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Simple Summary: Non-coding RNAs are a type of genetic material that doesn’t make protein, but
performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and
resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs
may provide alterative treatment options and potentially overcome drug resistance. Major types of
non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific
studies have shown that these form a major part of the human genome, and play key roles in altering
gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent
evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling
response to DNA damage. In this review, we explore how different types of non-coding RNA interact
to control cell DNA damage responses, and how this knowledge may be used to design better prostate
cancer treatments and tests.

Abstract: It is increasingly appreciated that transcripts derived from non-coding parts of the human
genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of
biological processes both in normal physiology and disease. Their dysregulation during tumourigen-
esis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer
(PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in
men, continues to pose a major public health problem. In particular, survival of men with metastatic
disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic
instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment
options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and
DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to
a widespread and biologically-relevant regulatory network of interactions between lncRNAs and
miRNAs, with implications for major biological and pathological processes. This review summarises
the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa
DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their
therapeutic promise for the clinical management of PCa.

Keywords: DNA damage response; non-coding RNA; microRNA; long non-coding RNA; DNA
damage; DNA repair; prostate cancer

1. Introduction
1.1. Diagnosis and Treatment of Prostate Cancer

Prostate cancer (PCa) is the most prevalent male cancer in the Western world and
the second most frequent malignancy in men worldwide [1,2]. An array of treatment
options including prostatectomy, radiotherapy (RT), ablative therapies and chemotherapy,
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alongside active surveillance for clinically-insignificant disease, contribute to favourable
prognosis of early-stage, organ-confined PCa [3]. The androgen receptor (AR) is a key driver
of PCa development and progression. Consequently, androgen deprivation therapy (ADT),
which blocks androgen synthesis and/or inhibits AR action, remains the mainstay treatment
of localised or locally-advanced intermediate/high-risk and recurrent disease. This has
also been applied in the adjuvant/neo-adjuvant setting. However, resistance to ADT occurs
almost inevitably, leading to lethal castration-resistant PCa (CRPC), in which AR continues
to drive tumour growth in the absence of circulating androgens. In addition, patient
presentation with de novo ADT-resistance or de novo metastatic disease can be observed [4].
Treatment options in all cases are limited, but second-generation anti-androgens/androgen-
synthesis inhibitors such as enzalutamide and abiraterone respectively, have been shown
to increase survival [5–7]. Their efficacy has resulted in their approval for use at earlier
disease stages: abiraterone plus prednisone in non-metastatic CRPC [8], and enzalutamide
for low-volume disease or prior to docetaxel treatment in metastatic hormone-sensitive
PCa [9]. Most of the clinically approved interventions for PCa are designed around protein
coding constituents of the human genome, and these treatments inevitably culminate in
resistance. Hence, there is a need to explore novel pathways in disease management.

1.2. The Non-Coding Genome—The ‘Dark Matter’ of Gene Regulation

Next-generation sequencing (NGS) has revealed that whilst 70% of the human genome
is actively-transcribed, only 1–2% is protein-coding. However, almost all drug-discovery
efforts to date are within the protein-coding space [10]. Thus, non-coding RNAs (ncRNAs),
the major constituent of the human genome, and its capacity as drug targets to treat human
pathologies, has largely been ignored. ncRNAs comprise microRNA (miRNA), long non-
coding RNA (lncRNA), and other small RNA molecules. Since the discovery of the first
miRNA (lin-4) in Caenorhabditis elegans in 1993 [11] and the first lncRNA (H19) in 1990 [12],
the importance of the non-coding transcriptome in regulating gene expression, determining
cell fate and driving pathogenic processes has become increasingly apparent. ncRNAs are
also emerging as modulators of DNA damage response (DDR) [13–16]. Given the current fo-
cus on DDR pathway components as targets for PCa drug development, here we provide an
up-to-date summary of the mechanisms and pathogenic consequences of lncRNA:miRNA
crosstalk in PCa, with a specific focus on DDR. We also discuss the promises and challenges
of using miRNA and lncRNA as PCa therapeutic targets and biomarkers.

2. MicroRNA Biogenesis and Function

The canonical miRNA biogenesis pathway starts with transcription of long mono-
or polycistronic primary transcripts from their genes, named pri-miRNAs. Pri-miRNAs
are further processed into precursor miRNAs (pre-miRNAs), 70-nucleotide-long hairpin
structures, in the nucleus by the ribonuclease III enzyme, Drosha and its binding partner,
RNA binding protein DiGeorge Syndrome Critical Region 8 (DGCR8) [17]. Pre-miRNAs
are exported to the cytoplasm by an exportin (XPO5)/RanGTP complex and processed
by the RNase III endonuclease Dicer to produce a ~22 nucleotide-long miRNA duplex.
Duplex unwinding leads to loading of the mature miR (either 5p or 3p strand) onto the
Argonaute (AGO)-containing RNA-induced silencing complex (RISC). AGO proteins coor-
dinate downstream target gene silencing through interaction with other protein factors such
as deadenylases, nucleases and translation factors [18]. The mechanism of miRNA regula-
tion of gene expression at post-transcriptional level is through complementary base pairing
of the miR “seed sequence” to the target RNA, most frequently in the 3′-untranslated region
(3′-UTR) although 5′-UTR, coding sequence, and promoter binding can also occur [19]. This
usually leads to translational suppression or transcript degradation mediated by RISC [20].
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3. Long Non-Coding RNA Biogenesis and Function

LncRNAs are defined as RNA transcripts longer than 200 nucleotides and lacking
coding potential, although some lncRNAs have been found to contain short open reading
frames (sORF), which can encode micropeptides or small proteins [21]. Similar to mRNA,
canonical biogenesis of lncRNAs involves transcription by RNA polymerase II [22]; some
lncRNAs are then spliced, with the majority 5′ capped and 3′ polyadenylated [23]. Dif-
ferent classes of lncRNAs are transcribed from different DNA elements; based on their
transcriptional origin, they can be sub-categorized into sense, antisense, intronic, intergenic,
bidirectional, promoter-associated and enhancer-associated lncRNAs [24,25]. Most lncR-
NAs are poorly conserved between species and expressed at relatively low basal levels
compared with protein-coding mRNAs. LncRNAs also show tissue- or cell type-specific
expression and diverse subcellular distribution patterns, many being primarily nuclear, in
contrast to exclusively cytosolic mRNAs [26–28]. Subcellular localization of lncRNAs is a
key determinant of their biological functions and regulatory mechanisms. Nuclear, cyto-
plasmic and mixed distribution patterns have been observed. Importantly, understanding
the localization of lncRNA is critical in the choice of method for manipulatinge lncRNA
levels in vitro or in vivo, which is a critical step in the development of lncRNA-based
therapeutics [29]. In general, nuclear lncRNAs function as modulators of gene expression
at the epigenetic and transcriptional level in cis or trans through a number of mechanisms,
including as signals, decoys, guides, scaffolds and enhancers [30].

As signals, lncRNAs regulate transcriptional activity or gene expression. For exam-
ple, the (androgen-downregulated) lncRNA HOTAIR can bind to the transcription factor
androgen receptor (AR), to block its interaction with the E3 ubiquitin ligase MDM2 and
prevent AR ubiquitination and protein degradation [31]. As decoys, lncRNAs can bind
transcription factors or regulatory proteins and displace them from DNA binding sites.
For instance, the lncRNA SChLAP1 (second chromosome locus associated with prostate-1)
directly binds to SNF, preventing the SWI/SNF complex from binding to target promoters
and leading to repression of target gene expression [32]. As guides, lncRNA can recruit or
relocalise regulation factors to activate or repress gene expression either in “cis” or “trans”.
An example is lncRNA HOXD-AS1, which recruits WDR5, a component of MLL1 complex,
to directly interact with the promoter region of target genes and promote gene expression
by mediating H3K4me3 [33]. As scaffolds, lncRNAs can act as adaptors, bringing binding
partner proteins within close proximity to aid the formation of Ribonucleoprotein com-
plexes. An example is the interaction of lncRNA NORAD with the DNA-damage response
component, RBMX, to assemble topoisomerase complex NARC1, which contributes to the
maintenance of genomic stability [34] (Figure 1).

Cytoplasmic lncRNAs function principally to modulate mRNA stability and transla-
tion. One of the important ways in which they achieve this is as competitive endogenous
RNAs (ceRNAs) [35], which can impair miRNA activity through sequestration, thereby
derepressing other miRNA targets [36,37] and regulating a wide range of biological pro-
cesses [38].
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formation of Ribonucleoprotein complexes (e.g., lncRNA NORAD). 

