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Abstract 
Background: Virus genome sequencing is increasingly utilized in 
epidemiological surveillance. Genomic data allows comprehensive 
evaluation of underlying viral diversity and epidemiology to inform 
control. For human rhinovirus (HRV), genomic amplification and 
sequencing is challenging due to numerous types, high genetic 
diversity and inadequate reference sequences. 
Methods: We developed a tiled amplicon type-specific protocol for 
genome amplification and sequencing on the Illumina MiSeq platform 
of two HRV types, A15 and A101. We then assessed added value in 
analyzing whole genomes relative to the VP4/2 region only in the 
investigation of HRV molecular epidemiology within the community in 
Kilifi, coastal Kenya. 
Results: We processed 73 nasopharyngeal swabs collected between 
2016-2018, and 48 yielded at least 70% HRV genome coverage. These 
included all A101 samples (n=10) and 38 (60.3%) A15 samples.  
Phylogenetic analysis revealed that the Kilifi A101 sequences 
interspersed with global A101 genomes available in GenBank 
collected between 1999-2016. On the other hand, our A15 sequences 
formed a monophyletic group separate from the global genomes 
collected in 2008 and 2019. An improved phylogenetic resolution was 
observed with the genome phylogenies compared to the VP4/2 
phylogenies. 
Conclusions: We present a type-specific full genome sequencing 
approach for obtaining HRV genomic data and characterizing 
infections.

Open Peer Review

Reviewer Status   

Invited Reviewers

1 2

version 2

(revision)
23 Sep 2021

version 1
08 Jul 2021 report report

Martin Munene Nyaga , Sefako 

Makgatho Health Sciences University, 

Pretoria, South Africa

1. 

Yewande Nejo , Bowen University, Iwo, 

Nigeria

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 1 of 19

Wellcome Open Research 2021, 6:178 Last updated: 23 SEP 2021

https://wellcomeopenresearch.org/articles/6-178/v2
https://wellcomeopenresearch.org/articles/6-178/v2
https://orcid.org/0000-0001-6217-4426
https://orcid.org/0000-0002-2619-0856
https://orcid.org/0000-0003-2398-6717
https://orcid.org/0000-0001-5426-1984
https://orcid.org/0000-0002-2160-567X
https://doi.org/10.12688/wellcomeopenres.16911.1
https://doi.org/10.12688/wellcomeopenres.16911.2
https://wellcomeopenresearch.org/articles/6-178/v2
https://wellcomeopenresearch.org/articles/6-178/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-5017-5584
https://orcid.org/0000-0002-0701-5833
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.16911.2&domain=pdf&date_stamp=2021-09-23


Corresponding author: Martha M. Luka (mawia.martha@gmail.com)
Author roles: Luka MM: Formal Analysis, Investigation, Methodology, Visualization, Writing – Original Draft Preparation, Writing – 
Review & Editing; Kamau E: Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; de Laurent ZR: 
Methodology, Resources, Writing – Original Draft Preparation; Morobe JM: Methodology, Writing – Original Draft Preparation; Alii LK: 
Supervision; Nokes DJ: Conceptualization, Resources, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Agoti 
CN: Conceptualization, Methodology, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Wellcome Trust through a Wellcome Trust Senior Investigator Award to DJN 
(#102975). MML was supported by the Fogarty International Center (#U2RTW010677) of the National Institutes of Health (NIH) and 
DELTAS Africa Initiative (#DEL-15-003) of the African Academy of Sciences (AAS). The content is the authors’ responsibility and does not 
necessarily represent the official views of the Wellcome Trust, NIH, nor AAS. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Luka MM et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Luka MM, Kamau E, de Laurent ZR et al. Whole genome sequencing of two human rhinovirus A types (A101 
and A15) detected in Kenya, 2016-2018 [version 2; peer review: 2 approved] Wellcome Open Research 2021, 6:178 
https://doi.org/10.12688/wellcomeopenres.16911.2
First published: 08 Jul 2021, 6:178 https://doi.org/10.12688/wellcomeopenres.16911.1 

