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Abstract: This work deals with Cu-modified 1DTiO2 microrods (MRs) and their surface properties.
The pristine lyophilized precursor Cu_1DTiO2, prepared by an environmentally friendly cryo-
lyophilization method, was further annealed in the temperature interval from 500 to 950 ◦C. The mi-
crostructure of all samples was characterized by electron microscopy (SEM/EDS and HRTEM/SAED),
X-ray powder diffraction (XRD), infrared spectroscopy, simultaneous DTA/TGA thermoanalytical
measurement, and mass spectroscopy (MS). Special attention was paid to the surface structure
and porosity. The 1D morphology of all annealed samples was preserved, but their surface rough-
ness varied due to anatase-rutile phase transformation and the change of the nanocrystals habits
due to nanocavities formation after releasing of confined ice-water. The introduction of 2 wt.%
Cu as electronically active second species significantly reduced the direct bandgap of 1DTiO2 in
comparison with undoped TiO2 and the standard Degussa TiO2_P25. All samples were tested for
their UV absorption properties and H2 generation by PEC water splitting. We presented a detailed
study on the surface characteristics of Cu doped 1DTiO2 MRs due to gain a better idea of their
photocatalytic activity.

Keywords: titanium dioxide; microrods; lyophilization; Cu doping; surface structure

1. Introduction

During the past decades, considerable effort has been put into the design and prepara-
tion of nanomaterials exhibiting unique physicochemical properties. The main objective
of nanoscience is to discover new materials with completely different characteristics at
the nanoscale level [1]. The development of new photocatalytic materials with improved
stability, low cost, and high photocatalytic activity under solar light are one of the cur-
rent challenges for photo-electrochemical (PEC) water splitting. Titania, in particular the
anatase phase, has been used in PEC [2] very dynamically [3]. It is well established that
one-dimensional 1DTiO2 (nanorods [4], nanotubes [5], and nanowires [6]) has significant
potential in environmental application because of its stability, high specific surface area,
and suitable porous structure. However, the large bandgap of TiO2 (3.2 eV for anatase),
is the main obstacle to obtain highly efficient photocatalysts. The bandgap has a direct
impact on the rate of electron-hole (e−/h+) recombination. Therefore, a huge number of
researchers investigate how to narrow the bandgap of TiO2 to maximize the utilization of
solar energy and to increase the (e−/h+) pair recombination lifetime, which is a key factor
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for any TiO2-based photocatalyst. One very attractive approach is doping of TiO2 with
transition metals such as the very low-cost copper (Cu). Cu was previously investigated
in this context, including doping of the standard Degussa TiO2-P25 [7]. The effect of Cu
doping in titania and its importance for photocatalysis has recently been highlighted in
several reports [8–14]. Nevertheless, the results concerning the photocatalytic properties
of Cu-doped TiO2 nanomaterials are very controversial and this is due to the different
methods of preparation used of the materials. Byrne et al. [15] and Obregon et al. [16]
indicating the negligible photocatalytic activity of Cu-doped TiO2, despite the prevailing
anatase phase in samples, arises from the charge recombination at surface lattice defects.
Likewise, the recent study of Bensouici et al. has shown the forming of CuO in Cu-doped
TiO2 thin films decreases its photocatalytic efficiency [17]. Moreover, Wang et al. found
that Cu-doped TiO2 thin films obtained by RF magnetron sputtering could be used for H2
production by water splitting [18]. Also, the incorporation of 0.5 M% of copper ions into
the TiO2 structure seems to enhance the photoactivity of the system when acidic conditions
occur. A possible explanation of this photocatalytic improvement might be related to the
stabilization of Cu2O species and oxygen vacancies generated in doped TiO2 during the
preparation procedure using sulfuric acid [9].

Among existing reports, there are no studies on the impact of Cu dopant on the TiO2
with 1D morphology. Although many studies focused on the influence of Cu on TiO2
microstructure-grain size evolution, specific surface area, and anatase to rutile transforma-
tion, scarce experimental research has been carried out in the field of PEC water splitting
by Cu-doped 1DTiO2 materials.

The Cu2+ ionic radius (0.730 Å) is close to the Ti4+ radius (0.605 Å) therefore, the
dispersion of Cu2+ into TiO2 crystal lattice is naturally expected by substitutional incorpo-
ration of the Ti4+ [19]. This substitution with aliovalent Cu2+ ion is expected to contribute
to the formation of impurity levels, as well as to modify the electronic density of states
inside the bandgap of pristine TiO2 structure [3].

To the best of the authors’ knowledge, there is no previously published work pre-
senting Cu-doped TiO2 microrods (MRs) obtained by annealing of lyophilized 1DTiO2
precursor, and their application for H2 generation by PEC water splitting. This work
presents a complete study of the influence of Cu dopant on the TiO2 MRs phase transi-
tion from the metastable anatase phase to the stable rutile phase. The characterization
of as-prepared materials was carried out using X-ray powder diffraction, Raman, and
FTIR spectroscopy, BET/BJH surface analysis. HRTEM microscopy was applied to analyze
Cu-doped TiO2 MRs grain size evolution at different annealing temperatures. Optical
properties and direct bandgap energy (Eg) measurements were performed using UV-vis
spectroscopy. The PEC water splitting and hydrogen evolution were performed in the
PEC cell composed of three compartments (for working, counter, and standard saturated
Ag/AgCl electrodes).

