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Hypertrophic scars are pathological scars that result from abnormal responses to
trauma, and could cause serious functional and cosmetic disability. To date, no
optimal treatment method has been established. A variety of cell types are involved
in hypertrophic scar formation after wound healing, but the underlying molecular
mechanisms and cellular origins of hypertrophic scars are not fully understood.
Macrophages are major effector cells in the immune response after tissue injury that
orchestrates the process of wound healing. Depending on the local microenvironment,
macrophages undergo marked phenotypic and functional changes at different stages
during scar pathogenesis. This review intends to summarize the direct and indirect
roles of macrophages during hypertrophic scar formation. The in vivo depletion of
macrophages or blocking their signaling reduces scar formation in experimental models,
thereby establishing macrophages as positive regulatory cells in the skin scar formation.
In the future, a significant amount of attention should be given to molecular and cellular
mechanisms that cause the phenotypic switch of wound macrophages, which may
provide novel therapeutic targets for hypertrophic scars.
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INTRODUCTION

Wound healing is a highly complex progressive process that involves intricate regulation and
communication between multiple cell types (Steiling and Werner, 2003; Werner and Grose, 2003).
It is made up of three successive phases, which are the inflammatory phase, proliferative phase,
and remodeling phase (Wang et al., 2018). The final remodeling phase may result in hypertrophic
scar or keloid formation in the dermis layer with excess collagen deposition, and the invasive
growth of fibroblasts with the lack of cutaneous fat and hair follicles (Plikus et al., 2017). Abnormal
scarring, such as hypertrophic scars and keloids, results in a remarkable alteration in appearance
and function, and impairs the patient’s quality of life, both physically and psychologically (Van
Loey and Van Son, 2003; Finnerty et al., 2016). It has been shown that genetic predisposition and
skin injury play an important role in the formation of hypertrophic scars and keloids (Yuan et al.,
2019). Different from hypertrophic scar, keloids are wounding-induced fibroproliferative tumor-
like human scars. Keloids are more common in patients with darker skin types, with a prevalence of
4.5–16% in black and Hispanic populations. While the incidence of hypertrophic scars is reportedly
higher than keloids in white people, ranging from 5 to 37% (Kose and Waseem, 2008). To date, there
are no satisfactory preventive or therapeutic options for hypertrophic scars and keloids, and this is
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mainly due to the incomplete understanding of the underlying
mechanisms (Mokos et al., 2017). Thus, it is extremely
important to fully understand the regulatory mechanisms of
hypertrophic scar and keloids formation and the controlled
physiological process, including its pathophysiology,
prevention and treatment.

Macrophages, which are produced from the bone marrow,
circulate in peripheral blood or migrate to almost every
tissue, and constitute the foremost controllers of both human
innate and acquired immunity (Mosser and Edwards, 2008).
Interestingly, macrophages are critical players in wound
healing, providing pivotal signaling molecules for wound
healing and coordinating wound healing processes. Macrophage
dysfunction is characterized by an increase in the deposition
of type I and III collagen, and myofibroblasts activation,
which can impair the proper regenerative process, and
otherwise, promote the development of fibrosis (Wei et al.,
1999). Emerging evidence indicates that macrophages are
essential for mounting either pro-fibrotic or anti-fibrotic
responses at different stages during fibrotic pathogenesis
(Clozel and Salloukh, 2005).

The present study summarizes the direct and indirect
regulating roles of macrophages in skin wound healing
and abnormal scar formation. Particularly, we emphasize
that the significant direct effect of macrophages in scar
formation was through its direct manipulation of the final
ECM composition by secreting matrix metalloproteinases
(MMPs) or its influence in producing collagen when they
differentiate into myofibroblasts. In addition, the indirect effect
on the activation and stimulation of myofibroblast leads to
collagen deposition, thereby contributing to scar formation
(Koh and DiPietro, 2011).