4. LncRNA-miRNA Interactions 

The regulatory mechanisms and functions of non-coding transcripts are increasingly 

revealing novel insight into the physiological and pathological processes of different dis-

eases, including cancer [39–42]. RNA-RNA interactions exert regulatory functions within 

Figure 1. Schematic diagram of the molecular mechanisms of four lncRNA archetypes and their
examples. (A) as signals, lncRNAs regulate transcriptional activity or gene expression (e.g., lncRNA
HOTAIR). (B) as decoys, lncRNAs can bind transcription factors or regulatory proteins and displace
them from DNA binding sites (e.g., lncRNA SChLAP1). (C) as sponges, lncRNAs can function as
miRNA sponges and compete for miRNA binding to its target mRNA expression (e.g., lncRNA
TTTY15). (D) as guides, lncRNA can recruit or relocalise regulation factors to activate or repress
gene expression either in “cis” or “trans”. (e.g., lncRNA HOXD-AS1). (E) as scaffolds, lncRNAs can
act as adaptors, bringing binding partner proteins within close proximity to aid the formation of
Ribonucleoprotein complexes (e.g., lncRNA NORAD).

4. LncRNA-miRNA Interactions

The regulatory mechanisms and functions of non-coding transcripts are increasingly
revealing novel insight into the physiological and pathological processes of different dis-
eases, including cancer [39–42]. RNA-RNA interactions exert regulatory functions within
complex cellular networks, fine-tuning gene activity and permitting exquisitely-controlled
environmental responses [43].

One well-characterised regulatory RNA-RNA interaction is miRNA targeting. Almost
all RNA species, including small non-coding RNAs, pseudogenes, lncRNAs and circular
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RNA (circRNAs) contain miRNA recognition elements (MREs) that determine RISC-bound
miRNA association and, in most cases, target inhibition. mRNAs and lncRNAs frequently
contain multiple MREs, and each miR targets potentially hundreds of transcripts. An
important corollary of these dynamic regulatory networks of interactions is the ability
of lncRNA to act as molecular decoys or sponges to regulate miRNA activity, and by
extension, the ability of different miRNA target transcript MREs to ‘compete’ for miRNA
binding, resulting in de-repression of other targets [44–47]. This phenomenon, dubbed
the ‘competitive endogenous RNA (ceRNA)’ hypothesis, was first described by Poliseno
et al., who showed that certain pseudogene transcripts are biologically active units with
miRNA-decoy function; retaining many miRNA binding sites, these can competitively
bind with many miRNAs, acting as “perfect decoys” for their ancestral genes [48]. This
decoy mechanism likely extends beyond pseudogenes to include other long noncoding
and protein-coding transcripts. Indeed, Salmena et al. later demonstrated that lncRNAs,
mRNAs and pseudogenes can act as ceRNAs within large-scale regulatory networks, using
MREs as regulation ‘language’ [44]. The ceRNA phenomenon is exploited in the use of miR
‘sponges’ in functional investigations; artificial transcripts containing dozens of binding
sites for the same miRNA in tandem under the control of a strong promoter are transfected
into cells to effectively reduce the cellular pool of miRNAs [49].

The effectiveness of lncRNAs as ceRNA will be dependent on abundance of miRNA
and its target transcripts, their subcellular localization, levels of specific RNA binding
proteins (RBPs), as well as the relative binding affinities of the miRNA for different MREs.
Since many lncRNAs are expressed at low levels, this may negatively impact their ceRNA
capacity [39]. However, their length means that they could potentially ‘fine-tune’ activity
of multiple miRNAs (Figure 2).
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Figure 2. LncRNAs function as competing endogenous RNAs (ceRNAs) to sponge miRNAs.
(A) miRNAs bind to the 3′UTR of their target mRNAs to block translation; (B) (1) LncRNAs display
complete or partial complementary with miRNAs; (2) LncRNA containing multiple MREs can se-
quester multiple miRNAs; (3) The increased expression of lncRNAs leads to more binding to miRNAs,
resulting in fewer miRNA molecules to bind to other target mRNAs; (4) Different miRNAs bind to
lncRNA through same MREs, leading to competition for binding sites. (C) As lncRNAs function as
ceRNA to sequester miRNAs away from other target RNA, translation of targets is derepressed.
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5. LncRNA as Oncogenic ceRNAs and MiR Sponges

The majority of described lncRNAs in PCa have been experimentally demonstrated
to function as oncogenes, often growth-promoting and increased in prostate tumours
compared to benign tissue, here the best characterised are summarised.

The well-known PCa tumour suppressor gene, PTEN, is regulated by ceRNA activity
of its non-coding pseudogene, PTENP1, which competes for binding of regulatory miR-
NAs such as miR-19b, miR-21, miR-26a and miR-214 [48]. Another example is PlncRNA-
1 (prostate cancer-up-regulated long noncoding RNA), which is increased in PCa and
regulated by AR. Functionally, PlncRNA-1 upregulation induces PCa cell proliferation
and epithelial-mesenchymal transition and represses apoptosis [50–52]. Mechanically,
PlncRNA-1 functions as ceRNA to sponge AR-targeting miRNAs, miR-34c and miR-297,
in both in vitro and LNCaP xenograft in vivo models [52]. Another proposed mechanism
by which the above-mentioned SChLAP1 promotes aggressive PCa growth is by acting as
ceRNA for miR-198, resulting in activation of the MAPK1 signalling pathway [53]. Further
PCa-relevant interactions are shown in Table 1.

The lncRNA MALAT1, shows dysregulated expression across multiple cancers, includ-
ing lung cancer [54] and breast cancer [55]. Similarly, in PCa, MALAT1 shows upregulation
during cancer progression and is positively correlated with PSA, Gleason score and tumour
stage [56]. Silencing of MALAT1 inhibited PCa cell proliferation, migration, invasion,
epithelial-mesenchymal transition (EMT) and promoted cell apoptosis, even in xenografts
models [57–59]. Of note, MALAT1 expression levels were increased in docetaxel (DTX)-
resistant AR-negative PC3 and DU-145 cells, and DTX-resistant PCa patient tumours, and
its overexpression enhanced DTX-chemoresistance in vivo. Mechanically, MALAT1 was
shown to sponge miR-145-5p to derepress the miR-145-5p target, AKAP12. Both miR-145-
5p overexpression and AKAP12 silencing rescued effects of MALAT1 on tumourigenic
processes and DTX resistance [60]. MALAT1 has also been shown to act as ceRNA for
miR-1, derepressing its oncogenic target KRAS in AR-negative PCa cells, and CORO1C in
AR-positive PCa cells, respectively [57]. Importantly, there are links between oncogenic AR
activity and MALAT1 in PCa: dihydrotestosterone (DHT) stimulation significantly induced
MALAT1 in vitro, and MALAT1 was shown to act as a ceRNA for AR through competing
for AR-targeting miR-320b. In vivo, MALAT1 knockdown suppressed tumorigenic and
metastatic capacity of PCa xenografts [59]. MALAT1 also shows promise as a diagnostic
urinary biomarker of PCa [56,59,61]. The relative importance of MALAT1’s diverse modes
of action are difficult to dissect, but since it has been shown to be one of the most frequently
miR-associated transcripts in PCa (AGO-PAR-CLIP-seq identifies interactions with 600 dif-
ferent miRNAs in PCa cell lines) [62], its potential for therapeutic targeting may be limited
by its complex interactome and anticipated broad effects of inhibition.

Expression of another lncRNA with oncogenic properties, nuclear-enriched abundant
transcript 1 (NEAT1), was significantly increased in PCa tumour versus benign tissues
and elevated in DTX-resistant versus-responsive tumour samples [63,64]. Promotion of
chemo-resistance is achieved, at least in-part, through NEAT1 function as a ceRNA to
derepress ASCL4, RET and HMAG1 by binding miR-34a-5p, miR-204-5p and miR-98-5p,
respectively [63,64].

LncRNA urothelial carcinoma associated 1 (UCA1) was first identified in bladder
cancer [65]. However, UCA1 is also positively correlated with Gleason score, advanced
TNM (tumour/node/metastasis) stage and shorter overall survival of PCa patients [66,67].
Similar in its mode of action to MALAT1 and NEAT1, LncRNA UCA1 upregulates cancer-
promoting Sirt1, CXCR4, and activating transcription factor-2 (ATF-2) through sponging
of miR-204. Silencing of UCA1 inhibited PCa cell proliferation, migration and invasion
and promoted chemo-sensitivity in vitro and tumour growth in vivo [66,68,69].In addition,
UCA1 sponges tumour-suppressive, anti-proliferative miR-143, leading to derepression
of its oncogenic target, MYO6 in PCa [70]. It also regulates PCa cell apoptosis is through
depression of apoptotic regulator, Bcl-2 by sponging Bcl-2-targeting miR-184 [71].
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LncRNA Taurine-upregulated gene 1 (TUG1) was first discovered for its essentiality
in the developing rodent retina [72]. Its dysregulation has been reported to have both
oncogenic and tumour suppressive activity, depending on the context [73]. In PCa, TUG1
expression is increased in cancerous versus benign prostate tissue, and high TUG1 ex-
pression is correlated with reduced survival and poor PCa prognosis [74,75]. TUG1 was
shown to act as ceRNA to sponge miR-26a and miR-496, promoting PCa cell proliferation,
migration, invasion and EMT [76,77]. Its silencing repressed DU145 xenograft tumour
growth and enhanced radiosensitivity in vivo by upregulating miR-496 and inactivating
Wnt/b-catenin signalling through inhibiting expression of β-catenin, cyclin D1 and c-myc.
In addition, miR-496 inhibition alleviated the inhibitory effects of TUG1 knockdown on
repression of β-catenin, cyclin D1 and c-myc expression [76]. It has also been shown that
TUG1 enhances SMC1A expression via sponging miR-139-5p [75].