2. Materials and Methods
2.1. Materials

Titanium (IV) oxysulfate (titanyl sulfate, TiOSO4, Sigma-Aldrich spol. s.r.o., Prague,
Czech Republic) was used as a TiO2 precursor. Cu(NO3)2.3H2O assay spec. 99%, served
as the Cu dopant source. During material synthesis, an aqueous solution of ammonia
(NH3, hydroxide, purum p.a., 25–29% solution, Fisher Scientific, spol. s.r.o., Pardubice
Czech Republic) was used for precipitation of the precursor. AEROXIDE TiO2-P25 (Evonik,
Prague, Czech Republic) were used for the PEC experiments.

2.2. Synthesis of Cu-Doped 1D TiO2 MRs

The Cu doped 1DTiO2 MRs were prepared via a green freeze-casting method, known
as lyophilization (see Scheme 1) [20]. In a typical experiment a mixture of 100 mL of
deionized water and 50 mL of crushed ice was prepared in a 350 mL laboratory beaker
(step 1). Immediately afterward, 4.8 g of hydrated titanyl sulfate TiOSO4 was added to the
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as-obtained mixture (step 2), and after continuously stirring, 0.118 g of Cu(NO3)2·3H2O was
used to yield a calculated value of 2 wt.% of copper to give a blue-colored solution (step 3).
Subsequently, the precipitation was carried out at ∼0 ◦C in aqueous ammonia until the pH
reached 8. The precipitate as obtained was transferred into a beaker and resuspended into
350 mL of distilled water. The resulting precursor was immediately lyophilized (freeze-
dried) (step 6) at 20 mTorr, at (−54) ◦C for 72 h by using VirTis Benchtop K lyophilizer, Core
Palmer UK, Ipswich, UK). Lyophilized product was isolated in the last step 7. Visualization
with SEM microscopy confirmed that the lyophilized precursor labeled Cu/TiO2_N (Non-
annealed) has well-defined 1D MRs morphology. The lyophilized precursor Cu/TiO2_N
was further heat-treated under air at 500, 650, 800, and 950 ◦C for 1 h in each case (with rate
3 ◦C min−1), and four new samples denoted as Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800
and Cu/TiO2_950 were obtained (Scheme 1).

Scheme 1. Synthetic method for the preparation of precursor Cu/TiO2_N and Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800
and Cu/TiO2_950 materials.

2.3. Methods of Characterization

Prepared materials were characterized by X-ray powder diffraction (XRD), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area
(BET) and porosity (BJH) measurement, thermal analysis (TG/DTA), Fourier transform
infrared (FTIR), Raman spectroscopy, UV-Vis spectroscopy and PEC experiments (H2
generation by PEC water splitting). The whole set of instrumental characterization is
described in our previous publication as you can see in [20–25].

Morphology and elemental analysis were investigated using FERA 3 (Tescan, Warren-
date, PA, USA) and JSM-6510 LV (JEOL, Peabody, MA, USA) scanning electron microscopes
equipped with an energy dispersive X-ray (EDX) detector (Oxford, UK). The measurements
were carried out in a low vacuum mode (with a secondary electron detector) at an acceler-
ating voltage of 30 kV. Powdered samples were placed on carbon tape and SEM images
were observed without any coating to study their original texture.
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Transmission electron microscopy (TEM) was carried out on a JEOL JEM 3010 micro-
scope operated at 300 kV (LaB6 cathode, point resolution 1.7 Å) and equipped with an EDS
spectrometer. The images were recorded on a CCD camera (Gatan, Pleasanton, CA, USA)
with a resolution of 1024 × 1024 pixels. Digital Micrograph and INCA software packages
were used for structural and chemical analyses, respectively. Electron diffraction patterns
were evaluated using the Process Diffraction program [26].

Room temperature diffraction (XRD) patterns were collected using an X’pert PRO
diffractometer (PANalytical, Cambridge, UK) equipped with a conventional X-ray tube
(CuKα 40 kV, 30 mA, line focus) in transmission mode. An elliptic focusing mirror, a
divergence slit 0.5◦, a 0.5◦ anti-scatter slit, and a Soller slit of 0.02 rad were used in the
primary beam. A PIXcel (Cambridge, UK) fast-linear position-sensitive detector with
an anti-scatter shield and a Soller slit of 0.02 rad was used in the diffracted beam. All
patterns were collected in the range of 10 to 80◦ 2 θ with the step of 0.013◦ and 400 s per
step producing a scan of about 2.4 h. Samples were grounded in an agate mortar in a
suspension with cyclohexane. The suspension was then placed on top of a Mylar foil to a
transmission sample holder. After solvent evaporation, a thin layer of the prepared sample
was then covered with the second Mylar foil. Qualitative analysis was performed with
the HighScorePlus software package (PANalytical, version 4.8.0), DiffracPlus software
package (Bruker AXS, Karlsruhe, Germany, version 8.0), and the JCPDS PDF-4 database.
International Centre for Diffraction Data (JCPDS PDF-4 Database, release 2019/1 ed; ICDD:
Newtown Square, PA, USA, 2019). For quantitative phase analysis, we used DiffracPlus
Topas (Bruker AXS, version 4.2) with structural models based on the ICSD database (Fiz
Karlsruhe–Leibniz Institute for Information Infrastructure. ICSD Database; FIZ Karlsruhe
GmbH: Eggenstein-Leopoldshafen, Karlsruhe, Germany, 2019). This program allows the
estimation of the weight fractions of crystalline phases through the Rietveld refinement
procedure. The estimation of the size of crystallites was performed based on the Scherrer
formula as implemented within the DiffracPlus Topas software.

