the 
relationship between ctDNA mutation and patient’s 
prognostic status, and observed mutations in specific 
genes that are likely to associate with prognosis. In 
particular, GNA13 mutation was observed in 4 of 6 
patients (66.7%) relapsed or refractory after CAR-T 
cell therapy. SOCS1, TNFAIP3 and XPO1 mutations 
occurred 3 times in the 6 relapse/refractory patients. 
Additionally, DTX1, DUSP2, EGR1, GNA13 and XPO1 
mutations were observed in 2 of the 3 patients who 
never had CR. Compared with patients carrying ≥ 8 
baseline serum ctDNA mutations, patients carrying < 
8 mutations appear to be associated with better 
survival (p = 0.014, Figure 2B).  
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Table 1. Clinical Characteristics of patients 

Patient 1 2 3 4 5 6 7 8 
Age 
(years) 

35 27 36 44 43 60 33 50 

Sex Male Female Male Female Female Female Female Male 
Diagnosis DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL 
Cell of 
origin 

non-GCB non-GCB non-GCB NOS-GCB non-GCB ABC NA non-GCB 

NCCN-IP
I 

3 3 3 3 3 2 2 2 

Risk 
group 

Low-intermediate Low-intermediat
e 

Low-intermediat
e 

Low-intermediat
e 

Low-intermediat
e 

Low-intermediat
e 

Low-intermediat
e 

Low-intermediat
e 

Prior lines 
of therapy 

7 4 3 3 5 2 3 4 

Prior 
therapies 

(1)EPOCH 
(2)RCHOP 
(3)RCHOPE 
(4)RIVAC 
(5)RAD 
(6)BAC-ASCT 
(7)Thalidomide+rituxima
b 

(1)R-DA-EPOCH 
(2)RCHOP 
(3)RCHOPE 
(4)RGDP 

(1)IEP 
(2)RCHOP 
(3)GDP 

(1)RCHOP 
(2)R 
(3)DHAP 

(1)RCHOP 
(2)RCHOPE 
(3)R 
(4)ESHAP 
(5)ASCT 

(1)RCHOP 
(2)R2+ 
ibrutinib 

(1)RCHOP 
(2)RESHAP 
(3)GDP 

(1)CHOP 
(2)RCHOP 
(3)REPOCH 
(4)CHOP+ 
Lenalidomide 

Relapse/ 
refractory 
status 

First relapsed 
post-EPOCH within 11 
years 
Second relapsed 
post-ASCT within 3 
months 

Refractory 
second or higher 
line of therapy 

Refractory 
second or higher 
line of therapy 

Refractory 
second or higher 
line of therapy 

First relapsed 
post-R within 4 
months 
Second relapsed 
post-ASCT 
within 6 months 

Refractory 
second or higher 
line of therapy 

Refractory 
second or higher 
line of therapy 

Refractory 
second or higher 
line of therapy 

ABC, activated B-cell-like; AD, albumin-bound paclitaxel, liposomal doxorubicin; ASCT, autologous stem cell transplant; BAC, carmustine, cytarabine, cyclophosphamide; 
CHOP, cyclophosphamide, adriamycin, vincristine, prednisone; CHOPE, rituximab, cyclophosphamide, adriamycin, vincristine, prednisone, etoposide; DA, dose adjusted; 
DHAP, dexamethasone, high-dose cytarabine, cisplatin; DLBCL, diffuse large B cell lymphoma; EPOCH, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; 
ESHAP, etoposide, methylprednisolone, high-dose cytarabine, cisplatin; GCB, germinal center B cell; GDP, gemcitabine, dexamethasone, cisplatin; ICE, ifosfamide, 
carboplatin, etoposide; IEP, Ifosfamide, epirubicin, cisplatin; IVAC, rituximab, ifosfamide, cytarabine, etoposide; NCCN-IPI, National Comprehensive Cancer 
Network-International Prognostic Index; R, rituximab; R2, rituximab, lenalidomide. 

 

 
Figure 1. Duration of response to CD19 CAR-T and post-infusion survival in 8 cases. 

 
As shown in Figure 3 and Figures S1-S7, the 

trend of ctDNA surveillance exhibited good 
agreement with the PET-CT results. When PET-CT 
was positive, 18 of 19 samples (94.7%) showed gene 
mutations in ctDNA. Meanwhile, 10 of the 12 PET-CT 
negative samples (83.3%) appeared to be ctDNA 
mutation-free based on our targeted sequencing.  