Keywords 
human rhinovirus, whole-genome, sequencing, phylogenetics

 
Page 2 of 19

Wellcome Open Research 2021, 6:178 Last updated: 23 SEP 2021

mailto:mawia.martha@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.16911.2
https://doi.org/10.12688/wellcomeopenres.16911.1


Introduction
Genomic surveillance of respiratory viruses is important for 
(i) developing molecular diagnostics1,2, (ii) investigating trans-
mission and evolution3,4, and (iii) development of vaccines 
and therapeutic drugs5. Human rhinovirus (HRV) is the most 
common cause of upper respiratory infections6,7 and is also 
occasionally associated with lower respiratory infections8. It is 
a highly diverse virus, with over 160 distinct types identified 
globally9. This diversity presents a challenge in developing a 
sequencing protocol that works well across the different HRV 
types10. Most HRV molecular epidemiology studies utilize 
partial genome sequences, which offer lower resolution in 
identifying epidemiologically linked infections11.

Viral genome sequencing can take one of the two approaches  
available: a targeted/enrichment approach or an agnostic/ 
metagenomics approach12. Theoretically, the viral metagenom-
ics approach is an unbiased way to obtain all viral genetic con-
tent in a sample as it does not require prior knowledge of their  
sequences13. However, this approach requires high viral titers 
to succeed14, which are not always available in a clinical  
sample15. Furthermore, most clinical samples especially those 
relevant to HRV sequencing are dominated by host and bacte-
rial nucleic acids13. Nonetheless, this challenge can be overcome  
by target enrichment, for example, polymerase chain reaction 
(PCR) to bulk up for the target virus before sequencing15–17. We  
describe a target enrichment sequencing approach of two HRV 
types, A15 and A101, using type-specific primers and com-
pare the phylogenetic inferences between partial and whole 
genome sequences. We used a combination of genomic, method- 
development, descriptive and retrospective approaches to achieve 
this.

Methods
Study population
The study utilized nasopharyngeal swabs collected during two 
previous studies in Kilifi County, coastal Kenya: outpatient 
surveillance of nine health dispensaries within the Kilifi Health 
and Demographic Surveillance System (KHDSS) between  
January and December 20167 and primary school surveil-
lance between May 2017 and April 20186. The school was situ-
ated in Junju, a location within the KHDSS. All samples were  
collected from symptomatic individuals (mild symptoms of  
acute respiratory tract infection) of varied age (one month - 
49 years) and archived at -80°C.

Study design
Samples were screened for HRV and typed as previously  
described8. A cycle threshold (Ct) value < 35.0 was used to define 
positives. HRV positives underwent VP4/2 sequencing to char-
acterize the diversity, spatial and temporal occurrence of HRV  
in the two settings. The most frequent type observed in the 
KHDSS health dispensary surveillance was A15 (n=63). Com-
parison of the HRV diversity within the school (located in  
Junju) and the Junju outpatient clinic revealed 12 common types, 
and the most frequent common type was HRV-A101 (n=10,  
with a frequency of n=5 in each setting)9,11.

For this study, we purposively selected two types from the 
two studies: A15 from the KHDSS surveillance and A101 
from both the Junju health dispensary and school for whole 
genome sequencing (WGS). These two types were selected due 
to their high frequency of occurrence at the various scales of  
observation studied. 

Ethics statement
Sample collection was undertaken following an informed  
written consent provided by parents or guardians for persons  
<18 years or by participating individuals if aged >17 years. Chil-
dren whose parents consented were also asked for individual 
assent to participate. The study protocols were reviewed and  
approved by the University of Warwick Biomedical and Scien-
tific Research Ethics Committee (BSREC #REGO-2016-1858  
and #REGO-2015-6102) and the KEMRI-Scientific Ethics  
Review Unit (KEMRI-SERU #3332 and #3103).