Thermal analysis (TA/MS) measurements were performed on a SetSys Evolution sys-
tem (Setaram, Prague, Cyech Republic) coupled with a QMG 700 SuperSonic quadrupole
mass spectrometer (Pfeiffer, by Setaram) system. Decomposition of prepared samples was
performed in an open alumina crucible in argon (60 mL min–1), and the sample mass was
approximately 10 mg. The used temperature range was 30–1100 ◦C with a heating rate
of 5 ◦C min–1. Gaseous products were measured as the intensity of individually selected
fragments, with the m/z (mass-to-charge ratios) at 16, 17, 18, 28, 30, 32, 44, 46, and 64. FTIR
spectra were measured on a Nexus 670 FTIR spectrometer (Thermo Nicolet, Brno, Czech
Republic) in the region 4000–400 cm–1 at a resolution of 4 cm–1 using KBr pellets. Raman
spectra were acquired with an XDR AIY 0900237 Raman microscope (Thermo Scientific,
Brno, Czech Republic), 256 two-second scans were accumulated with a laser at 532 nm
(0.1 mW or 0.5 mW), 25 µm slit under a 10× objective of a microscope (Olympus, Prague,
Czech Republic) in full range with the distinction of 4 cm–1. Diffuse reflectance UV-Vis
spectra were recorded in the diffuse reflectance mode (R) and transformed to a magni-
tude proportional to the extinction coefficient (K) through the Kubelka–Munk function,
F(Rα) [27]. A Lambda 35 spectrometer (PerkinElmer, Waltham, MA, USA) equipped with
an RSA-PE-20 integration sphere (Labsphere, North Sutton, NH, USA) using BaSO4 as a
standard was used. The band-gap energy Ebg was calculated by the extrapolation of the
linear part of equation λbg = 1240/Ebg (eV) [28,29].

2.4. Photoelectrochemical Experiments

The water splitting and hydrogen evolution were performed in a photoelectrochemi-
cal cell composed of three compartments (for working, counter, and standard saturated
Ag/AgCl electrodes) filled with an electrolyte and separated by semi-permeable mem-
branes made of sintered glass. Sulfuric acid (H2SO4, 0.5 M in distilled water) was used as
the electrolyte. As a source of the incident light, the 100W solar simulator (LCS-100, Oriel,
Edmonton, AB, USA) was used. The incident power of the light was measured using a light
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meter (DT-8809A, CEM, Prague, Czech Republic) and the intensity was 710.103 lux, which
is equal to 0,104W/cm2 at 555 nm. The electrochemical response of layers on incident
light during cyclic voltammetry was studied by a potentiostat (2450 SourceMeter, Keithley,
Houten, The Netherlands). The aperture between the light source and the electrodes
allowed light/dark operation. The material studied was deposited on a fluorine-doped
tin oxide-coated glass (FTO-glass) electrode with a working area of about 3 cm2. The
samples were deposited from an ultrasound dispersed powder material (0.01 g) in 50 mL
distilled water onto the electrode (12 mm × 42 mm), immersed in the dispersion overnight.
Subsequently, the sample was annealed for 1 h in the air at a temperature of 500 ◦C. Cyclic
voltammetry (CV) data was measured by applying a potential between −0.7 and 0.7 V on
the working electrode against a standard saturated Ag/AgCl electrode with a constant
scanning speed of 25 mV/s. Four cycles were monitored to evaluate the stability of the
photoperiods, reproducibility, and stability of deposited layers [21]. The measurements
were repeated three times to evaluate the stability of the studied layers.

3. Results and Discussion

This section presents the results obtained during the characterization of the Cu/TiO2_N
and Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 materials and their
interpretation.

3.1. X-ray Diffraction (XRD) Characterization

XRD patterns of Cu/TiO2_N and post-annealed materials (Cu/TiO2_500, Cu/TiO2_650,
Cu/TiO2_800, and Cu/TiO2_950) are shown in Figure 1. Analysis of lyophilized pre-
cursor Cu/TiO2_N confirmed non-crystalline, completely amorphous material. Sample
Cu/TiO2_500 (Figure 1) shown a diffraction pattern consistent with a single phase of
TiO2 that can be assigned to tetragonal anatase (JCPDS database PDF file 21-1272), in-
dicating that the crystal structure was not changed after Cu doping. When annealed at
650 ◦C. Rutile polymorph of TiO2 (3.7 wt.%) began to appear (JCPDS database PDF 21-1276)
(Figures 1 and 2). No diffraction lines of any copper-containing phases were observed in
the samples Cu/TiO2_500 and Cu/TiO2_650 implying that Cu2+ can preferentially substi-
tute Ti4+ in the anatase phase before the transition to rutile. A complete transformation
of anatase to rutile is achieved at 800 ◦C (Figure 1). Sample Cu/TiO2_800 is a mixture
of 98.3% rutile and 1.7% CuO (Figure 2). The transformation from thermodynamically
metastable anatase to stable rutile is accompanied by segregation of monoclinic copper (II)
oxide CuO, known as tenorite (JCPDS database PDF 48-1548). At this temperature, the Cu2+

starts to escape from the anatase lattice. Annealing at the highest temperature of 950 ◦C
causes the CuO to grow rapidly, and the amount of CuO increases at the expense of rutile
(Figure 1). The percentage estimation (wt.% of phases) of any individual phase in each
stage of annealing temperature, based on the Rietveld refinement, is shown in Figure 2.