MACROPHAGE LINEAGE AND
PHENOTYPIC CHANGES

Macrophages can be classified as resident tissue macrophages
and monocyte-derived macrophages (Davies and Taylor, 2015).
Monocytes, macrophages and dendritic cells (DCs) originate
from dendritic cell progenitor cells (MDPs) in the post-partum
stage, and monocytes are able to differentiate into DCs or
macrophages in peripheral tissue sites (Geissmann et al., 2010).
Activated DCs migrate to the lymph nodes where they present
the antigen to immunocompetent T cells, in order to initiate
an adaptive immune response (Iwasaki and Medzhitov, 2015).
In contrast, macrophages largely remain in peripheral tissues
after activation with their tissue-specific functions. Macrophages
are antigen presenting cells and effectors of the elimination
of Fc gamma receptor (FcγR)-dependent cells, and antibody-
dependent anti-tumor responses mediate immune response
(DiLillo and Ravetch, 2015).

Based on the expression of specific cell surface markers and
their functional activation status, macrophages can be classified
into two distinct populations. On one hand, macrophages
that can be induced by interferon-γ (IFN-γ) and/or microbial
components are referred to as M1 macrophages, which create

a pro-inflammatory response that in return produce pro-
inflammatory cytokines and chemokines, such as interleukin-
6 (IL-6), IL-12, tumor necrosis factor-α (TNF-α), and CC
chemokine ligand 2 (CCL2). These cytokines are an indispensable
part of the initial process of wound healing. On the other hand,
M2 macrophage-phenotypes are activated by IL-4 and/or IL-
13, and characterized by secreting anti-inflammatory effectors,
such as IL-10, transforming growth factor β1 (TGF-β1),
heme oxygenase-1 (HO-1), and arginase. Through this, M2
macrophages regulate inflammatory responses, and participate
in the control of wound healing and tissue regeneration
(Tu et al., 2014).

The morphology and phenotypic evolution of macrophages
are driven by various stimuli and cytokines from the environment
(Mantovani and Sica, 2010). For example, in an infectious
microenvironment, macrophages can be polarized into the
“M1” state, and in cancerous tissues, there are different
clues that induce “M2”-like properties (Solinas et al., 2010).
There has been apparent controversy in literature on how
the M2 phenotype is derived. Different subsets of wound
macrophages can be derived from monocytes with different
phenotypes recruited at different times. These monocytes
could differentiate into macrophages with distinct phenotypes.
During the course of wound healing, these recruited monocytes
could be influenced by the constantly changing wound
environment which could affect their polarization or cause
the M1 macrophage differentiation into M2 macrophages
(Martinez and Gordon, 2014). Multiple studies have agreed
with the second hypothesis that it is the same macrophages
that regulate early inflammatory functions and subsequent
tissue regenerative functions (Wynn and Vannella, 2016). These
observations suggest that the local tissue environment or
some functions of macrophages can induce the phenotypic
switch in the healing of wounds (Das et al., 2015). Thus,
tracking macrophage phenotypes in the context of wound
healing would be informative to individual patient, since it
can provide an assessment of whether the skin wound exist
within the context of a pro-inflammatory or anti-inflammatory
environment, and this may provide guidance in developing
targeted therapies (Ostuni et al., 2015). It is this contradictory
view that makes macrophages such an attractive target for anti-
scar therapies.