PCA3 is highly-expressed, PCa-specific lncRNA, that can activate AR signalling to
promote cell survival. It has also been approved by the Food and Drug Administration
(FDA) in the USA as a diagnostic biomarker of PCa [78]. Microarray analysis identified
PCA3 is increased in PCa patient tumours compared to adjacent benign tissues. In order
to understand molecular mechanisms of PCA3 action, transcription factor (TF) promoter
binding profiling arrays were carried out, identifying Snail as a direct promoter-binding
activator of PCA3 expression. This is important as Snail is elevated in mCRPC and is
required for hypoxia-induced PCa cell invasion and may be an informative biomarker
of recurrence [79]. In a similar mechanism of action to the above lncRNAs, PCA3 act as
ceRNA to sponge miR-1261 and derepress PRKD3 (protein kinase D3) to promote invasion
and migration in PCa [79] shRNA-mediated PCA3 knockdown effectively repressed the
cell proliferation, invasion, migration and induced autophagy in vitro, and inhibited the
tumour growth of LNCaP xenografts in vivo [79]. Bioinformatic analysis and RNA im-
munoprecipitation identified miR-218-5p binding sites within PCA3 in PCa. miR-218-5p:
PCA3 binding, resulted in loss of miR-218-5p tumour suppressor activity [80–83]. Indeed,
silencing of PCA3 inhibited cell proliferation and migration, and induced apoptosis through
increased miR-218-5p activity. It is suggested that miR-218-5p tumour suppressive effects
are mediated via targeting of HMGB1. In vivo, shRNA mediated knockdown of PCA3
significantly inhibited tumour growth of PC3 xenografts and reversed the oncogenic effect
of antagomir inhibition of miR-218-5p. Thus, PCA3 acts as a sponge of miR-218-5p and
regulates HMGB1 to facilitate PCa progression [84].

Also functioning as a ceRNA through miR-218-5p binding is the lncRNA, lncAPP
(lncRNA activated in PCa progression), identified from RNA-seq analysis of 65 prostate
tumours and matched adjacent normal tissues. LncAPP is elevated in PCa tissues and
urine samples from locally advanced/metastatic PCa patients compared with patients
with localised disease. It is also correlated with PCa progression, suggesting that lncAPP
could serve as a potential biomarker for the progression of PCa. LncAPP induced PCa cell
proliferation, migration, invasion and EMT process in vitro. Overexpression and knock-
down of lncAPP significantly promoted and inhibited tumour aggression, respectively.
The underlying mechanism is that lncAPP competitively binding miR-218 to facilitate
derepression of ZEB2/CDH2 [85], which suggest that lncAPP-miR-218-ZEB2/CDH2 axis
plays a vital role in PCa progression and serve as a potential therapeutic target.

Further studies have found that lncRNA small nucleolar host gene 12 (SNHG12) ex-
pression levels were significantly increased in PCa tissue samples compared with adjacent
normal tissues. The high expression of SNHG12 positively correlated with PSA, Gleason
score, lymph node metastasis, and advanced residual tumour grade, as well as poor prog-
nosis of PCa patients, suggesting potential utility as a PCa prognostic biomarker [86–88].
Inhibition of SNHG12 repressed PCa cell proliferation, invasion, migration and promoted
apoptosis and autophagy in vitro, as well as suppressing tumour growth in vivo. In a
similar mechanism of action to other PCa-implicated lncRNAs, SNHG12 acts as a sponge
of miR-195, to enhance Wnt signalling by increasing levels of β-catenin, cyclin D1 and
c-Myc [87]. It also derepresses CCNE1 expression to activate the PI3K/AKT/mTOR sig-
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nalling pathway [86]. In addition, SNHG12 also act as ceRNA to target miR-133b to
accelerate the tumorigenesis of PCa [88].

In a study aimed at identifying risk alleles amongst PC patients with aggressive
disease, and in men with a strong family history of PC, PCAT-1 was shown to be associated
with increased risk of PC [89]. This may be due to its interaction with the oncogene, c-MYC.
C-MYC is highly expressed in PC. PCAT-1 has been shown to upregulate and stabilize c-
MYC post-transcriptionally and abrogate its downregulation by miR-34, thereby increasing
cell proliferation capacity of this oncogene. PCAT-1 was shown to stabilise the c-MYC
transcript through association with c-MYC 3′UTR [90]. Enhanced oncogenic activity of
both c-MYC and PCAT-1 in PC may be additionally attributed to the rs72725854-habouring
enhancer present in a non-coding region of the 8q24 locus which gains enhancer activity in
PC cell lines and tumours, but not in normal prostate tissues [91]. This androgen responsive
enhancer is demonstrated to regulate PCAT-1 and MYC [91]. Guo and colleagues show that
in PC, the MYC gene is regulated by a prostate-specific super enhancer overlapping the
PCAT1 gene. Androgens can repress MYC expression by interfering with the interaction
between MYC promoter and the super enhancer which may have an implication in the
development of castrate resistant disease [92].

6. LncRNA as Tumour Suppressors

In contrast to the above-described oncogenic roles of lncRNA, several lncRNAs act
as tumour suppressors to inhibit proliferation and migration, activate apoptosis, maintain
genomic stability, and induce activity of well-established tumour suppressor signalling
pathways [93].

One example is the lncRNA MEG3, which promotes growth inhibition, likely as a
result of increasing levels of the tumour suppressor p53 protein. This is at least in part
via its downregulation of mouse double minute 2 homolog (MDM2), which promotes p53
degradation [94,95]. MEG3 acts as ceRNA for a number of miRNAs [96]; its sponging of
miR-9-5p derepresses QKI-5 expression to inhibit cell proliferation, migration, invasion
and in vivo xenograft tumour growth in Pca [97]. Consistent with its tumour suppressor
role, MEG3 expression levels were significantly decreased in Pca tumour tissues compared
with adjacent tissues [97,98].

Growth arrest-specific 5 (GAS5) is another well-characterized tumour suppressive
lncRNA. It is downregulated in cancers including Pca [99] and the gene for human GAS5 is
within 1q25, a risk locus for sporadic and inherited forms of Pca [100]. GAS5 transcription
is controlled by the mTOR (mammalian target of rapamycin) pathway [101,102] and the
transcript accumulates in growth-arrested cells due to its role in coupling the nonsense-
mediated decay (NMD) and mTOR pathways [101,103].In actively-proliferating and high
mTOR activity cells, GAS5 transcription is increased [104] leading to NMD [105], which
keeps GAS5 at low levels by degradation of GAS5 transcript [103]. On the contrary,
suppression of mTOR activity, such as rapamycin treatment, results in cell growth inhibition
and prevents the translation of GAS5 transcripts and degradation by NMD, which leads to
increased expression of GAS5 [101]. In Pca, mTOR inhibitor-enhanced GAS5 expression in
androgen-sensitive cell lines, and GAS5 silencing induced resistance to cytostatic effects of
mTOR inhibitors in Pca cells [106]. A new mechanism has revealed that up-regulation of
GAS5 can inhibit AKT/mTOR signaling through its direct target miR-103, to suppress cell
proliferation, invasion, and migration. The tumour suppressive, AKT/mTOR-regulating
role of GAS5 in Pca was further confirmed by in vivo xenograft model. In addition,
expression of GAS5 RNA in Pca tissue was inversely correlated with clinical features
including PSA level, Gleason grade, and pathological stage, suggesting that GAS5 loss may
serve as a biomarker for Pca progression and GAS5-ATK/mTOR pathway is a potential
therapeutic target for the treatment of Pca [107].

The X-inactive-specific transcript (XIST) is one of the first identified and well-
characterized lncRNAs, functioning both as an oncogene and tumour suppressor in dif-
ferent cancers [108]. XIST expression was significantly down-regulated in Pca tissues, and
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further decreased in metastases; low XIST correlated with poor prognosis and increased
clinical stage, presence of metastases, increased Gleason score, and PSA levels. Overex-
pression of XIST suppressed cell proliferation, metastasis and tumour growth both in vitro
and in vivo. Mechanistic study revealed that XIST positively regulates Raf kinase inhibitor
protein (RKIP) expression at the post-transcriptional level by sponging miR-23a [109].