Primer design
We retrieved nine type A101 genomes and three type A15 
genomes, all >6000 nt long from GenBank18 on 30th September  
2019. Geneious Prime 2019.2.1 (https://www.geneious.com) 
was used to design eight overlapping primer pairs across the  
~7.2 kb HRV genome. The primers targeted eight amplicons  
0.9–1.6 kb in size, with overlaps varying in size from 300 to  
800 bases, Table 1.

RNA extraction, reverse transcription and PCR
Viral RNA was extracted from 140 μl sample using QIAamp  
Viral RNA kit (Qiagen, USA) as per the manufacturer’s recom-
mendations. Reverse transcription was carried out using ran-
dom hexamers and the Superscript III First-Strand Synthesis  
System (Invitrogen, United Kingdom). Genome-wide ampli-
fication using HRV-specific primers was done using the Q5  
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Table 1. Type-specific primers for the whole-genome amplification of two human rhinovirus types-A15 and A101.

Name
Target 
type Amplicon Start Length %GC

Tm 
(°C)

Hairpin 
Tm (°C)

Self-
dimer 
Tm 
(°C)

Pair 
dimer 
Tm 
(°C) Sequence

95 F_a101 A101 1 95 23 39.1 58 None None 6.9 ACCCCAAATGTAACTTAGAAGCA

716 R_a101 A101 1 1,334 22 45.5 60 None None None TCATCAGTGGGTTGTTGTGAGT

726 F_a101 A101 2 726 20 50 60 None None None AGCATCAAGTGGAGCGTCAA

1,215R_a101 A101 2 1,833 22 54.5 62 None None None GACACCCACACGAACTGCATAC

827 F_a101 A101 3 1,445 22 36.4 56 None None None ATGCTGTTCCTATGGATTCAAT

2,468R_a101 A101 3 2,468 20 50 60 None None None TCTGGTTGTGTTTGGCTGGT

1,524F_a101 A101 4 2,142 22 40.9 56 None None None TACCACACCTGATACATACTCA

3,516R_a101 A101 4 3,516 20 55 60 None 8.8 3.2 TCCACAATCTCCAGGTGCAC

2,546F_a101 A101 5 3,164 23 39.1 56 None None None TACCTACAAGAACAGACCTTACT

3,901R_a101 A101 5 4,519 22 40.9 55 None None None GTTTCCCTTTGTCTGGTAAATC

4,102F_a101 A101 6 4,102 20 50 60 None None None ACCCAGAAACAGCAGCAAGA

5,248R_a101 A101 6 5,248 23 39.1 58 None None None ACCCTGTGAACTTTCCATTACAT

4,306F_a101 A101 7 4,924 24 37.5 57 None None None AAATCAGTTAGGAATCCAGATGTC

5,905R_a101 A101 7 6,523 24 33.3 56 None None None TAGAATTACACAACTTCCTAACCA

5,550F_a101 A101 8 6,168 21 38.1 55 None None None ACCAATGATCACTTTCCTCAA

6,383R_a101 A101 8 7,001 24 33.3 56 None None None TGGTCATATTTGTCTTTTCCACTA

A15_1F A15 1 21 20 55 61 None None None ATCCCACCTGAACCTCCCAA

A15_1R A15 1 1,251 20 55 60 None None None CCAGCCGTGACATTACCTYT

534F_a15_22 A15 2 621 21 52.4 60 None 2.9 None CCATGGGCGCTCAAGTATCTA

1,889R_a15_22 A15 2 1,988 24 33.3 57 None None None CACAAAACATGAAACTGAATCGTA

1,391F_a15_22 A15 3 1,478 21 42.9 56 None None None AGACATAACAACTGGAGCTTG

2,848R_a15_22 A15 3 2,947 23 34.8 56 None None None TCCATCGTATCCATCATAAAACA

2,417F_a15_22 A15 4 2,516 22 40.9 55 None None None TCACAGACTAGAGATGAGATGA

3,464R_a15_22 A15 4 3,563 20 45 55 None None None CTATCACACCATGTTTGCAC

2,900F_a15_22 A15 5 2,999 24 33.3 54 None 4.3 None CTATGTTCAAGAATAGTCACTGAA

4,352R_a15_22 A15 5 4,451 23 39.1 58 None 3 None CACCAGGATTTTGCATAATGTCA