THE DIRECT AND INDIRECT ROLES OF
MACROPHAGES DURING SCAR
FORMATION

Macrophages, which are known to play major role in tissue
repair and regeneration, have drawn increasing attention to their
potential roles in the development of scar formation. On one
hand, a recent study revealed that M1 macrophages are mainly
distributed in early wounds, while M2 macrophages are mainly
distributed in late stage wounds and the proliferative phase of
hypertrophic scars (Vogel et al., 2013). In skin wounds, M1
macrophage numbers peak at days 7–14, but the numbers of
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M2 macrophages in hypertrophic scar tissues increase at 14–
28 days after wounding (Zhu Y. et al., 2016). On the other hand,
macrophages exhibit distinct functions at various stages of skin
wound repair (Minutti et al., 2017). If the chronic inflammatory
phase of wound healing is prolonged, it might cause development
of scar formation (Finnerty et al., 2016). Recently, Sinha et al.
(2018) found that in the wound microenvironment macrophages
directs fibroblasts proliferation, myofibroblast differentiation and
collagen deposition. The changes in macrophage number and
phenotype can disrupt wound healing process and determine
the level of scar formation (Das et al., 2015). The extent of the
inflammatory response is highly dependent on the polarization
of macrophages into inflammatory M1 or anti-inflammatory M2
macrophages. The anti-inflammatory M2 macrophages regulate
both the repair process and the final scar formation (Hesketh
et al., 2017). A number of studies suggested that it is macrophages
and related factors that regulate early inflammatory functions and
later wound reparative functions (as summarized in Table 1).
These findings have improved our understanding of the direct
and indirect roles of diverse macrophage populations in tissue
repair and scar formation.

THE DIRECT ROLES OF MACROPHAGES
DURING SCAR FORMATION

The direct role of macrophages in the formation of abnormal scar
exhibits as its direct manipulation of the final ECM composition
through the secretion of MMPs or its influence in producing
collagen when these differentiate into myofibroblasts (Weitkamp
et al., 1999). These are less well-known potential direct effects of
macrophages, but they are the main reasons for abnormal scar
formation, which suggests that macrophages could play a more
decisive role in the wound healing process.

During the proliferation phase of the cutaneous wound
healing, macrophages in the skin wound are more M2-like,
and they function to increase the synthesis of ECM proteins.
Increasing evidence suggests that macrophages are capable of
synthesizing type VIII collagen, which is a short chain non-
fibrillar collagen type, as demonstrated by Weitkamp et al. (1999).
It is known that type VIII collagen adheres to the fibrosis by
adhering to the ECM component, particularly type I collagen,
thereby forming a coating on the type I collagen, facilitating the
migration of the matrix and the binding to the skin fibrosis.
Schnoor et al. (2008) revealed that in addition to synthesizing
and secreting collagen VIII, macrophages can secrete almost
all collagens, except for type XIII and XXII collagens. These
findings suggest the direct role of macrophages in wound
healing and scar formation. However, present studies on secreted
collagen by macrophages associated with certain pathological
conditions such as fibrosis have mainly focus on the heart
and lungs (Vannella and Wynn, 2017). Therefore, an improved
understanding of macrophages secreted ECM components in
skin scar formation is urgently needed.

It has been shown that in vitro, cultured macrophages can
differentiate into collagen-producing α-SMA myofibroblasts.
Myofibroblasts are known as effector cells of scar formation

(Lebonvallet et al., 2018). These cells are capable of
synthesizing large amounts of ECM components, such as
type I and III collagen, fibronectin, laminin, and other basal
membrane proteins that are major constituents of scar tissues.
Myofibroblasts are mainly differentiated from tissue-resident
fibroblast, and they play a major role both in the scar process
and in response to injury. However, myofibroblasts can also
originate from other cells, such as macrophages, through
which macrophages could directly contribute to collagen
production, as transdifferentiated into myofibroblasts (Stone
et al., 2016; Shook et al., 2018). Moreover, myofibroblasts
are characterized by contractility and distorting structural
organs, which are due to the expression of alpha-smooth
muscle actin (α-SMA) (Rao et al., 2014). Other studies
have also confirmed that M2 macrophages predominantly
undergo macrophage-myofibroblast transition in chronic
renal allograft injury (Wang et al., 2017). The majority of
macrophage-to-myofibroblast transition cells were a major
source of collagen-producing fibroblasts in the fibrosing kidney,
accounting for more than 60% of α-SMA cells originating
from macrophages (Wang et al., 2016). However, to what
extent these myofibroblasts actually contribute to the total
collagen production, particularly in scar formation, has not been
completely elucidated.