A novel lncRNA LSAMP-AS1, which is an antisense to the mRNA encoding limbic
system-associated membrane protein (LSAMP), was first identified for its association with
senescence [110]. Recurrent deletion of chromosome 3q13.31, centering on the LSAMP
locus, was prevalent in Pca tumours from African American men compared with Caucasian
American men and associated with rapid disease progression, suggesting the involvement
of LSAMP in the pathogenesis of Pca [111]. Antisense lncRNAs are transcribed from the
opposite strand of a protein-coding genes and can act in cis to positively or negatively
regulate expression of their overlapping protein-coding genes through diverse transcription-
dependent mechanisms; they can also act in trans to regulate the expression of other
genes [112]. This suggests that LSAMP-AS1 as well as LSAMP may play a vital role in
Pca. A recent study addressed this hypothesis [113]: the authors found that LSAMP-
AS1 expression levels were significantly decreased in Pca in two independent microarray
datasets from benign and prostate cancer tissues (GSE55945 and GSE46602) and this was
further validated in a different cohort [113]. In addition, low expression of LSAMP-AS1
correlated with poor overall and disease-free survival in Pca patients. Mechanistically,
this study identified an important trans regulatory role of LSAMP-AS1 in Pca, namely
upregulation of the tumour suppressor, Decorin (DCN), gene transcript by sponging miR-
183-5p [113]. However, given the important roles of both LSAMP and LSAMP-AS1, it is
important to delineate the precise regulatory relationship between the two transcripts, and
how this is altered in Pca.

The lncRNA CASC2 (cancer susceptibility candidate 2) was found to act as a tumour
suppressor in Pca through sponging of miR-183-5p, derepressing the miR-183-5p direct tar-
get SPRY2 (Sprouty2) [114]. Expression of SPRY2 has also been reported as downregulated
in Pca and positively correlated with expression of lncRNA CASC2 [114,115]. In keeping
with this, lncRNA CASC2 and SPRY2 were found to be down regulated while miR-183-5p
was significantly upregulated in Pca tissues compared with adjacent benign tissues, and
the down- and up-regulation respectively correlated with higher PSA levels, Gleason score,
presence of metastases and shorter overall survival [114,116–120]. Of note, another study
found that the miR-183-5p passenger strand, miR-183-3p, was down-regulated in Pca
tissues and targets HMGN5 to repress cell proliferation, migration and apoptosis [121]. The
opposing expression profiles and purported activities of the two miR duplex strands may
reflect altered relative incorporation of the two strands into the AGO2-containing RISC
during Pca progression. Further mechanistic studies are needed to investigate this and its
consequences for lncRNA CASC2 modulation of SPRY2.

7. Non-Coding RNAs in DNA Damage Response

Our DNA is constantly exposed to various exogenous and endogenous insults that
cause damage to the DNA either as single strand break (SSBs) or the more deleterious
double strand breaks (DSBs) [122]. If unrepaired, such aberrations can result in gene
mutations, chromosome rearrangement, genomic instability, chromothripsis and the onset
and progression of cancer. In response to DNA damage, eukaryotes have evolved different
mechanisms which requires diverse array of proteins to sense the damage, transduce
damage signals and efficiently repair lesions [123]. These mechanisms are collectively
termed the DNA damage response (DDR), which additionally stops cell cycle progression
until the damaged DNA is repaired [124].

Base excision repair (BER), nucleotide excision repair (NER) and mismatch repair
(MMR) are SSBs repair pathways. Each pathway has its unique damage recognition step,
regulating proteins and varying fidelity. BER is initiated by DNA glycosylases and it
corrects base lesions which do not significantly alter the structure of DNA. It is a rapid and
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efficient pathway as repair is limited to a damaged base [125]. Bulky adducts produced on
DNA as a result of exposure to UV light or chemical agents cause distortion to the DNA
helix. These lesions are removed and the DNA repaired via the NER pathway which is
made up of the transcription-coupled NER and global genomic NER. The XPA-RPA and
XPC-HR23B are two protein complexes that recognises damage and the efficiency of this
pathway is dependent on the degree of distortion on the DNA helix [126,127]. Errors such
as small insertions, deletions and mis-paired bases are corrected by the MMR pathway. The
efficiency of this pathway varies depending on the location of the lesion in the genome
(reviewed in [128]) however Edelbrock et al. showed that during DNA synthesis in normal
physiology, MMR functions at increased efficiency with a high fidelity of repair during
DNA synthesis [129]. Unrepaired SSBs lead to DSBs which are repaired via homologous
recombination (HR) and non-homologous end joining (NHEJ). The repair pathway of
choice is influenced by the phase of the cell cycle.

8. Role of DNA Damage Induced Non-Coding RNAs in DDR

The roles of the protein constituents of the DDR pathways are relatively well-
characterised, however there are emerging evidence that support key roles for ncRNAs in
these processes. There is evidence that ncRNA synthesized in the vicinity of DNA damage
play a role in repair. They can also act epigenetically or post-transcriptionally to modify
DDR protein activity directly and may also modulate DDR pathway activation through
regulation of transcription and DNA replication.

Using deep sequencing analysis, Wei et al. demonstrated that a class of small RNAs—termed
DSB-induced small RNAs (diRNAs)—are produced from sense and antisense strands of the
sequence close to the damage site following DSB induction in human cells [130]. Following
damage, it is proposed that the sensor MRN complex recognizes the lesion, recruits RNA
Polymerase II and the pre-initiation complex to promote transcription from the damage site.
This generates damage-induced lncRNAs which are processed by DICER and DROSHA
to produce diRNAs [131,132]. Michelini et al. also demonstrated the requirement of RNA
polymerase II-dependent transcription in the recruitment of diRNAs and in the activation
and regulation of DDR foci. They further showed that 53BP1, an indispensable component
and regulator of DDR, associates with diRNAs and damage-induced long non-coding
RNAs [133]. DSBs that occur in the repetitive ribosomal DNA also induce the biogenesis of
diRNAs [134]. Bonath and colleagues revealed that there are at least two sub-population of
diRNA; one small RNA population (21-22nt) is dependent on DICER and has a 5′ uracil
bias, whereas the second group is heterogenous in length with a characteristic guanine
bias at the 3′ end. In contrast to the above studies, these data showed that DROSHA is
not necessary for diRNA generation, and only one of two classes of diRNA require DICER
processing [134].

Whilst there are conflicting reports on the role of DROSHA and DICER in the pro-
cessing and maturation of diRNAs that maybe context dependent, additional roles in
recruitment of DDR factors have been described. DNA damage leads to the phosphoryla-
tion of DICER resulting in its nuclear accumulation and recruitment to DSB sites, where
it processes nuclear dsRNA to promote repair [135]. Knockdown of DICER impaired
recruitment of 53BP1 and MDC1 to damage foci, corroborating the requirement of DICER
in DDR [135]. On the other hand, there is evidence to support DROSHA’s recruitment to
DSBs by the MRN complex. It is also purported to associate with DSBs in a transcription-
independent manner to preferentially promote NHEJ repair as against HR [136].

It has also been demonstrated that diRNAs can promote recruitment of DSB repair
complexes to damage sites through AGO2 [130]. It was revealed that AGO2 interacts with
RAD51—a highly conserved protein which is indispensable in HR. RAD51 accumulation at
DSBs was shown to be dependent on small-RNA binding and catalytic activity of AGO2
was required for RAD51 HR repair [133]. The authors proposed that the recruitment of
RAD51 to DSB sites is guided by diRNAs through its interaction with AGO2 [133].



Cancers 2022, 14, 755 11 of 30

Chromatin remodelling, a feature of DSB repair, promotes recruitment of repair factors
to damage site [137]. Through AGO2, diRNAs interact with the chromatin modifying
enzymes acetyltransferase, Tip60 and methyltransferase, MMSET [138]. This interaction
guides the recruitment of both enzymes to DSBs, where the chromatin assumes an open
and flexible configuration which facilitates access of BRCA1 and RAD51 to damage sites
promoting HR [138].

Non-Coding RNA Activated by DNA Damage, NORAD, a highly-expressed,
evolutionarily-conserved lncRNA was discovered in the colon cancer cell line, HCT116,
following its p53-dependent induction upon DNA damage [139]. NORAD was shown to
sequester PUM1 and PUM2 proteins, which are responsible for turnover of DNA repair tran-
scripts. Indeed, genes regulated by PUM1/2 are sensitive to NORAD manipulation [139].
SAM68, a RNA binding protein is an interaction partner for NORAD and PUM2 and it
plays a role in the regulation of PUM proteins by NORAD, chromosome segregation and
progression through mitosis by buffering the sequestering activity of PUM proteins [140].
Overexpression of NORAD derepresses PUM1/2 target genes with roles in chromosomal
integrity, DNA replication and DDR, and thus it is thought to be required for maintenance
of genome stability [141,142]. In a bid to elucidate the molecular mechanism of NORAD,
Munschauer et al. demonstrated that NORAD is also crucial for the assembly for a ribonu-
cleoprotein complex which physically connects proteins with prominent roles in DNA
replication and repair [34]. This complex, referred to as NORAD activated ribonucleopro-
tein complex (NARC1), is made up of RBMX, PRPF19, CDC5L, TOP1 and ALYREF [34],
which are prominent DDR proteins. This predominantly cytoplasmic lncRNA is reported
to be overexpressed and correlated with poor prognosis in colorectal, lung, gastric, bladder,
thyroid, ovarian and oesophageal squamous cell carcinoma [143–149]. Zhang & Guo report
lower cell proliferation, migration and higher apoptosis following silencing of NORAD
in PC cell lines, although only AR-negative advanced metastatic models were used, and
in vivo effects were not assessed [150]. As a ceRNA, NORAD enhances activity of E2F1,
a transcription factor in HR repair, by acting as a decoy for its targeting miR, miR-136-5p
in lung cancer [148,151]. It was also shown to sponge miR-608 to derepress FOXO6 and
promote gastric cancer cell proliferation [143].