The phase composition, lattice parameters, and crystal sizes obtained by Rietveld
refinement are given in Table 1. The changes in lattice parameters as a function of tem-
perature shown that in samples Cu/TiO2_500 and Cu/TiO2_650, the lattice parameter a
decreases, and the parameter c increases with the increasing temperature. The increase of c
axis lattice parameter with metal ions doping (Mo and Sc) in anatase NCs has already been
reported in our recent works [22–25]. This further supports the substitutional incorporation
of Cu2+ ions into the anatase lattice. Also, the ionic radii of Cu2+ ions are higher than that
of Ti4+ (RCu2+ = 0.730 nm vs. RTi4+ = 0.605 nm) and such changes of lattice parameters and
lattice volume are expected [30]. We should recall, that beyond 650 ◦C, the anatase starts to
transform to rutile, and lattice parameters in samples Cu/TiO2_800 and Cu/TiO2_950 are
estimated for rutile. It is observed that in both samples, parameter a is almost invariant
with temperature, whereas the parameter c slightly decreases. The Cu doping progressively
reduces the concentration of Ti in the Cu/TiO2_800 and Cu/TiO2_950 samples. Also, a
change of the cation distribution could be expected since the arising of the tenorite phase.
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Table 1. Microstructural parameters of anatase, rutile, tenorite and samples Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and
Cu/TiO2_950.

Sample BET [m2g−1]
Average Pore
Radius [nm] Phase

Lattice Parameters [Å] Crystal Size
[nm]a b c

TiO2 PDF
21-1272 - - anatase 3.7852 3.7852 9.5139 -

TiO2 PDF
21-1276 - - rutile 4.5933 4.5933 2.9592 -

CuO PDF
48-1548 - - tenorite 4.6883 3.4229 5.1319 -

Cu/TiO2_500 108 13.2 anatase 3.7852 3.7852 9.5077 53

Cu/TiO2_650 6.9 16.1
anatase 3.7841 3.7841 9.5141 94
rutile 4.5934 4.5934 2.9593 47

Cu/TiO2_800 3.7 25.1
rutile 4.5931 4.5931 2.9592 147

tenorite 4.6898 3.4205 5.1328 122

Cu/TiO2_950 2.7 28.2
rutile 4.5931 4.5931 2.9587 157

tenorite 4.6906 3.4193 5.1320 145

The average crystallite size of Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950
samples has been estimated from the XRD data using Scherrer’s formula [31]. The values pre-
sented in Table 1, indicated that the grain growth of anatase and rutile varies exponentially with
annealing temperature. Once formed at 650 ◦C, the rutile NPs grew very rapidly and coarsening
up to 157 nm at 950 ◦C (sample Cu/TiO2_950) [32]. At this temperature, an energetically stable
TiO2 polymorph is formed. We believed that substitutional Cu2+ doping plays an important
role in anatase to rutile phase transformation and NPs growth. Here, the transformation has
occurred at a higher temperature than that reported in the literature (400 ◦C for undoped
anatase [33].

3.2. Effect of Cu and Temperature on Surface Area (BET) and Porosity (BJH)

The BET/BJH analysis was performed to examine the surface area and porosity of
Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 samples. Table 1 shows that
increasing temperature led to a decrease in the surface area due to NPs growth. Sample
Cu/TiO2_500 with 100% anatase structure and smaller NP size shown the highest surface
area, followed by sample Cu/TiO2_650 (96.3% anatase and 3.76% rutile). During anneal-
ing at 800 and 950 ◦C, both samples Cu/TiO2_800 and Cu/TiO2_950 with almost pure
rutile structure (Figure 2), showing a tendency for decreasing the specific surface area.
An increasing the degree of agglomeration by the effect of coarsening occurring in these
materials. The specific surface area of sample Cu/TiO2_950 decreases to 2.7061 m2g−1

suggested by the largest size of rutile NPs and their faster growth compared to anatase.
According to the IUPAC nomenclature, materials with a pore size of 2–50 nm, are referring
to the mesoporous compounds. Therefore, annealing of lyophilized Cu/TiO2_N precursor
has led to the formation of mesoporous Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and
Cu/TiO2_950 materials. While surface area decreases, the pore radius of Cu/TiO2_500,
Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 samples increase probably due to elimina-
tion of chemically bonded water during annealing up to 950 ◦C (see Table 1). These results
are supported by TA/MS analysis presented in the Supplementary Materials (Figure S1).

3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Analysis (EDS)

The morphology and surface roughness changes in Cu/TiO2_500, Cu/TiO2_650,
Cu/TiO2_800 and Cu/TiO2_950 materials with annealing temperature are presented in a
set of SEM micrographs.
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3.3.1. SEM/EDS of Sample Cu/TiO2_500

Figure 3a is an SEM image of the Cu/TiO2_500 sample at low magnification confirmed
its 1D morphology. MRs with 10–20 µm in length and 1 µm in diameter are visible.
Figure 3b, which is a high magnification of the red boxed area in Figure 3a documents that
the 1D Cu/TiO2_500 MRs are composed of densely stacked thin layers with an outermost
layer keeping a very clean smooth surface.
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3.3.2. SEM/EDS of Sample Cu/TiO2_650

In Figure 4a,b are shown SEM images of a Cu/TiO2_650 sample at low and high
magnifications, respectively. The layered morphology of the MRs and their length were
preserved at annealing at 650 ◦C.

3.3.3. SEM/EDS of Sample Cu/TiO2_800

While annealing at 800 ◦C, the MRs morphology was preserved (Figure 5a), but the
surface of the Cu/TiO2_800 material was changed significantly. Figure 5b,c presented
the formation of spherical cavities with a size of 20–50 nm in diameter on the outer-
most layer attributed to water, NOx, COx, and SOx species releasing upon annealing (see
Figures S1–S10). Furthermore, newly wave-like bulge features can be observed in Figure
5c,d. We can suggest that changes in surface morphology can be provoked by anatase to
rutile transformation and tenorite (CuO) NCs segregation on the MRs surface (Figure 5d).
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3.3.4. SEM/EDS of Sample Cu/TiO2_950

It is evident that Cu/TiO2_950 MRs showed different shapes from Cu/TiO2_500,
Cu/TiO2_650, Cu/TiO2_800 MRs; they are constructed from 1D oriented close-packed
single crystals. One can observe that the Cu/TiO2_950 MRs are high-temperature stable
structures (Figure 6a,b) preserved 1D morphology even at such high temperatures.