Another important factor for the final hypertrophic scar
formation and ECM components is the MMPs, which are
secreted by almost all cell types in the wound environment.
Specifically, macrophages can produce MMP-10 in response
to skin injury in many tissues, including the skin (Koller
et al., 2012). A recent study investigated the contribution
of macrophage-derived MMP-10 during cutaneous wound
healing in a mouse model (Rohani et al., 2015). Increased
scar formation was observed in the wounded skin of
MMP-10 -/- mice, but the number of macrophages in
MMP-10 -/- mice did not decrease, and the mobility of
macrophages was not impacted. However, in the skin
wounds of MMP-10 -/- mice, the production and activity
of MMP-13 produced by macrophages decreased, causing
impaired scar resolution in the wounds. These results
demonstrate the involvement of macrophages in skin scar
formation and macrophage-derived MMPs in controlling tissue
remodeling and alleviating scar formation during cutaneous
wound repair (Figure 1). However, the exact role of the
macrophage-derived MMPs in scar formation has not been fully
explored at present.

THE INDIRECT ROLES OF
MACROPHAGES IN THE FORMATION OF
ABNORMAL SCAR FORMATION

After blood coagulation and the formation of an early provisional
matrix, macrophages are attracted to the wound area as the first
responder. During the early phases of inflammation, M1-like
macrophages have pro-inflammatory features, including cytokine
production phagocytosis and antigen presenting (Eming et al.,
2007). After the initial inflammatory response, macrophages
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TABLE 1 | The role of macrophages and related factors in wound healing.

“Physiologic” wound healing “Pathologic” wound healing References (PMID)

Main phenotype M2 M1 Crane et al., 2014

Effect anti-inflammatory pro-inflammatory Braga et al., 2015

Collagen COLIII COLI, COLIII, COLVIII Nissinen and Kahari, 2015; Kreimendahl et al., 2019

Marker expression CD206, CD163 CD86, CD80 Willenborg and Eming, 2014; Roszer, 2015

Cytokines IL-10, TNF-α IL-1β, IL-23, IL-6, TNF-α, IFN-γ Butcher and Galkina, 2012

Proteases MMP-1,13 MMP-7,10 Nissinen and Kahari, 2015; Amini-Nik et al., 2018

Signaling pathway Wnt/β-catenin, TGF-β/Smad Amini-Nik et al., 2014

COL, collagen; IL, interleukin; MMP, matrix metalloproteinase; TNF-α, tumor necrosis factor α; IFN-γ, interferon-γ; TGF-β, transforming growth factor β.

FIGURE 1 | The direct effects of macrophages in abnormal scar formation.

also act a pivotal part in the successive proliferation, re-
epithelialization and remodeling phases, which are not precisely
defined by time, but by dynamic overlapping processes.
Macrophages mostly differentiate into M1-like macrophages
under the influence of pro-inflammatory mediators by IFN-γ
and TNF (Novak and Koh, 2013). Chen et al. (2019) revealed
that wound macrophages isolated in the early stage after
wounding predominantly secrete M1-associated cytokines, such
as TNF-α and IL-6, whereas those harvested from the long-
term period of wound healing and hypertrophic scar formation
produce more M2-associated cytokines, TGF-β1. Moreover, van
den Broek et al. (2015) examined the dynamic changes of
M2 macrophages in hypertrophic scars, and found that M2
macrophages increased during wound healing, arriving at the
peak in the remodeling phase and decreasing during in the
development of hypertrophic scars. However, as the injury
continued to exist, M2 macrophages took part in promoting
fibrosis and secreted factors, such as TGF-β, as detected in human
post-burn hypertrophic scars, which could indirectly promote
ECM production and fibroblast-to-myofibroblast differentiation
(Kurose and Mangmool, 2016). The transcription of the TGF-
β gene results in proliferation, contraction, ECM production,
autocrine TGF-β secretion upregulation and differentiation
in myofibroblasts (Walraven et al., 2014). These studies
suggest that macrophages play an important role in scar
formation by activating myofibroblasts through the secretion of
TGF-β (Figure 2).