9. Role of lncRNA and miRNA in the Regulation of DNA Double Strand Breaks (DSB)

HR is the error-free repair mechanism of DSB repair which uses a sister chromatid
as template for repair. It takes place in the S and G2 phase of the cell cycle. It delivers a
high-fidelity repair of DSBs and one of its principal components is BRCA2 which mediates
the recruitment of RAD51 to damage sites and protects the replication fork [152]. RAD51,
a recombinase, is essential for homologous pairing and strand exchange in the repair
of DSB. Overexpression of the lncRNA, PCAT-1, which is predominantly cytoplasmic,
significantly reduced the stability of BRCA2 mRNA in the Pca cell line, DU145 [153]. This
further decreased RAD51 foci formation, impaired HR and imparted high sensitivity to
Olaparib, a PARP inhibitor. PCAT-1 was shown to directly repress the 3′UTR of BRCA2
post-transcriptionally and the 5′ terminus of PCAT-1 was required for the repression [153]
highlighting the role of lncRNA in the integrity of repair pathway.

The long non-coding radiation induced, lnc-RI has also been reported to influence
the HR process by regulating the stability of RAD51 [154]. Knockdown of lnc-RI resulted
in an accumulation of DSBs characterized by an increase in gamma-H2AX foci as well
as decreased RAD51 at both mRNA and protein levels. Lnc-RI had no effect on protein
degradation but was shown to be necessary for RAD51 mRNA stabilization. Furthermore,
it was demonstrated that miR-193a-3p interacted directly with RAD51 mRNA via its 3′UTR
as well as lnc-RI and overexpression of this miRNA reduced the expression of both RAD51
and lnc-RI with a concomitant increase in gamma-H2AX foci. The authors concluded that
lnc-RI plays a role in HR by regulating the stability of RAD51 mRNA by competitively
binding with miR-193-3p thereby reducing its inhibition of RAD51 [154]. MiR-193a-3p
overexpression inhibits cell proliferation and induces G1-S phase cell cycle arrest [155]. This
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may be mediated in part through its 3′UTR-directed repression of cyclin D1, an essential
regulator of the G1-S transition [155]. It has been shown that cyclin D1 directly binds
RAD51 and is recruited to DNA damage sites in a BRCA2-dependent manner, and that
downregulation of cyclin D1 impairs recruitment of RAD51 thereby impeding HR [156].
Thus, it is possible that lnc-RI and miR-193a-3p converge upon RAD51 and cyclin D1 to
modulate DDR-directed cell cycle progression via two independent connected pathways.

To maintain the integrity of the genome, DDR processes are tightly controlled by the
cell cycle which is regulated by the activities of cyclin-dependent kinases (CDK). DNA
damage that occurs during S-phase (repaired largely through the HR pathway) causes
p53-dependent accumulation of p21 during G2 and G1 phases which inhibits the activities
of CDK, thereby promoting cell cycle arrest, inhibition of cell proliferation, senescence and
apoptosis [157].

The transcription factor cell division cycle 5 like, CDC5L, is part of the pre-mRNA
processing complex and is a regulator of G2/M phase of the cell cycle. Its interaction
with ATR is required for the activation of the S-phase checkpoint in response to stalling
of the replication fork as well as activation of the downstream DDR effectors CHK1,
Rad17 and FANCD2 [158,159]. CDC5L is regulated by the lncRNA, Nuclear Enriched
Abundant Transcript, NEAT1, in PCa [160]. Li et al. show that NEAT1 and CDC5L
colocalize partially in the nucleus and directly interact. Using a dual-luciferase reporter
system, silencing of NEAT1 in the AR-null PCa cell lines, PC3 and DU145, suppressed
CDC5L-mediated transcriptional activation, indicating that the activity of this transcription
factor is dependent on the expression of NEAT1. NEAT1 loss-of-function led to DNA
damage in PC3 and DU145 cell lines, characterized by γH2AX phosphorylation, and cell
cycle arrest in the G1, G2 and M phases [160]. NEAT1 is reported to be overexpressed in
PCa tissues and cell lines and it positively correlates with Gleason scores and metastatic
staging [64]. In addition to its ability to promote DNA repair and cell cycle progression via
CDC5L, NEAT1 promotes ATR signalling in response to DNA damage or replication stress
and is involved in a negative feedback mechanism that decreases activation of p53 [161].

Following DSBs, ATM is auto-phosphorylated, leading to downstream phosphory-
lation of intermediates such as p53 and H2AX, which then activate cell cycle checkpoints
and DNA repair, respectively. Wan and colleagues have shown that lncRNA, ANRIL, is
transcriptionally upregulated via E2F1 following DNA damage in an ATM-dependant
manner in the colorectal carcinoma cell line HCT116 [162]. In complex with CBX7, elevated
ANRIL was shown to repress transcription from the p14, p15 and p16 cyclin-dependent
kinase inhibitor-containing INK4B-ARF-INK4A locus (from which it is also transcribed in
the anti-sense direction from an independent promoter) through recruitment of PRC-1 and
PRC-2 during the late stage of DDR. The authors postulate that this functions to promote
cell cycle progression following completion of break repair, indicating that ANRIL can in-
hibit cell cycle checkpoints to promote cell cycle progression [162]. Notably, ANRIL has also
been shown to repress senescence in ovarian cancer [163]. Although there are no reports
directly linking ANRIL, PCa and DNA damage, ANRIL is overexpressed in PCa tissues
where it enhances cell proliferation and migration by regulating the let-7a/TGF-β/Smad1
pathway [163,164]. Downregulation of ANRIL inhibits tumorigenicity and enhances the
cytotoxicity of the DNA damaging drug cisplatin by upregulating the expression of let-7a
in ovarian [165] and nasopharyngeal cancers [166]. Thus, ANRIL may promote cell cycle
progression and cell survival in response to DNA damage via both repression of CDKs and
upregulation of let-7a, representing a promising potential therapeutic target.

The repair efficiency of HR is also influenced by the lncRNA, DNA damage sensitive
RNA1 (DDSR1). Following DNA damage in U2OS, HCT116 and PC3 (bone, colon and PC
cell lines respectively), DDSR1 was induced in an ATM-NFκB dependent manner [167].
Silencing of DDSR1 resulted in significant reduction in the expression of critical DDR
proteins, gamma-H2AX, pRPA, pCHK1, p53 following DNA damage with camptothecin,
indicating that it acts downstream of ATM. Mechanistically, DDRS1 was shown to interact
with BRCA1 and the RNA-binding repair protein, hnRNPUL1. DDSR1:hnRNPUL1 interac-
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tion prevents the promiscuous association of BRCA1 with DNA breaks that is inhibitory
to HR. Indeed, DDSR1 loss-of-function led to aberrant BRCA1 recruitment [167]. Taken
together, this study highlights the role of the lncRNA, DDSR1 as a regulator of HR.

NHEJ does not require a homologous template and occurs throughout the cell cycle.
It involves error-prone ligation of broken DNA-ends. DNA-PK, Ku70/80 are key players
in the NHEJ DDR machinery. In addition to NHEJ, DNA-PK plays important roles in HR
and in the immune system via the V(D)J and class switch recombination [168–171]. This
serine/threonine protein kinase, which phosphorylates ATM and H2AX leading to the
detection of DSBs, is made of a catalytic subunit and a Ku heterodimer which consists of the
Ku70 and Ku80 subunits that also bind DSBs [168,169]. Liquid-chromatography tandem
mass spectrometry identified ceRNA-functioning lncRNA, SNHG12, as an important DNA-
PK binding partner via its domain 4 sequence [172]. Importantly, this interaction facilitates
the ability of DNA-PKs to bind ku70 and Ku80, and to mediate DDR. As the knockdown of
SNHG12 led to an increase in DNA damage, the authors concluded that this lncRNA plays
a role in DNA-PK dependent DDR [173]. Although SNHG12-modulation of DDR was not
assessed in PCa, its expression is increased in PCa tissues compared with matched normal
tissues [87]. High expression of SNHG12 was correlated with an aggressive phenotype
in patients evidenced by higher Gleason score and lymph node metastasis. SNHG12 was
also reported to promote proliferation and invasion, suggestive of an important role in
prostate tumourigenesis [87]. Further bioinformatic analysis and molecular assays indicated
that SNHG12 may have oncogenic activity in PC through sponging of miR-195, which is
purported to act in a tumour-suppressive manner [87,174].