3,576F_a15_22 A15 6 3,675 21 38.1 55 None None None TTGGTGACGGGTTTGTAAATA

4,991R_a15_22 A15 6 5,090 24 33.3 55 None None None CAAATATAATGCCTGCTATACTGA

4,385F_a15_22 A15 7 4,484 23 43.5 58 None None None TCAAGTGTAACCTTTATCCCTCC

5,943R_a15_22 A15 7 6,042 23 43.5 59 None None None GTTCCAAACACACTATCCTCCAA

A15_8F A15 8 5,972 20 55 60 None None None ACYCTTGAYATTGRCCCAGC

A15_8R A15 8 7,029 20 55 60 None None None CTCACACTGCGAATCCCCTT

5,560F_a15_22 A15 8 5,659 21 42.9 55 None None None CATTCATGTTGGTGGTAATGG

7,076R_a15_22 A15 8 7,076 20 55 60 None None None AAGGCGGGATATACAGTGCG

Tm - melting temperature

Start - Genome position (of the whole genome template used) where the primer sequence starts

GenBank sequences used in primer design were accession numbers: MN306051.1, DQ473493.1 and JN541268.1 for A15 and; KY460514.1, GQ415052.1, 
KY369891.1, KY189315.1, KY369897.1, KY369892.1, KY369889.1, JQ245965.1 and GQ415051.1 for A101.
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High-Fidelity 2X Master Mix (New England Biolabs, United  
Kingdom). PCR success was assessed by electrophoresing the 
products on a 1% agarose gel. Once suitable PCR conditions per 
amplicon were established, a duplex PCR of non-consecutive 
amplicons of similar conditions was set up (Protocol doi -  
dx.doi.org/10.17504/protocols.io.bukxnuxn).

Sequencing
PCR products were purified with 1X AMPure XP beads  
(Beckman Coulter Inc.), quantified with Qubit dsDNA High 
Sensitivity Assay (Invitrogen, United Kingdom), pooled per  
sample and normalized to 0.2 ng/uL. Sequencing libraries 
were prepared using the Nextera XT Sample Preparation Kit  
(Illumina, CA) and sequencing performed on Illumina MiSeq  
platform (200 bp × 2) per sample.

Sequence assembly
The raw reads were quality checked using FastQC v0.11.9 
and trimmed (Phred score >30) using Trimmomatic v0.3919. 
HRV reads were identified by mapping to the respective refer-
ence strains (https://www.picornaviridae.com/sg3/enterovirus/ 
rv-a/rv-a_seqs.htm) and subsequently assembled into contigs 
using SPAdes v3.12.0. The contigs were checked for complete-
ness and assembled to a consensus sequence using Sequencher  
v5.4.6 (www.genecodes.com). We defined sequencing success 
as obtaining HRV reads covering at least 70% of the genome  
(>5040 bases). Sequencing depth was visualized using the  
deepTools20 package.

Sequence analysis
Sequences were aligned using MAFFT v7.27121. Recom-
bination scans were done using RDP522 and visualized on  
SimPlot23. Nucleotide substitutions across the genomes were 
visualized using a python script to examine genetic diversity 
across the genome. POPART24 was used to construct haplotype  
networks using the Minimum Spanning Network model. The 
best-fitting model and maximum likelihood trees were inferred 
using IQ-TREE, v1.6.025. Branch support for phylogenetic  
trees was assessed using bootstrapping of 1000 iterations.  
MegaX26 was used to calculate mean pairwise distances, and  
the respective standard errors were assessed using 100 iterations.