In contrast to previous limited studies, Jin et al. (2018)
have demonstrated that macrophages were highly active in

FIGURE 2 | The indirect effects of macrophages in abnormal scar formation.

keloid tissues and were polarized toward the M2 macrophages
phenotype. Moreover, these M2 macrophages in keloid tissues
could induce regulatory T cells differentiation by upregulating
Foxp3 expression (Jin et al., 2018). Furthermore, in keloid tissues,
the number of M2 macrophage infiltration might be related to the
sensitivity of the glucocorticoid receptor.

TARGETING MACROPHAGES AS
THERAPEUTIC APPROACHES IN
HYPERTROPHIC SCAR TREATMENT

Wound macrophages and macrophage-derived products
participate in all phases of wound healing, and these
macrophage-directed processes of tissue repair and fibrosis
are shared among scar-associated diseases and affect the
organs. Thus, macrophage-directed interventions provide an
interesting strategy for preventing and treating pathological
scarring (Smigiel and Parks, 2018). Indeed, recent evidence
of effectively targeting macrophages in hypertrophic scar
animal models positions macrophage as an attractive
candidate for developing clinical therapeutic strategies against
hypertrophic scars.

The systemic depletion of macrophages in a hypertrophic scar
formation animal model, effectively inhibited hypertrophic scar
formation in the subacute phase of wound healing, including
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collagen remodeling, mast cell infiltration, myofibroblast
formation, and decreased pro-fibrotic factors. Moreover,
macrophage depletion also down-regulated M1-related cytokines
(TNF-α, IL-1β, and IL-6) and M2-related cytokines (TGF-
β1, IL-10, and IL-1α) in grafted tissues (Zhu Z. et al., 2016).
Likewise, the recent finding in a macrophage selectively depleted
transgenic mice model suggested that macrophages have a
key role in the early phases of skin wound repair. During
the inflammatory phase, the depletion of macrophages was
found to significantly decrease the formation of vascularized
granulation tissues and impair epithelialization, which ultimately
reduce the degree of granulation tissue and scar formation
(Ellis et al., 2018). Another example related to the blockade
of macrophage signaling pathways is the TGF-β signaling–
deficient Smad3 knockout. The loss of Smad3 recruited
macrophages into the skin wounds and healed without scarring
(Ashcroft and Roberts, 2000).

CONCLUSION

Collectively, a large body of evidence suggests that macrophages
are major contributors to several pathomechanisms that
lead to abnormal wound healing, such as fibrotic scars.
Studies with the successful intervention of hypertrophic
scars using the depletion of macrophages or blockade
of macrophage signaling in various experimental animal
models could serve as an important basis to further develop
drugs aimed at attenuating or resolving hypertrophic scars.
Macrophages are regarded as be a highly a heterogeneous
cell population that can be developed from different sources.
M1-like macrophages are considered foe cells associated
with pro-inflammatory and pro-fibrotic functions. On the

other hand, M2-like macrophages becomes friend of the
wound healing. However, when the skin wound is not
controlled and there is a continuous activity of M2-like
macrophages, these cells play the part of an enemy for
would healing and scar formation through direct or indirect
effects (Braga et al., 2015). A thorough understanding of the
direct and indirect roles of macrophages in would healing
and scar formation, especially the molecular phenotype of
these cells at different stages and in pathological wound
healing, become further defined. New macrophage-based
therapies for fibrodestructive disorders such as hypertrophic
scar formation should emerge (Amini-Nik, 2018). Several
strategies have been developed and adopted with the aim of
manipulating macrophages, and macrophage reprogramming
and macrophage depletion can be regarded as the most
important methods.
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