In general, we did not detect ctDNA mutation in 
patients with CR status, while the abundance of 
ctDNA mutations in the progressive disease (PD) or 
relapsed patients exhibited an increase. Patients at the 
PR status carried ctDNA mutations, but the mutation 
abundance was much lower than their baseline level. 
Of note, the change in mutation abundance was even 
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more drastic in the aforementioned frequently 
mutated genes such as GNA13, SOCS1, XPO1 and 
TNFAIP3. 

Clinical and ctDNA surveillance of Patient 2 
Patient 2, diagnosed as stage IVB non-germinal 

center B cell DLBCL, had received 4 prior lines of 
therapy before CAR-T treatment. Before the CAR-T 
cell therapy, she had baseline ctDNA mutations in 14 
genes, including GNA13, SOCS1, NFKBIA and XPO1 
(Figure 3). The abundance of ctDNA mutations 
decreased drastically at the point of CRS on Day 11, 

and no ctDNA mutation was detected at the CR status 
on Day 37. On Day 71, lymphoma recurred alongside 
the detection of ctDNA mutations. After the 
application of lenalidomide therapy, Patient 2 reached 
CR again and maintained CR for approximately 6 
months, while no ctDNA mutation was detected 
during this period (Day 109 and Day 150). Afterward, 
Patient 2 relapsed again, underwent 3 lines of 
chemotherapy and died of PD. Meanwhile, we 
detected a strong rebound of ctDNA mutation 
abundance during PD (Day 205).  

 

 
Figure 2. Correlation of ctDNA with prognosis. A: Mutational profile in baseline plasma ctDNA of the 8 DLBCL patients with CAR-T therapy; B: Overall survival among patients 
with different number of ctDNA mutation. 
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Figure 3. Clinical and ctDNA course of patient 2. Po: positive PET-CT; Ne: negative PET-CT; CRS: cytokine release syndrome. 

 
We proposed that ctDNA sequencing could 

guide precision medicine for DLBCL patients. In 
particular, to understand how lenalidomide 
contributed to relieving recurrent lymphoma here, we 
conducted KEGG enrichment analysis using the 
mutant genes at relapse detected on Day 71 (Figure 3). 
The results showed the enrichment of the term 
“NF-kappa B signaling pathway”. Furthermore, there 
were stop codon mutations NFKBIA 202C>T (p.Q68*) 
and NFKBIE 433A>T (p.K145*) present in ctDNA, 
which may result in activation of NF-Kappa-B 
signaling by reducing its inhibitors NFKBIA and 
NFKNIE expression [25]. This may explain why 
lenalidomide relieves the subsequent relief of 
lymphoma recurrence in this case.  

Discussion 
To our knowledge, this is the first study of serial 

ctDNA monitoring in r/r DLBCL patients with 
CD19-targeted CAR-T cell therapy. Here, we found 
baseline plasma ctDNA may be used as prognostic 
markers for r/r DLBCL patients. Patients carrying 
ctDNA mutations in the genes of GNA13, SOCS1, 
TNFAIP3, DTX1, DUSP2, EGR1 and XPO1, or having 
over 7 mutated genes in the baseline plasma ctDNA 
simultaneously may be associated with poor 

prognosis. Our ctDNA mutation profiling results of 
the r/r patients with CAR-T therapy were consistent 
with the previous study on the mutation landscape of 
DLBCL patients [26]. We also confirmed that serial 
plasma ctDNA analysis could be used as an approach 
for identifying the burden of disease and further 
monitoring disease prognosis after CAR-T cell 
therapy. This finding was in accordance with the 
result of DLBCL patients receiving traditional 
chemotherapy [26]. The targeted NGS method with 
cancer-related gene panel used in this study 
demonstrates advantages over other traditionally 
DLBCL monitoring methods. First of all, the detection 
ability limits the application of radiological imaging 
tools for DLBCL. For example, the sensitivity of CT is 
low for accurately detecting DLBCL. Furthermore, 
radiation exposure and invasiveness of CT and 
PET-CT also restrict the frequency of using these 
imaging methods for serial monitoring of DLBCL 
status [13]. Based on the current gold standard of 
PET-CT scan, the sensitivity and specificity of ctDNA 
profiling in our experience for detecting ctDNA 
mutation is 94.7% and 83.3%, respectively. The 
convenience of ctDNA sequencing would also enable 
multi-point surveillance during the interval between 
PET-CT examinations. Alternatively, checking ctDNA 
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encoding VDJ genes can detect disease recurrence at 
an early stage with quantitative characteristics [12, 
13]. However, this method conveys relatively limited 
information about the mutation spectrum, clonal 
evolution and resistance mechanism [11], while our 
approach of sequencing the predefined gene panel 
can overcome these limitations and further facilitate 
precise treatment of DLBCL.  