Bayesian phylogeny was used to create time-structured phy-
logenetic trees using BEAST v.1.10.427. BEAST was run with  
200 million MCMC steps using the best fitting substitution 
model and a coalescent-based relaxed clock framework28. The  
output was assessed for convergence using Tracer v1.7.1. 
Maximum clade credibility (MCC) trees were identified using  
TreeAnnotator v1.10.4 after removal of 10% burn-in. The 
trees were then visualised in FigTree v1.4.429 and branching  
posterior probabilities were noted.

Statistical analysis
Statistical analysis was undertaken using R version 3.6.1  
(R Core, 2021). The Shapiro–Wilk test was used to check for 

the normality of the data. The T-test was then used to compare  
Ct-values of successfully sequenced versus failed samples.

Results
Whole genome sequencing
We successfully sequenced all 10 (100%) A101 and 38  
of 63 (60.3%) A15 samples. Cycle threshold (Ct) values ranged 
from 20.2 – 34.7, with a median of 28.4 for A15 and 30.2  
for A101. The failed 25 samples did not have a significantly  
higher median Ct-value than those successfully sequenced based 
on the T-test: 28.3 (IQR = 4.0) versus 29.2 (IQR = 3.7), respec-
tively (p= 0.21), Figure 1A and B. Besides, samples that failed  
sequencing did not have unique phylogenetic clustering patterns 
based on their previously generated VP4/2 sequences. Sequenc-
ing depth was comparable across Ct-values, with the mean  
depth coverage per genome ranging from 351 - 13356 reads  
per base pair, Figure 1C and D.

Phylogenetic analysis identified interspersion of local A101 
sequences with global sequences (n=9) collected between the  
years 1999–2016. However, A15 local genomes clustered sep-
arately from global sequences (n=3), Figure 2. The global  
A15 genomes were collected in the years 2008 (n=2) and 2019 
(n=1).

The ends of the 5’ untranslated region (UTR) and 3’ UTR  
were not amplified due to lack of suitable primers. Genetic 
diversity was observed across the entire genome and not within  
a particular genomic region for both types, as shown in  
Figure 3.

Phylogenetic resolution
We compared the phylogenetic bifurcation patterns and  
statistical uncertainty of VP4/2 and WGS for the two types. The 
depiction of sister taxa was comparable across the two trees.  
However, WGS resolved phylogenetic polytomies/unresolved 
branches observed previously in the VP4/2 phylogenies. For 
example, using VP4/2 sequences, all viruses collected in the 
school formed one polytomy, which was now fully bifurcated  
using WGS. Similarly, for A15, the four polytomies observed on 
VP4/2 phylogeny were well resolved using WGS, effectively 
distinguishing one sample from the other. Although the mean 
pairwise distances across VP4/2 and WGS were close, the stand-
ard error of pairwise distance calculations was notably less  
(about a tenth) in WGS than VP4/2, Figure 4.

Overall higher branching posterior probabilities in Bayesian 
phylogenetic trees were observed using WGS than VP4/2  
sequences. In VP4/2 Bayesian trees, 17.5% of A15 and 64.7% 
of A101 nodes had a posterior probability greater than 0.7  
compared to 64.3% and 88.2% nodes in WGS trees,  
respectively, as illustrated in Figure 5.

The improved resolution was further depicted by haplo-
type networks that displayed notably more alleles using WGS  
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Figure 1.  Summary  statistics  of  sequenced  samples.  (A) Distribution of cycle threshold (Ct) values across all samples selected for 
sequencing. Bars are colored by HRV type. (B) Dispersion of Ct-values across samples successfully sequenced and those that failed. (C). Read 
depth (per base pair) distribution per (successfully) sequenced sample. Each line represents a genome/sample. (D). Distribution of mean 
coverage per base pair per genome across successfully sequenced samples. The bars are colored by Ct-value group.

than VP4/2, e.g., in HRV-A101, school sequences that were 
considered a single allele using VP4/2 sequences resolved into  
five alleles when using whole-genome sequences, Figure 6. 
Identical samples at the VP4/2 region had a median of 3 nt  
changes for A101 and 5 nt changes for A15 across the whole 
genome. 