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 25 
 

 

  
(a) (b) 

Figure 6. SEM images of the Cu/TiO2_950 sample, (a) Cu/TiO2_950 with 5000× magnification, (b) Cu/TiO2_950 with 8000× 
magnification. 

3.4. High-Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron 
Diffraction (SAED) 

An HRTEM and SAED study was applied to verify the structures of Cu/TiO2_500, 
Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 materials on an atomic level. 

3.4.1. HRTEM/SAED of Sample Cu/TiO2_500 
A bright filed image of Cu/TiO2_500 MRs taken by HRTEM demonstrated 1D mor-

phology (Figure 7a). The corresponding SAED pattern (Figure 7b) exhibited concentric 
diffraction rings with intermittent dots, implying that the Cu/TiO2_500 is polycrystalline 
material. The analysis of a ring pattern identified anatase TiO2 (JCPDS database PDF file 
21-1272) with crystal planes (101), (004), and (200) and relevant interplanar spacing of 
0.352 nm, 0.237 nm, and 0.189 nm. The indexing of the SAED pattern revealed no Cu con-
taining NCs or nanoclusters, suggesting that Cu is incorporated in anatase lattice. These 
results corroborated with XRD analysis. 

  
(a) (b) 

Figure 6. SEM images of the Cu/TiO2_950 sample, (a) Cu/TiO2_950 with 5000× magnification, (b) Cu/TiO2_950 with
8000×magnification.

EDS analysis (Table 2) confirmed the presence of oxygen, titanium, and copper with
average values in wt.% and at.%. It can be noted that the stoichiometric ratio of titanium
to oxygen in all annealed samples differs from the stoichiometric ratio of titanium diox-
ide (TiO2). The substitution of Cu2+ into the Ti4+ site in anatase could generate oxygen
vacancies (Vo) and titanium interstitials (Tii) due to charge balance. Also, the crystalliza-
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tion of CuO NCs at higher temperature could lead to significant non-stoichiometry in
Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950 materials.

Table 2. EDS analysis of annealed Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950.

Cu/TiO2_500 Cu/TiO2_650

Chemical
Element Wt [%] At [%] Chemical

Element Wt [%] At [%]

O K 37.3 64.2 O K 37.2 64.1
Ti K 60.9 35.0 Ti K 61.2 35.2
Cu K 1.7 0.7 Cu K 1.6 0.7

Cu/TiO2_800 Cu/TiO2_950

Chemical
Element Wt [%] At [%] Chemical

Element Wt [%] At [%]

O K 37.3 64.1 O K 35.4 62.2
Ti K 61.2 35.2 Ti K 63.2 37.2
Cu K 1.5 0.7 Cu K 1.4 0.6

3.4. High-Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron
Diffraction (SAED)

An HRTEM and SAED study was applied to verify the structures of Cu/TiO2_500,
Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 materials on an atomic level.

3.4.1. HRTEM/SAED of Sample Cu/TiO2_500

A bright filed image of Cu/TiO2_500 MRs taken by HRTEM demonstrated 1D mor-
phology (Figure 7a). The corresponding SAED pattern (Figure 7b) exhibited concentric
diffraction rings with intermittent dots, implying that the Cu/TiO2_500 is polycrystalline
material. The analysis of a ring pattern identified anatase TiO2 (JCPDS database PDF
file 21-1272) with crystal planes (101), (004), and (200) and relevant interplanar spacing
of 0.352 nm, 0.237 nm, and 0.189 nm. The indexing of the SAED pattern revealed no Cu
containing NCs or nanoclusters, suggesting that Cu is incorporated in anatase lattice. These
results corroborated with XRD analysis.
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3.4.2. HRTEM/SAED of Sample Cu/TiO2_650

Low magnification HRTEM image and SAED pattern of the Cu/TiO2_650 MRs is
shown in Figure 8a,b. According to the SAED pattern, it is an anatase phase of titanium
dioxide (JCPDS database PDF file 21-1272) with an identical structure as the Cu/TiO2_500
material. At higher magnification (Figure 8c,d) it is possible to observe well-crystallized
material formed by the spontaneous agglomeration of numerous closely packed anatase
NCs with a size of 10–15 nm into 1D oriented MRs. Even XRD analysis confirmed 3.73 wt.%
of rutile NCs in Cu/TiO2_650 material, we did not observe rutile diffraction spots by
indexing the Cu/TiO2_650 SAED pattern.
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3.4.3. HRTEM/SAED of Sample Cu/TiO2_800

Low magnification HRTEM image and SAED pattern of the Cu/TiO2_800 material
are shown in Figure 9a,b. One can see elongated close-packed NCs and spot SEAD pattern
confirmed that annealing at 800 ◦C led to larger and still 1D oriented NCs. Here, we
indexed crystal planes (110), corresponding to the interplanar spacing of 0.324 nm of
rutile TiO2 (JCPDS database PDF file 21-1276). The HRTEM revealed that there are many
nanocavities inside the NCs building the MRs, visible at higher magnification (Figure 9c).
Nanocavities appeared as white spots at the surface of Cu/TiO2_800 MRs. Similar findings
on the nanocavities detected by HRTEM were reported by [34,35]. Additionally, here we
can detect not only spherical-shaped nanocavities (see SEM section), but also hexagon-
shaped nanocavities (Figure 9c,d), which could be formed due to the six-fold symmetry in
ice crystals grown/melting from water vapor upon lyophilization/annealing processes.
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3.4.4. HRTEM/SAED of Sample Cu/TiO2_950