10. Targeting DNA Damage Response Pathways for Prostate Cancer Therapy

The heterogeneity of mCRPC, whilst contributing to drug-resistance, also provides
opportunities for PCa personalized medicine. Approximately one-third of mCRPC patients
have coding mutations in established DNA damage repair (DDR) genes, providing a
rationale for their therapeutic exploitation. For example, PARP inhibitors (PARPi) work by
blocking PARP catalytic action in the repair of single-strand DNA breaks, and by trapping
of PARP proteins on DNA. These demonstrate efficacy in patients with defects in HR such
as BRCA1/2 deletion/inactivating mutations by functioning through synthetic lethality
and complete loss of DNA break repair capacity. Clinical trials (TOPARP-B, PROFOUND,
TRITON2, GALAHAD) are underway to define the HR aberrations that render tumours
susceptible to PARPi, and to assess the therapeutic potential of targeting other DNA repair
proteins, for example, ATR inhibitors in ATM-deficient PCa [175].

It is increasingly apparent that factors beyond HR coding gene aberrations, such as
epigenomic alterations and non-coding factors can modulate response to DNA damage-
targeting drugs, particularly since (i) PARPi BRCA1/2-mutant response rate is only approx-
imately 50%, (ii) efficacy has been observed in patients lacking mutations in key HR genes,
and iii) variability in response is seen in patients harboring ATM, CDK12, CHEK2, PALB2
mutations, amongst others [176,177]. It is hoped that ongoing studies and clinical trials in
carefully stratified populations will reveal genomic/non-genomic biomarker signatures of
PARPi response to improve patient survival and negate morbidities of ineffective treatment
(so-called ‘BRCAness’ transcriptomic panels have been proposed), and that alternative
DDR-targeting drugs will prove efficacious in the context of non-BRCA aberrations. Since
these treatments also apply strong selection pressure, and BRCA2 reversion mutations have
been observed [178] rendering the tumour resistant to PARPi, combinatorial approaches
may also be warranted.

11. Exploiting Non-Coding RNAs Therapeutically in PCa

Given that ncRNAs are recognised to be versatile and important molecules in the
regulation of genes, they potentially represent efficacious drug targets or therapeutics. A
caveat to their use in therapeutics is instability due to the many ribonucleases that can
initiate their degradation in vivo. However, chemical modification to their structure has
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been shown to improve stability, specificity and immunogenicity, as well as pharmaco-
kinetic and -dynamic properties. Strategies for targeting of ncRNAs include antisense
oligonucleotides (ASOs) which target complementary RNA by Watson-Crick base pair-
ing rules with high affinity as well as specificity; their mechanisms of action include
steric hinderance, RNA interference, splice modulation and ribonuclease H1-dependent
degradation [179]. Therapeutic ncRNA molecules include Gapmers, which are chimeric
single-stranded oligonucleotides containing a central stretch of deoxynucleotide monomers
between modified RNAs (2′-O-methyl RNA or 2′-O-methoxyethyl RNA, locked nucleic
acids or constrained ethyl nucleosides) that are capable of activating RNA degradation by
RNASEH1 [180].

The expression and function of lncRNAs can be inhibited by antisense-based strategies,
such as RNA interference (RNAi) by siRNAs, short hairpin RNA (shRNA) and GapmeRs.
Of these different lncRNA inhibition techniques, siRNAs preferentially show effective
targeting of cytoplasmic lncRNAs, whilst GapmeRs can enter the nucleus to target nuclear-
enriched lncRNAs by introducing ribonuclease H-dependent cleavage. Combined use
of GapmeRs and siRNAs can improve knockdown efficacy, especially for lncRNAs that
localize to both cytoplasmic and nuclear compartments [181–183]. However, presence of
cellular nucleases and foreign RNA-activated innate immune pathways, for example, Toll-
like receptor (TLR) and RIG-1, may limit effective cellular uptake of such molecules [184].

In 2018, the FDA approved the first RNA therapeutic Patisiran (brand name Onpattro)
which is a siRNA for the treatment of familial transthyretin-mediated amyloidosis [185].The
antisense oligonucleotide Nusinersen, which acts by splice modulation, has also been ap-
proved by the European Medicines Agency for treatment of spinal muscular atrophy [186].
These advances expand the possibilities for routine clinical use of RNA-based drugs across
a diversity of human diseases. Following several decades of extensive siRNA and miRNA-
based research and discovery, there are a number of RNAi and oligonucleotide-based drugs
targeting protein-coding mRNAs in clinical trials [187]. Further, clinical trials (Phase I/II)
of miRNA-based drugs (either miRNA mimics for gain-of-function or miRNA inhibitors for
loss-of-function) have been undertaken [188] and approximately 55 lncRNA-based clinical
trials are underway or have completed [189].

12. Exploiting miRNA-Based Agents in PCa Therapy

Therapeutically, miRNAs can be exploited using either mimics, to ectopically in-
crease expression of a specific miRNA, or antagomiRs which bind to endogenous miR-
NAs, sequestering and preventing them from interacting with target transcripts. In both
cases chemically-modified forms such as phosphorothioate backbone, 2-methoxyethyl
nucleotides and locked nucleic acids have improved their stability and specificity.

The majority of anti-androgens in clinical use for PC target the ligand binding domain
(LBD) or the AR. Unfortunately, a major mechanism of resistance to such drugs is the
emergence of constitutively-active AR-variants that lack the LBD. Hence major research
efforts are centred on development of therapeutics targeting non-LBD regions of AR.
Targeting the 3′-UTR of the AR using miRNAs may represent a promising strategy in this
regard. Work from our laboratory demonstrates that miR-346, -361-3p, -197 modulate
AR signalling through association with the 3′ end of the 6.9 kb AR 3′UTR to enhances
transcript stability [190]. Inhibition of these miRNAs markedly reduced transcript and
protein levels of both wild-type and variant AR, with concomitant decreases in target
gene expression [190]. In addition, inhibition of these miRNAs reduced proliferation,
increased apoptosis and sensitised cells to anti-androgen treatment. Further, miR-361-3p
and -197-3p levels were enhanced by anti-androgen treatment of patient-derived xenografts,
nominating them as potentially relevant drug targets in CRPC. The long length of the AR
3′UTR as compared to its coding region indicate an important contribution of miRNAs and
RNA-binding proteins to its regulation, suggesting that therapeutics based on these may
be particularly effective in controlling AR activity.
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As the androgen signalling pathway remains functional in the progression of PCa,
targeting the AR is a viable treatment option at all disease stages. One RNA therapeutic
in development is the antisense oligonucleotide AZD5312, which is designed to target
full length, mutated forms and splice-variant AR, preventing the translation of the AR
protein by hybridizing with its mRNA. Administration of this ASO in mCRPC patients who
have previously failed standard of care treatments demonstrated that it is well-tolerated
with evidence of prostate specific antigen and circulating tumour cell decline in some
patients [191].

Irradiation is one of the main interventions used in the treatment of PCa hence
radiation-sensitizing strategies may improve patient outcomes. PCa cells treated with
miR-744-3p and miR-890 mimetics prior to radiotherapy showed significant delay in the
resolution of the DNA damage maker gamma-H2AX over a 24-h period compared to
radiation-only cells [192]. MiR-890 pre-treatment also enhanced effects of radiotherapy
in reducing in vivo tumour volume, as compared to negative control. The mechanism
of action of miR-890 was pinned on its ability to reduce expression of DDR-implicated
genes WEE1, KU80, XPC and MAD2L2 [192]. MiR-449a has also been shown to increase
radiotherapy sensitivity in LNCaP cells and xenograft models, evidenced by G2/M cell
cycle arrest, decreased cell viability and suppressed tumour growth. Its potential tumour
suppressive activity was attributed to targeting of the 3′-UTR of the c-MYC oncogene [193].
Thus miR-890 and -499a mimetics may represent efficacious radiotherapy sensitisers in PCa.

Aside from principally inducing DNA damage, ionizing radiation is immunogenic.
Tao et al. demonstrated that overexpression of miR-16 and -195 may increase radio-
sensitivity in PCa cells by blocking the expression of the immune checkpoint, PDL1 and
enhancing the proliferation of functional cytotoxic CD8+ T-cells. They further show that
high levels of these microRNAs were positively correlated with biochemical recurrence-free
survival [194].

Cells bearing mutations in BRCA1/2 are deficient in HR and thus confer sensitivity to
PARP inhibitors, which have been approved for the treatment of CRPC. Much remains to
be learnt about the subset of patients who will optimally respond to such treatment [177].
Mimics of miR-107 and -222 were shown to sensitise tumour cells to Olaparib, a PARP
inhibitor, in ovarian cancer by repressing the expression of RAD51 [195]. MiR-107 is
downregulated in PCa cells and tissues and its overexpression is demonstrated to inhibit
proliferation and induce cell cycle arrest [196]. It is plausible that miR-107 mimetics
administered to PCa patients can also increase sensitivity to PARP inhibitors and promote
its tumour suppressor effects. This remains to be investigated.