Recombination analysis
Recombination scans identified breakpoints within the VP3 of 
one A101 sequence (KEN_Rhinovirus_7018), with both par-
ents belonging to A101 type (p-value < 1.922E-2), Figure 6C.  
Recombination within HRV structural regions has been  
shown to be rare and sporadic30.

Discussion
This study presents a type-specific whole genome sequenc-
ing protocol for two HRV types. A101 had a higher success  
(100%) than A15 (60.3%). We attribute the higher A101 sequenc-
ing success to the higher number of sequences (n=9) that  
were available for primer design, which captured more intra- 
type variation, compared to A15 (n=3). Having more genomes 
contributing to the consensus sequence used in primer design  
increased genetic variation, and subsequently, the likelihood  
that the local and contemporaneous diversity was captured. 
While it’s not clear what the cause of sequencing failure of 
the 25 samples was, we speculate that either (i) their genomic  
diversity was not captured in primer design resulting in primer 
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mismatches, (ii) the sample quality had deteriorated over time  
or (iii) there was presence of PCR inhibitors/ nuclease enzymes  
in the sample.

Whole-genome sequencing provided greater phylogenetic reso-
lution and less statistical uncertainty to partial sequencing.  

Polytomies are a product of inadequate data and are, therefore, 
a potential source of bias. They also result in reduced statistical 
power due to increased uncertainty. The loss of terminal phy-
logenetic resolution may result in two opposing predictions: 
the underestimation (due to unresolved taxa) or overestimation  
(due to increased total tree length) of diversity31. Due to the 

Figure 2. Maximum-likelihood phylogenetic trees of local (generated) and global (A) A15 and (B) A101 sequences. The tips are coloured by 
origin, indicating the global sequences used in primer design. The scale bar represents nucleotide substitutions per site.
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short size of VP4/2 (~420nt), insufficient data results in reduced 
phylogenetic resolution and increased uncertainty evidenced 
by a higher standard error in phylogenetic distance. Unresolved 
phylogenies are a challenge in epidemiology as one cannot  
distinguish infections from one individual to another for  
transmission inference.

Posterior probabilities summarize the uncertainties about a 
parameter and indicate confidence in the evidence32. High  

posterior probabilities indicate high confidence, and the reverse 
is also true. Whole genomes consistently provided higher  
confidence across the two genotypes assessed in this study.

With pathogen sequencing now an established tool to track 
viral infections2,12, it is crucial to compare the resolution of  
different sequence analysis. As the huge antigenic diversity of 
HRV continues to pose a challenge in vaccine development, 
efforts should be directed towards understanding and mitigating  

Figure 3. Genetic diversity across the genome for (A) A15 and (B) A101. The known HRV strains (https://www.picornaviridae.com/sg3/
enterovirus/rv-a/rv-a_seqs.htm) are used as the reference. A substitution to “A” is indicated by green, “C” by blue, “G” by indigo and “T” by red 
bars. Gray contiguous bars indicate unknown/unsequenced bases.

A.

B.
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Figure 4. Maximum-likelihood phylogenetic trees of local (A) A15 and (B) A101 VP4/2 and whole genome sequences. The tips are coloured 
by site of origin. The scale bar represents nucleotide substitutions per site while node labels indicate bootstrap value. (C) Mean pairwise 
distances and respective standard errors of VP4/2 and whole genome sequences.
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transmission. Our study shows that HRV WGS is better suited 
for transmission inference to the commonly used VP4/2  
sequences.