It is evident from the HRTEM image (Figure 10a) that Cu/TiO2_950 MRs show 1D mor-
phology, but with different nanocavity sizes and distribution compared with Cu/TiO2_800.
The higher annealing temperature generated larger nanocavities at the surface that can
be explained by the enhanced coarsening of ice crystals in Cu/TiO2_950 due to freezing–
thaw cycling and annealing. The interpretation normally set up forward the dissolution–
regrowth mechanism: first, the smallest ice particles are dissolved upon heating, leading to
fewer nuclei. Second, upon lyophilization, the amount of dissolved ice crystals is regrown
on the remaining nuclei, leading to larger particles. The larger ice particle becomes soft and
liquid with increasing temperature up to 950 ◦C, and further, evaporate leaving behind
bigger cavities on the surface [36]. Furthermore, one can observe a small dark spot on the
surface of Cu/TiO2_950 MRs (marked with the red arrow in Figure 10a). We can speculate
that this is CuO crystallized during annealing and segregated on the surface of rutile
grains. The precipitation of tenorite (CuO) on the surface of Cu/TiO2_950 MRs can be
explained as a change of an inhomogeneous structure over the temperature in TiO2-CuO
solid solution. The process involves matter relocation, i.e., crystallization of small CuO
NCs on the surface of larger TiO2 NCs. This process can be explained based on the Oswald
ripening phenomenon [37]. The IUPAC in 2007 recommended the definition of Ostwald
ripening as the “dissolution of small crystals or soil particles and the redeposition of the
dissolved species on the surfaces of larger crystals or soil particles.” [38]. The ripening
process occurs in Cu/TiO2_950 MRs because larger particles TiO2 NPs become spatially
quite close to each other which leads to the coarsening and rise of their crystallite’s size
during annealing (Table 1). Also, such a process is more energetically favored since giving
rise to an apparent higher solubility for the smaller NCs to segregate on the surface of the
biggest one [39].

SEAD of the Cu/TiO2_950 MRs (Figure 10b) revealed a spot diffraction pattern. It
should be pointed out that the presence of strong and well-defined spots is due to the
increase in rutile grain size to the dimensions of 300 × 450 nm single crystals. The structure
of rutile NC (Figure 10c) taken from the red boxed area in Figure 10a, fitted very well
the tabulated rutile (JCPDS database PDF file 21-1276). Also, a magnified part (inset
in Figure 10d) of the red marked region, revealing the atomic resolution image with
nanooctahedra atomic arrangement, which is characteristic of stable rutile TiO2 structure.
The HRTEM results of Cu/TiO2_950 are consistent with XRD analysis. The mean grain size
in Cu/TiO2_950 material is closely related to the amount of rutile phase; the more rutile
percentage found in Cu/TiO2_950, the bigger the mean grain size was estimated (Table 1,
Figure 10a).

3.5. Raman Spectroscopy

As revealed by XRD, the Cu/TiO2_N is highly amorphous. The Raman spectrum of the
sample shows broad convolution bands, typical for highly unoriented titania (Figure 11).
The bands, marked by an asterisk were recognized in the TiO2(B) structures [40]. In the
samples, annealed at 500 and 650 ◦C, five bands representing anatase vibration modes
(3Eg + 2B1g + A1g) appear and confirm the XRD results. In the high-temperature samples
(800 and 950 ◦C), the rutile structure has been proved by bands at 609, 444, and 243 cm−1.
On the other hand, tenorite CuO observed as weak reflections in the XRD are not visible at
expected 295 and 345 cm−1 due to low concentration of copper (Figure 11).
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3.6. Fourier-Transform Infrared Spectroscopy

Figure 12 shows the infrared spectra of the examined samples annealed at tempera-
tures of 500, 650, 800, and 950 ◦C, and nonannealed Cu/TiO2_N also. In the area above the
wavenumber of 3000 cm−1, a wide absorption band with maxima at 3385 cm−1 is visible,
which corresponds to the stretching vibration of water-bound on the surface of substances.
Following the stretching vibration, the samples show a bending vibration at 1632 cm−1.
The band visible at 3170 cm−1 belongs to the stretching vibration of the ammonium cation
and the value of 1400 cm−1 belongs to its bending vibration, which is typical of ammonium
salts. The presence of ammonium ions is related to the use of aqueous ammonia solution
during the preparation of the default sample. The band position is also typical of nitrate
anion, having weaker bands at 1050 and 830 cm−1, visible as shoulders in the as-prepared
sample. Annealing of the Cu/TiO2_N leads to the disappearance of these bands due to the
decomposition of ammonium nitrate. In the as-prepared sample, the formation of Ti–O,
Ti–OH, and Ti–O–Ti bonds is demonstrated by a broadband at about 555 cm−1. In the
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annealed Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 MRs, two bands
corresponding to Ti–O and Ti–O–Ti appear (620 and 470 cm−1 in the anatase structures,
660 and 500 cm−1 in the rutile structures).
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3.7. Optical Spectroscopy Results
3.7.1. UV-Visible Analysis

UV-visible studies and direct bandgap estimation of the Cu/TiO2_N, Cu/TiO2_500,
Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950 materials are shown in Figure 13a–h. Also,
the results of the pristine 1D TiO2 MRs prepared by the same method and standard TiO2-
P25 are presented for comparison.
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Figure 13. Diffuse reflectance spectra and band gaps for pristine TiO2, standard TiO2_P25,
Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950.