In order to delineate the therapeutic potential of the cholesterol-conjugated antagomiRs,
anti-miR-221 and -222 were injected intratumorally at day 0, 5, 9, a total of three injection
per tumour in SCID mice [197]. The authors showed that the average fold volume increase
of treated tumours was significantly reduced compared to control groups. Total RNA from
treated excised tumours showed a persistent reduction in the expression of both miR-221
and -222 compared to control tumours. They further revealed that these antagomiRs can
lower the expression of the target miRNAs for as long as 24 days whilst increasing the
levels of p27, a tumour suppressor gene that also plays a role in DDR DDR [197,198].

13. Exploiting LncRNAs in PCa Therapy

After two-decades of discovery and extensive research of miRNAs in human disease,
there are several miRNAs already under phase 2 clinical trials [188]. Clinical trials of drugs
targeting lncRNAs have been initiated [93]. The lncRNA related plasmid therapy BC-819,
which is a DNA plasmid carrying the gene for diphtheria toxin-A (DTA) under regulation
of the promoter of lncRNA H19 is currently in Phase III clinical trials in patients with
bladder cancer [199,200]. However, several strategies have been employed for lncRNA
manipulation of lncRNA that show pre-clinical promise.

Having observed that the lncRNA, ARLNC1, is a vital survival factor in AR-dependent
PCa, an ASO was developed to target the transcript in cells lines and mouse xenograft
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models. This reduced in vivo tumour growth [201] indicating that ARLNC1 may be a
viable therapeutic target in AR-dependent PCa. ARLNC1 may also serve as a potential
biomarker as it is significantly overexpressed in localized and metastatic PCa compared to
benign tissues [201].

The inhibition of novel PCa lncRNA activated in metastatic PCa (lncAMPC) by siRNAs
was successfully achieved in vitro and in vivo. lncAMPC, expressed both in the nucleus and
cytoplasm, is significantly increased in PCa tumour tissues and preferentially upregulated
in metastatic compared to localized disease. The silencing of lncAMPC results in reduced
cell proliferation, migration and invasion and significantly suppressed xenograft tumour
growth in immunodeficient mice. Mechanistically, lncAMPC regulates LIF expression
by sponging miR-637 in cytoplasm and enhances LIFR transcription by decoying histone
H1.2 away from the upstream sequence of LIFR gene in the nucleus. The upregulation
of LIF/LIFR activated downstream signaling through the Jak/STAT, MAPK and PI3K
pathways, which were repressed by siRNA-mediated lncAMPC knockdown in vitro and
in vivo. The inhibition of lncAMPC decreased, whilst overexpression increased, expression
of PD-L1 in the xenograft tumour tissues. PD-L1 expression also positively correlated with
lncAMPC-activated LIF level [202].The authors suggest that the combination of targeted
lncRNA therapy and immune checkpoint inhibitors may be an effective novel strategy for
PCa treatment, although relevance of this in the context of the immunodeficient host used
in their experiments is unclear. The above example notwithstanding, the numbers of pre-
clinical studies using siRNAs/shRNAs to target lncRNAs are very limited, in part due to
lack of efficient delivery methods and limited bioavailability of siRNAs in mammals [203].

The expression of the lncRNA, Testis-Specific Transcript Y-Linked 15, TTTY15, is
increased in PCa tissues compared with paired control tissues. It has been shown to
promote PCa progression by acting as ceRNA for let-7, leading to derepression of the let-7
target oncogenic genes, CDK6 and FN1. The transcription factor FOXA1 is an upstream
positive regulator of TTTY15. Thus, FOXA1-TTTY15-let-7-CDK6/FN1 axis is reportedly
involved in the disease progression of PCa. Using several anti-sense oligo- and CRISPR-
based strategies for TTTY15 loss-of-function, it was shown that TTTY15 silencing inhibits
cell proliferation, migration and invasion, warranting its further pre-clinical therapeutic
investigation [204].

14. Limitations and Challenges of lncRNA Therapeutics

LncRNA targeting represents a powerful therapeutic strategy for personalised medicine,
due in part to their cell/tissue specific expression patterns, diverse tools for manipulation
and increasing evidence for disease-relevant functionality. However, several limitations
and challenges remain. Firstly, low conservation of lncRNAs between human and rodents
poses considerable challenges to mechanistic studies and pre-clinical therapeutic assess-
ment. Secondly, the relatively low abundance of lncRNAs compared with protein-coding
genes and predominant nuclear localisation of many lncRNAs presents difficulties in terms
of delivery of targeting agents across the nuclear membrane. ASOs, which function effec-
tively in the cell nucleus due to the nuclear enrichment of effector RNase H, may present
a viable approach here. Thirdly, the diverse functions attributable to a single lncRNA
across different pathologies, coupled with context-specific dysregulation, may necessitate
tissue-specific delivery modes and may affect the target specificity of lncRNA therapeutics.
Fourthly, detailed characterization of lncRNA structure, functional motifs, and interplay
with protein/RNA interactors is required before targeting can be considered, in order to
mitigate risks of side-effects and toxicity in non-target tissues. Indeed, many published
studies are limited to in vitro investigations: development of genetically-engineered mouse
models with tissue specific deletion of candidate lncRNAs will give powerful insight into
tissue-specific lncRNA activity, and for lncRNAs that are restricted to humans, systemic
or injected delivery of ASOs to patient-derived xenografts (PDXs) represent a valuable
approach to pre-clinical evaluation. Further, since ribosome profiling has shown that some
short open reading frames (ORFs) in lncRNAs encode micropeptides with pathological
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activity [205], it is important to robustly confirm the non-coding nature of target lncRNAs.
Finally, as for many putative therapeutics, delivery to the centre of solid tumours such
as those of the prostate, often with hostile hypoxic environments, is a major hurdle to
overcome. Systemic delivery will exhibit rapid clearance from the blood and accumulation
in the liver and kidney, significantly decreasing delivery efficiency.

For tumour suppressive lncRNAs, it is desirable to restore their in vitro and in vivo
function through overexpression. This is often achieved in cell lines by using recombinant
viral system including adenoviruses, lentiviruses and adeno-associated viruses (AAVs).
RNA-guided endogenous CRISPR activation (CRISPRa) is another useful tool to overex-
press the lncRNA from endogenous loci or promoter, which is especially important for
cis-acting lncRNAs [206]. Adenovirus-mediated overexpression of tumour suppressor
lncRNA XIST suppressed cellular proliferation and metastasis in PCa both in vitro and
in vivo through sponging miR-23a to regulate RKIP expression [109]. Due to the high
transduction rates and robust transgene expression of adenovirus, such delivery systems
show therapeutic promise and are the subject of ongoing clinical trials [207]. Compared
with the transient transduction of adenovirus, lentivirus-mediated delivery systems can
integrate DNA into the host genome to achieve long-term expression of their therapeutic
transgene. LncRNA FENDRR expression levels are significantly decreased in PCa tumours.
The upregulation of FENDRR expression levels in PCa cells were induced by lentivirus
transduction, which acts as a ceRNA sponging miR-18a-5p, leading to upregulation of miR-
18a-5p target, RUNX1, to inhibit cell proliferation and induce apoptosis [208]. However,
to date, all such studies have been performed in cell lines and the clinical utility of such
approaches remains to be determined.

15. Conclusions

The first small-interfering RNA drug Patisiran to treat polyneuropathy was approved
by the FDA in 2018 [209]. Whilst the approval of the Pfizer-BioNTech and Moderna mRNA-
based COVID-19 vaccines in 2020 in response to the COVID-19 pandemic [210] has renewed
interest in RNA-based therapeutics, unfortunately, miRNA-based drugs are yet to deliver
on their therapeutic promise, with only a handful progressing to Phase I or II clinical
trials. Their exploitation in this regard requires a complete understanding of their impacts
on cancer-associated processes. It is increasingly well-appreciated that miRNA activity
is regulated by interactions with lncRNAs within complex regulatory networks to exert
exquisite control of gene expression. A major recent focus in the ncRNA field has been
on DNA damage processes, driven at least in part by the observation that lncRNAs (and
some miRNAs) can associate with DNA, and the recent clinical success of DDR-targeting
synthetic lethality approaches for personalised medicine in PCa.

It is now clear that both miRNAs and lncRNAs can impact DDR processes directly
and indirectly, and at multiple levels through such phenomena as miRNA targeting of
DDR proteins or their regulators, lncRNA sequestration of DDR-impacting miRNAs and
regulation of protein:chromatin interactions. Intriguing data from multiple groups have
now clearly shown the generation of long and small ncRNAs from sites of DNA damage,
whose DDR-promoting functions remain to be fully characterised.