The sequencing approach we developed has some limitations. 
First, it requires prior genotyping of the HRV positive samples, 
commonly done by VP4/2 or VP1 sequencing. It is therefore 
unsuitable for sequencing new or highly divergent types due to 
the requirement of matching primer sequencing. Second, having  

to create primer sets for each type is cumbersome and relies on 
adequate number of pre-existing genomes to design conserved 
primers. In addition, an amplicon-based target enrichment  
does not work well for low complexity regions such as the  
5’UTR and 3’ UTR. Although the 5’UTR alone does not offer 
adequate resolution to confidently distinguish HRV types33, it is 
speculated to be a hotspot for recombination30,33. Not sequenc-
ing these extreme regions may therefore result in missing out on 
important evolutionary/phylogenetic signal. Notwithstanding,  

Figure 5. Bayesian phylogenetic trees of local and global (A) HRV-A15 and (B) HRV-A101 VP4/2 and whole genomes. The branches are 
coloured by site of origin. Node labels indicate branching posterior probabilities.
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Figure 6. Haplotype networks displaying sequence variation of VP4/2 and whole-genome sequences of (A) A15 and (B) A101. Numbers  
along the edges indicate the nucleotide substitutions. The alleles are coloured by study site. (C) Recombination scan of recombinant 
sequence KEN_Rhinovirus_7018 compared to its major and minor parents and the A101 prototype sequence, GQ415051.1. A putative 
recombinant region was identified within the VP3.
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the new method can successfully enrich for human rhino-
virus in archived samples of varying virus titers. It can also 
effectively capture intra-type recombinant regions enabling  
detailed study of viral dynamics.

Conclusions
With HRV being the most common respiratory virus, it is sur-
prising that we have such few publicly available whole genomes  
to allow detailed intra-type analysis. We describe a new proto-
col for the whole genome sequencing of two HRV types and  
enrich the public database of HRV genomes. The protocol can 
be adapted for other HRV types. Our study also shows that  
WGS is more informative than VP4/2 sequencing in study-
ing HRV dynamics as it maximizes resolution and reduces  
phylogenetic uncertainty.

Data availability
Accession number: GenBank, MW713746-MW713793

Accession number: BioProject, PRJNA701406

Root URL: https://identifiers.org/bioproject

Accession number URL: https://identifiers.org/bioproject:
PRJNA701406

Harvard Dataverse. Replication Data for: Whole genome  
sequencing of two human rhinovirus A types (A101 and A15) 
detected in Kenya, 2016–2018. DOI: https://doi.org/10.7910/ 
DVN/QGXZLI34

This project contains the following underlying data:

-    This is a replication dataset for the manuscript titled:  
"Whole genome sequencing of two human rhinovirus A 
types (A101 and A15) detected in Kenya, 2016–2018."  
The dataset contains contains Cycle threshold (Ct) values, 
and read/sequencing depth.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Overall comments: 
This is an important and well executed study by Luka et al. (2021). It provides detailed informative 
data on the type-specific whole genome sequencing method designed to detect human 
rhinovirus. The study is able to present target enrichment sequencing approach which addresses 
the hurdles in genome amplification and sequencing of human rhinovirus posed by the high 
genetic diversity of the virus and inadequate information of reference sequences. The study is 
properly designed; however, it will require few additions. 
 
Abstract: 
The abstract is a good summary of the research article but please indicate in the abstract the type 
of samples that were collected. 
 
Introduction: 
The introduction provides information that is significant to the research and is well referenced. 
The importance and purpose of the study is well explained and justifiable. 
 
Methodology: 
The methodology segment is well designed and all analyses were carried out with details and 
sound scientific merit. The author should however specify in this section the type of research 
carried out. 
 
Results: 
The results are well stated and illustrated in a comprehensive manner. The data is meticulously 
analyzed 
 
Discussion and Conclusion: 
The results of this study are well discussed and the data supports the conclusion. The limitations 
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of the study are well stated. However, the reasons for selecting only two types of HRV for whole 
genome sequencing out of 12 types were not properly indicated. Can the author also explain what 
could be responsible for the sequencing failure of 25 samples? What could be the implications of 
not sequencing 5’UTR and 3’ UTR regions in the study of viral dynamics? 
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Thank you for taking the time to review our article. Please see below our responses to the 
issues raised. 
 