All annealed materials show a clear red shift and absorption in the visible region. By
increasing the temperature, considerable bandgap narrowing is observed as depicted in
Figure 13e–h. The estimated band gap of pristine TiO2 was found to be 3.50 eV, whereas
the band-gap of Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950 is 3.24 eV,
3.21 eV, 3.06 and 3.06 eV, respectively. One plausible explanation for the bandgap narrow-
ing could be the presence of Tii defects in TiO2 NCs [41]. It is reported that the formation
of Tii is generally due to the preparation conditions and annealing under air [42]. Doping
with 2 at.% Cu atom substitutes some of the Ti sites in the TiO2 lattice, which could lead to
a strong d–p coupling between Cu and O, and to O 2p orbital upward movement, resulting
in a reduction of the bandgap. Further, Cu 3d orbital could form an impurity band above
the TiO2 valence band causes a reduction in the overall bandgap [43]. Since annealing
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at a temperature higher than that of 650 ◦C promoted the rutile polymorph formation,
there is a high chance of having a defect contributed to the Eg as a result of structural
transformation. Theoretical studies on metal-doped TiO2 predict also the formation of an
empty band very close to the conduction band due to high vacancy concentrations [44].
From the absorption spectra, it is evident that the absorption edge of the TiO2_P25 material
is near 347 nm, whereas the redshift associated with the Cu doping in Cu/TiO2_500 and
Cu/TiO2_650 MRs may arise as a result of surface trap centers generated by Vo defect sites
after Cu doping. Our results obtained by EDS analysis are in line with this observation.
Recall, that Cu/TiO2_800 and Cu/TiO2_950 materials are mixtures with 98 wt.% of rutile
and a small amount of CuO (see Table 1). To our knowledge, there are no publications
have been reported on the optical properties of photocatalysts with such composition and
structure. Both materials have shown a bandgap of 3.06 eV, which can be related to the
different strategies of how the conduction-valence band edge changed from anatase to
rutile structure. It is worth mentioning that CuO is a well-known p-type semiconductor
owing to suitable direct bandgap energy (2.17 eV) and an optical gap (2.62 eV) predicting its
application as a promising photocatalyst for visible light [43]. However, the photocatalytic
efficiency of CuO has been low because of its even-parity symmetry of the conduction and
valence band minimum states that prohibit the band edge radiative transition [45,46].

3.7.2. PEC Water Splitting

Photocatalytic activity of the synthesized Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800,
and Cu/TiO2_950 MRs was s quantitatively examined for H2 generation by PEC water
splitting. Figure 14 shows the effect of Cu doping on photocatalytic activity under solar light
irradiation. It is evident, that even a significant reduction of bandgaps, the Cu/TiO2_500,
Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 MRs did not satisfy the criteria for efficient
photocatalysts and show weak H2 generation from H2O splitting.

PEC experiments were used to evaluate both the electrochemical (in the dark) and
photoelectrochemical (under light irradiation) behavior of the prepared layers on FTO elec-
trodes under the same experimental conditions. During the PEC experiment, the sample
stabilization test was first performed, which is consisted of charging/discharging it in the
dark This was followed by the experiment itself, where the sample was illuminated by a
lamp that simulated the spectrum of the solar radiation with intensity 0.104 W/cm2. A
dark test was then also performed. The photoactivity of the sample is then determined by
comparing the test in the dark and under solar light. The voltammograms are shown in
Figure 14, where two photoelectrochemical curves, namely the 2nd and 7th cycle are de-
picted. Higher cycles (8th–12th) show similar curves which means that system is relatively
stable. The dark electrochemical curves do not show major differences and therefore only
one typical curve is demonstrated.

The electrochemical curves are dominated by a peak at−0.51 V vs. Ag/AgCl reference
electrode (−0.360 V against RHE), which is typical for oxidation Cu0→ Cu+ in the oxidation
part of the curves. The reduction parts of the curves show broad reduction peaks between
−0.4 and −0.6 V. The minima of these reduction peaks are shifted to the higher potential in
comparison with the oxidation peak, which means that the oxidation/reduction process
is not fully reversible. The PEC experiments were repeated 12 times and the curves were
observed to shift due to oxidation/reduction processes in the samples. Under −0.6 V,
evolving of gaseous hydrogen was observed on the platinum counter electrode. The
highest activity was observed with the sample annealed at 650 ◦C (Cu/TiO2_650). In
the corresponding voltammograms we observe the highest difference between dark and
light curves, reaching about 1 mA. In the Cu/TiO2_650 sample, the lowest degree of
Cu oxidation/reduction is proved by the weakest corresponding Cu/Cu+ peaks. In this
sample, the photoelectrochemical activity is even improving with several cycles, while
other samples show slowly decreasing photoactivity between 7th and 12th cycles. With
increasing voltage, the current approaches zero, and voltages above +0.8 V induce releasing
particles from the FTO substrates and damaging of the layers. Preparation of highly
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adhesive doped TiO2 films can solve loose binding between the substrate surface and
TiO2. Due to this effect, there is not possible to achieve a higher potential to reversibly
reduce copper oxides. The photoactivity of samples Cu/TiO2_500 and Cu/TiO2_800 is
much weaker in comparison with Cu/TiO2_650 and it is gradually decreasing with the
rising number of the PEC cycles. Except for non-reversible oxidation of Cu, low activity
of the samples can be explained by (a) the rapid recombination of e− and h+ due to the
occupancy of active surface sites by the Cu atoms, (b) the surface nanocavities acting as
point defects, which interrupt charge carrier transportation (instead of providing multiple
reflections of the adsorbed light) and (c) photocorrosion suffering when materials are
in contact with water (although that Cu doping manipulated the electronic structure
of Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and Cu/TiO2_950 materials). In recently
published articles [47,48] the authors discussed how CuO based materials can be utilized for
PEC hydrogen evolution: the reduction potential of p-type low bandgap CuO in aqueous
electrolyte lies above the reduction potential of wateFr. This implies the possibility of
a competitive reduction of water and the photoabsorber itself, leading to the formation
of reduced copper species and metallic copper, and consequently to a significant change
of the morphology of the photoabsorber due to photocorrosion. The abovementioned
study reveals that the transformations taking place in copper (II) oxide electrodes, with
special attention to the role of photo-induced electrons, are the most important points,
which could be considered for a various copper amount (% of the Cu dopant). Yoong [7]
reported that Cu dopant concentration and size range of Cu NPs (20 and 110 nm) are
the main factors affecting the properties of Cu-doped TiO2 photocatalysts for hydrogen
production under UV-Vis light irradiation. Among the dopant loading ranging from
2–15 wt.% on Degussa P25 TiO2, and annealing from 300 to 500 ◦C, it was observed that
sample 10 wt.% Cu/TiO2/300 ◦C yielded the maximum hydrogen generation. In contrast
to this work, Bandara et al [49] reported a copper loading of 7 wt.% into TiO2 to be the best
photocatalyst for the reduction of H2O under sacrificial conditions (CH3OH scavenger for
photoinduced holes). The amount of CuO and its crystalline structure were found to be
crucial for the catalytic activity since the negative shift in the Fermi level was caused by
an accumulation of excess electrons in CuO. It is worth mentioning that the concentration
of Cu dopant strongly influenced the oxidation state of Cu species (Cu0, Cu2O, CuO),
the rate of rutilization process, and photocatalytic properties of the Cu-TiO2 system. A
report by Song et al. [50] documented that the evolution of Cu0 toward Cu1+ and Cu2+