In contrast to miRNAs, approaches for drug-targeting of lncRNAs are still in their
infancy but show considerable promise due to the high tissue-specificity of these molecules,
if technical hurdles can be overcome. Further, tissue-specificity makes them particularly
attractive as candidate biomarkers. Indeed, lncRNA PCA3 has been approved by the FDA
as a urine-based molecular diagnostic biomarker for PCa.

In summary, the successful application of ncRNA-based therapeutics requires further
molecular, mechanistic and preclinical studies, as well as development of novel delivery
modalities. Recent promising advancements in these areas suggest that the future is bright
for ncRNA therapeutics in PCa.
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Table 1. LncRNA: miRNA interactions in prostate cancer and their phenotypic implications.

LncRNA Interacting miRNA Target mRNA Expression in PCa Functions in PCa

SNHG14 miR-5590-3p [211] YY1 Increase Promote cell proliferation, invasion,
and repress apoptosis

TUG1
miR-496 [76] Wnt

Increase
Promote cell proliferation, migration, invasion, colony

survival fraction and repress apoptosismiR-139-5p/miR-26a [75] SMC1A

SOX2-OT
miR-425-5p [212] HMGB3

Increase
Promote cell proliferation, migration, cancer metastasis,

and active the Wnt/b-catenin signaling pathwaymiR-369-3p [213] CFL2

SNHG1 miR-377-3p [214] AKT2 Increase Promote cell viability, growth,
cell cycle progression and

miR-199a-3p [215] CDK7 suppress cell apoptosis

UCA1

miR-143/miR-204 MYO6/Bcl2

Increase Promote cell growth, invasion, and suppress apoptosismiR-184 [66,68–71] Sirt1/CXRC4

ATF2

SNHG12
miR-195 [86,87]

CCNE1 Increase
Promote cell proliferation, invasion, migration, viability;

Suppress apoptosis and autophagy; activate
PI3K/AKT/mTOR pathway and Wnt/b

signaling pathway
miR-133b [88]

NEAT1 miR-34a/miR-204 [63] RET/ACSL4 Increase Promote cell growth and invasion;
potential prognostic biomarkermiR-98 [64] HMGA2

DANCR miR-34a [216] JAG1 Increase Promote cell proliferation, resistant to apoptosis; Silence
of DANCR improved docetaxel and paclitaxel efficacymiR-135a [217]

MALAT1 miR-1 [57,58] KRAS/CORO1C Increase Promote cell proliferation, migration, invasion, EMT
and resistant to apoptosis; promote tumor

growth in vivomiR-145/miR-320B [59,60] AKAP12/AR

SNHG7 miR-324-3p [218] WNT2B Increase Promote proliferation, migration, invasion, and EMT;
induce cell cycle arrest; silence SNHG7 inhibit tumor

growth in vivomiR-503 [219] CyclinD1

LOXL1-AS1 miR-let-7a-5p [220] EGFR Increase Promote cell proliferation, migration, cell cycle
progression; suppress apoptosis; promote tumor

growth in vivomiR-541-3p [221] CCND1

PCA3 miR-1261 [79] PRKD3 Increase Promote proliferation, migration, invasion, xenografts
growth; inhibit apoptosis and autophagymiR-218-5p [84] HMGB1

HOTAIR miR-520b [222] FGFR1 Increase Promote cell proliferation, migration and invasion;
reasonable biomarker for PCa bone metastasis

PVT1 miR-186/miR-146
[223,224] Twist1 Increase Promote EMT and cell invasion,

and repress cell apoptosis

LINC00473 miR-195-5p [225] SEPT2 Increase Promote cell proliferation via
JAK-STAT3 signaling pathway

SNHG17 miR-144 [226] CD51 Increase Promote cell proliferation, migration and migration

ZEB-AS1 miR-342-3p [227] CUL4B Increase Promote cell proliferation, migration and invasion
through PI3K/AKT/mTOR signaling pathway

LINC00665 miR-1224-5p [228] SND1 Increase Promote cell growth and metastasis

SNH3 miR-577 [229] SMURF1 Increase Promote cell proliferation, migration, EMT
and resistant apoptosis

FEZF1-AS1 miR-25-3p [230] ITGB8 Increase Promote cell viability and EMT; Inhibit cell autophagy

CRNDE miR-101 [231] Rap1A Increase Promote cell proliferation, migration and invasion;
decrease apoptosis

FER1L4 miR-92a-3p [232] FBXW7 Decrease Inhibit cell proliferation and promote cell apoptosis

HOXA11-AS miR-518b [233] ACTN4 Increase Promote cell proliferation, migration
and inhibit apoptosis
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Table 1. Cont.

LncRNA Interacting miRNA Target mRNA Expression in PCa Functions in PCa

VPS9D1-AS1 miR-4739 [234] MEF2D Increase Promote cell proliferation, migration, invasion
and inhibit apoptosis

HCP5 miR-4656 [235] CEMIP Increase Promote proliferation, colony formation
and inhibit apoptosis

LSAMP-AS1 miR-183-5p [113] DCN Decrease Inhibit cell proliferation migration, invasion and EMT

RBMS3-AS3 miR-4534 [236] VASH1 Decrease Inhibit cell proliferation, migration, invasion
and angiogenesis

SNHG4 miR-377 [237] ZIC5 Increase Promote cell growth, migration and invasion

SHNG20 miR-6516 [238] SCGB2A1 Increase Promote cell proliferation, invasion
and suppress apoptosis

FOXP4-AS1 miR-3184-5p [239] FOXP4 Increase Promote cell proliferation and decrease cell apoptosis

SNHG15 miR-338-3p [240] FKBP1A Increase Promote cell proliferation, migration, invasion,
viability and EMT

LEF1-AS1 miR-330 [241] LEF1 Increase Promote cell proliferation, invasion and migration

MEG3 miR-9-5p [97] QKI-5 Decrease Inhibit proliferation, migration, invasion and
induce apoptosis

FOXC2-AS1 miR-1253 [242] EZH2 Increase Promote cell proliferation and tumor growth

MYU miR-184 [243] Myc Increase Promote cell growth and migration

PCSEAT miR-143-3p/24-2-5p [244] EZH2 Increase Promote cell growth and mobility

PCAT3/PCAT9 miR-203 [245] SNAI2 Increase Promote cell proliferation, invasion, migration,
angiogenesis and stemness

FENDRR miR-18a-5p [208] RUNX1 Decrease Inhibit cell proliferation, migration, invasion and
induce apoptosis

CASC2 miR-183 [114] Sprouty2 Decrease Inhibit cell proliferation and induce apoptosis

ANRIL let-7a [164] TGF-b1/Smad Increase Promote cell proliferation and migration

XIST miR-23a [109] RKIP Decrease Inhibit cell proliferation and tumor metastasis

GAS5 miR-103 [107] AKT-mTOR Decrease Inhibit cell proliferation, invasion and migration

OGFRP1 miR-124-3p [246] SARM1 Increase Promote cell growth and metastasis

PROX1-AS1 miR-647 [247] Increase Promote cell proliferation and invasion

ZFAS1 miR-135-5p [248] Increase Promote proliferation, migration, invasion, EMT and
inhibit apoptosis

TTN-AS1 miR-1271 [249] Increase Promote cell proliferation and migration

AFAP1-AS1 miR-512-3p [250] Increase Promote cell proliferation, migration and invasion

CASC15 miR-200a-3p [251] Increase Promote cell migration and invasion

HCG11 miR-543 [252] PI3K/AKT Decrease Inhibit cell proliferation, invasion, migration and
induce apoptosis

LINC00662 miR-34a [253] Increase Promote cell proliferation, invasion, migration and
suppress apoptosis

LncRNA APP miR-218 [85] ZEB2/CDH2 Increase Promote cell migration and invasion

CHRF miR-10b [254] cyclinD1/CDK4/6 Increase Promote cell proliferation, EMT and repress apoptosis

TTTY15 let-7 [204] CDK6/FN1 Increase Promote cell growth in vivo and in vitro

Linc00581 miR-216b-5p [255] GATA6 Increase Promote cell viability

RNCR3 miR-85-5p [256] BRD8 ISO2 Increase Promote cell proliferation, invasion and
colony formation

HOTTIP miR-216a-5p [257] Increase Promote cell proliferation, migration and invasion

PCGEM1 miR-148a [258] Increase Inhibit early cell apoptosis
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Table 1. Cont.

LncRNA Interacting miRNA Target mRNA Expression in PCa Functions in PCa

PCAT-1 miR-145-5p [259] FSCN1 Increase Promote proliferation, migration, invasion
and repress apoptosis

lncRNA625 miR-432 [260] TRIM29/PYGO2 Decrease Inhibit cell proliferation and promote cell apoptosis

SChLAP1 miR-198 [53] MAPK1
signaling Increase Promote cell proliferation, invasion

and repress apoptosis

H19 miR-657 [261] TGFB1 Repress cell migration and cancer metastasis
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