CAR-T cell therapy is usually the last resort for 
the treatment of r/r DLBCL patients after traditional 
therapies have failed, therefore, it is essential to keep 
exploring new options for patients who relapse or 
become refractory after CAR-T treatment. CRS is the 
most important side effect after CAR-T reinfusion and 
the CRS grade is closely related to many indicators 
after CAR-T treatment. However, no significant 
conclusions on CRS and ctDNA were detected in this 
research. Previous studies have shown that serial 
NGS-based ctDNA tests can be used to analyze the 
clonal evolution of disease progression, reveal the 
transformation of dominant subclones, and 
significantly benefit disease treatment [27-29]. Here, 
we explored the longitudinal ctDNA change after 
CAR-T therapy, the results provide novel insights into 
precise treatment, and potentially benefit patients 
experiencing progression or relapse after CAR-T 
infusion. For instance, we reported our experience of 
lenalidomide in the treatment of relapse for Patient 2. 
After lymphoma recurrence, the patient received 
lenalidomide therapy, then reached CR and 

maintained CR for about 6 months before relapse 
again. Baseline plasma ctDNA sequencing revealed 
that this patient carried nonsense mutations in 
NFKBIA 202C>T (p.Q68*) and NFKBIE 433A>T 
(p.K145*), which may result in the decrease of their 
gene products due to haploinsufficiency. NFKBIA and 
NFKBIE encode the cytosolic NF-κB inhibitors IκBα 
and IκBɛ, whereas inactivating the inhibitors can 
result in activation of NF-Kappa-B signaling, which is 
a hallmark of DLBCL [25]. Due to its activity against 
NF-Kappa-B signaling, lenalidomide therapy may 
synergize with CAR-T cell therapy and facilitate the 
antitumor function of CAR-T therapy [30]. This could 
explain why lenalidomide relieved the recurrence of 
lymphoma in this case and may become a good choice 
for DLBCL treatment. Another candidate that holds 
promise is XPO1 (Exportin 1). We discovered 
recurrent XPO1 1711G>A (p.E571K) mutation in 3 out 
of 6 relapsed/refractory patients. Exportin 1 
contributes to cell homeostasis by regulating the 
export of protein and RNA molecules from the 
nucleus to the cytoplasm [31]. As many tumor 
suppressors and oncoproteins use Exportin 1 as their 
mechanism for nuclear export, cancer cells can utilize 
this nuclear-cytoplasmic transport process to evade 
anti-neoplastic mechanisms [31, 32]. Moreover, the 
E571K mutation of XPO1 is highly prevalent in 
several cancers, and likely affects nuclear exporting 
by altering the nuclear export signal (NES)-binding 
groove of Exportin 1 [33]. Thus, this mutation could 

 
Figure 4. KEGG pathway enrichment analyses of ctDNA in Patient 2. 
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be related to the drug resistance of different treatment 
methods (including chemotherapy and targeted 
therapy), making it an attractive target for new cancer 
therapies [34]. Notably, the XPO1 inhibitor selinexor 
can be used for the treatment of multiple myeloma 
and DLBCL, and the FDA has approved selinexor for 
adult patients with r/r DLBCL [35-37]. So, selinexor 
can be another therapy choice. Due to the small 
sample size of this retrospective study, future 
validation of lenalidomide and selinexor treatments is 
warranted.  

Taken together, our work has demonstrated the 
use of serial ctDNA surveillance for r/r DLBCL 
patients after CD19-targeted CAR-T cell therapy, 
which can provide important insights into the 
prognosis of individual patients. Serial plasma ctDNA 
monitoring can identify genetic variants in 
inaccessible tumor sites and better represent the 
heterogeneity of the entire tumor. Thus, not only can 
it be used to monitor MRD, it also shows great 
potential to reveal prognosis, stratify patients and 
guide precision treatment after CAR-T cell therapy. 
As this is a single-center retrospective study of 8 
patients, our findings need to be verified on a large 
scale. Besides, we only collected plasma samples for 
ctDNA mutation surveillance during the limited 
number of PET-CT follow-up, while plasma ctDNA 
mutations can be monitored more frequently between 
PET-CT examinations in the future.  

Conclusion 
In summary, here we report the first study on 

panel-based NGS for serial ctDNA monitoring of r/r 
DLBCL patients undergoing CAR-T cell therapy. Our 
study indicates that the dynamic change of tumor 
ctDNA could potentially serve as the biomarker for 
predicting and monitoring the prognosis, as well as 
the guidance for treatment decision-making.  
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