progressively lead to a lowering in photocatalytic activity. Colon et al. [51] observed that
0.5 at.% Cu loading and annealing up to 600 ◦C led to the highest photocatalytic activity
due to prevailing anatase phase, high surface area, and copper ions in form of Cu1+ as
photoactive homogeneously dispersed Cu2O species into the anatase matrix. Stabilized
Cu2O NPs are responsible for the improved electron transfer to the surface oxygen and
further photocatalytic activity. According to XRD analysis, TiO2 systems with 1 at.% Cu
showed lower anatase content; when Cu concentration is higher than that of 0.5 at.% then
accelerated rutile microdomains are observed. Also, 1 at.% Cu content can generate CuO
species; the existence of Cu2+ was considered as electron/hole recombination center, which
progressively may deteriorate the photoactivity. Therefore, careful Cu amount loading and
controlled Cu2+/Cu1+ redox reactions can adjust the satellite CuO/Cu2O structures, which
participated in TiO2 photoreactivity [9].

We could suggest that 2 at.% Cu doping is not the optimum amount in TiO2 lattice
to produce enhanced H2 generation for PEC water splitting. Modification of Cu dopant
concentration, and involving of appropriate scavenger for photoinduced holes, maybe a
more promising strategy for utilization of Cu-modified 1DTiO2 materials in PEC water
splitting processes.
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Figure 14. Results of PEC water splitting for samples Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800 and
Cu/TiO2_950. Black lines (2nd photoelectrochemical cycle) and red ones (7th photoelectrochemical
cycle) were obtained for the experiments carried out under irradiation. Green lines represent the
dark electrochemical experiments.

4. Conclusions

We have developed an original and green lyophilization based method for the synthe-
sis of anatase TiO2 MRs doped with 2 wt.% Cu. We used a nitrogen-containing Cu(NO3)2
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reagent as a source of Cu, reported to affect the photocatalytic activity of TiO2 [52]. A
series of new materials with MRs morphology denoted as Cu/TiO2_500, Cu/TiO2_650,
Cu/TiO2_800, and Cu/TiO2_950 were obtained after annealing at 500, 650, 800, and 950 ◦C
from lyophilized 1DTiO2 MR precursor. We have found that the photocatalytic activity of
Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 MRs is strongly dependent
on their phase structure, crystallite size, specific surface areas, and pore structure. The
substitution of 2 at.% Ti4+ with Cu2+ ions has a substantial influence on the materials’
optical and electronic properties. The optical bandgap of Cu/TiO2_500, Cu/TiO2_650,
Cu/TiO2_800 and Cu/TiO2_950 MRs is reduced significantly. All materials show a clear
red shift and absorption in the visible region. Although Cu doping modified the electronic
structure of the Cu/TiO2_500, Cu/TiO2_650, Cu/TiO2_800, and Cu/TiO2_950 materials,
all of them appeared slightly active during the PEC water splitting experiments. The
PEC water splitting activity is decreasing in the order: Cu/TiO2_650 >> Cu/TiO2_500
> Cu/TiO2_800 >> Cu/TiO2_950. The low activity can be explained by (a) the rapid re-
combination of e− and h+ due to the occupancy of active surface sites by the Cu atoms,
deteriorating the chance of photoexcited e− and h+ to participate in surface chemical reac-
tions, (b) photocorrosion suffering due to contact with water [53] (c) nanocavities acting as
recombination charge centers instead to confine light into their volume and (d) negligible
specific surface area SBET (reduced from 10.8 to 2.7 m2g−1) with the rise of temperature,
even preserved mesoporous structure.

We presented a detailed study on the surface properties of Cu-doped 1DTiO2 MRs
to provide a better understanding of their chemical and physical properties and photocat-
alytic activity. In the future, our attention will be focused on the synthetic conditions for
producing anatase doping with less than 2 wt.% Cu. Some computational works can also
be provided due to predict the preparation conditions leading to an efficient photocatalyst,
combining n-type TiO2 and p-type CuO, with eventual n-p junction conductivity.
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