Abstract 
Please indicate in the abstract the type of samples that were collected. 
Nasopharyngeal swabs. (This has now been specified in the abstract) 
 
Methodology 
The author should specify in this section the type of research carried out. 
We used a combination of genomic, method-development, descriptive and retrospective 
approaches to develop a new laboratory protocol for the whole-genome sequencing of 
human rhinovirus and compare the phylogenetic inferences between partial and whole 
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genome sequences 
 
Discussion and Conclusion 
The reasons for selecting only two types of HRV for whole genome sequencing out of 
12 types were not properly indicated. 
The current study was nested within a larger epidemiological study to study pathways of 
respiratory virus disease within different scales which included: (i) outpatient surveillance of 
nine health dispensaries within the Kilifi Health and Demographic Surveillance System 
(KHDSS)[1] and (ii) a primary school surveillance[2]. The most frequent type observed in the 
KHDSS health dispensary surveillance was A15 (n=63). The second social scale, the school, 
was situated in Junju, a location within the KHDSS. Comparison of the HRV diversity within 
the school and the Junju outpatient clinic revealed 12 common types[3], and the most 
frequent common type was A101 (n=5 in each setting). These two types were identified as of 
interest due to their high frequency of occurrence at the various scales of observation 
studied. 
 
Can the author also explain what could be responsible for the sequencing failure of 25 
samples?  
While it’s not clear what the cause of sequencing failure of the 25 samples was, we 
speculate that either (i) their genomic diversity was not captured in primer design resulting 
in primer mismatches, (ii) the sample quality had deteriorated over time or (iii) there was 
presence of PCR inhibitors/ nuclease enzymes in the sample. 
 
What could be the implications of not sequencing 5’UTR and 3’ UTR regions in the 
study of viral dynamics? 
Analysis of the 5’UTR across HRV shows high conservation of certain regions[4], making it a 
suitable target for HRV detection assays[5]. Contrastingly, the ~50 bp long 3’UTR is not 
universally conserved across HRV species[4]. Although the 5’UTR alone has not been proved 
to offer adequate resolution to confidently distinguish HRV types[6], it is speculated to be a 
hotspot for recombination[7]. Not sequencing these extreme regions may therefore result 
in missing out on important evolutionary/phylogenetic signal. 
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Luka et al. (2021) present a type-specific full genome sequencing approach for obtaining genomic 
data of human rhinovirus. The authors have done an excellent job of addressing a research gap in 
rhinovirus amplification and sequencing challenges caused by a high genetic diversity and 
relatively inadequate reference sequences. The study is well designed, with detailed analysis and 
well-reported conclusions. 
 
Abstract: 
The abstract concisely summarizes the research article. 
 
Introduction: 
The introduction is well written. The authors have provided a sufficient background and 
articulated the purpose of the research work in a concise manner. 
 
Methodology: 
The methodology section is well designed. 
 
Results: 
The result findings are well described. The data analysis is very thorough. 
 
Discussion and conclusion: 
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The discussion part is well-written and the authors have done a good job of describing the study’s 
shortcomings. It is commendable to see that, despite the limitations, the study’s findings 
corroborate the type-specific sequencing approach being promoted. A question that may need 
more discussion on is: what could have caused the sequencing failure of 25 samples with a 
median ct value that was not significantly higher than those successfully sequenced? The 
conclusion wraps up the study nicely.
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successfully sequenced? 
While it’s not clear what the cause of sequencing failure of the 25 samples was, we speculate that 
either (i) their genomic diversity was not captured in primer design resulting in primer 
mismatches, (ii) the sample quality had deteriorated over time or (iii) there was presence of PCR 
inhibitors/ nuclease enzymes in the sample.  
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