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Abstract: Salmonella and Escherichia coli are the main bacterial species involved in food outbreaks
worldwide. Recent reports showed that chemical sanitizers commonly used to control these pathogens
could induce antibiotic resistance. Therefore, this study aimed to describe the efficiency of chemical
sanitizers and organic acids when inactivating wild and clinical strains of Salmonella and E. coli,
targeting a 4-log reduction. To achieve this goal, three methods were applied. (i) Disk-diffusion
challenge for organic acids. (ii) Determination of MIC for two acids (acetic and lactic), as well as two
sanitizers (quaternary compound and sodium hypochlorite). (iii) The development of inactivation
models from the previously defined concentrations. In disk-diffusion, the results indicated that
wild strains have higher resistance potential when compared to clinical strains. Regarding the
models, quaternary ammonium and lactic acid showed a linear pattern of inactivation, while sodium
hypochlorite had a linear pattern with tail dispersion, and acetic acid has Weibull dispersion to
E. coli. The concentration to 4-log reduction differed from Salmonella and E. coli in acetic acid and
sodium hypochlorite. The use of organic acids is an alternative method for antimicrobial control.
Our study indicates the levels of organic acids and sanitizers to be used in the inactivation of emerging
foodborne pathogens.

Keywords: acetic acid; lactic acid; quaternary of ammonium; sodium hypochlorite;
multi-drug resistance

1. Introduction

Salmonella and Escherichia coli present in food are a direct risk to human health [1–3]. Studies related
to food contamination by these pathogens are frequent in the literature [4,5]. In Brazil, as a consequence
of food contamination, groups of Shiga-toxin producing Escherichia coli (STEC) and non-typhoidal
Salmonella have been detected in several foodborne cases [6,7]. Moreover, these bacteria groups
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have several serogroups with the capacity to develop foodborne diseases and potential outbreaks
worldwide [8,9]. The pathogenesis of E. coli STEC relates to its capacity of causing hemolytic uremic
syndrome (HUS) and bloody diarrhea, while non-typhoidal Salmonella can cause gastroenteritis
(inflammatory condition of the gastrointestinal tract), vomiting, and non-bloody diarrhea [4,10].
For this reason, studies have been made in recent years to inactivate these bacteria at all stages of
production [3,11–13].

Nowadays, the main challenges in food safety are resistant strains to antimicrobials, such as
antibiotics, and sanitizers [14]. The hypothesis is the case that these strains arise due to evolutionary
adaptations throughout a selective pressure according to the exposure of bacteria to sanitizers,
horizontal transmission of genes, and occasional incorporation of prophage in bacterial DNA [15].
Moreover, an important point in the selection of sanitizers is that gram-negative bacteria have
intrinsically high resistance due to the outer plasmatic membrane that hinders the penetration of
large molecules [16]. Besides, some sanitizers have been related to the induction of resistance against
antibiotics [17].

Chlorine-based compounds, such as sodium hypochlorite, are the most worldwide used sanitizers
to inactivate pathogenic bacteria in food and food processing surfaces [18]. Hypochlorous acid (also
called “free chlorine”) is approved by the Food and Drug Administration to be used directly in fruit
and meat products for the reduction of microbial load [19]. This substance is only recommended in
Brazil for fruit and vegetable [20]. Besides, several studies have investigated the antimicrobial capacity
of hypochlorous acid and sodium hypochlorite in the application for food decontamination [21,22].
However, a low efficacy in microbial inactivation of sodium hypochlorite (NaOCl) in food has been
reported [23,24]. Moreover, according to the European Commission’s expert group for technical advice
on organic production, sodium hypochlorite (NaOCl) and other chlorine-based compounds are not
recommended for organic farming systems [25] due to the capacity of carcinogenic product formation,
such as trihalomethanes [23,24]. Furthermore, the selection of chlorine-resistant bacteria has been
reported because of the chlorination step during processing [26]. Moreover, quaternary ammonium
compounds are the other sanitizers commonly used by the food industry. However, this sanitizer has
been related to the induction of a multi-drug resistance profile in foodborne strains [27,28]. The resistance
mechanism is based on efflux pumps for quaternary ammonium compounds. These mechanisms also
affect some antibiotics, such as penicillin, gentamicin, trimethoprim, and kanamycin [29].

For this reason, in the food production systems, the application of different disinfectants is
required to decrease the microbial load and mitigate the chances of foodborne outbreaks. A promising
alternative to overcome the risk of foodborne presence and excessive use of disinfectants are the
organic molecules, known as organic acids. Organic acids are a low-cost, easily applicable option in the
food industry [30]. Besides, organic acids are generally recognized as safe (GRAS) [31]. Organic acids
comprise several molecules, such as acetic, lactic, and citric acids. Their main mechanisms of action are
based on cytoplasmic acidifications, the uncoupling of energy production and regulations, and DNA
damage [30,32]. The organic acids owe their capacity of penetrating the cell due to their molecule size
and polarity [33].

Besides its antimicrobial effect, organic acids have a low impact on the sensory characteristics
of products. They are used in animal production, as a growth promoter and in the food industry,
for sanitation of equipment directly involved with food. For instance, the use of organic acids may be
applied in the sanitation of milk collectors or knives in beef production [34]. In this context, the present
study aimed to describe the efficiency of chemical sanitizers and organic acids in the inactivation of wild
and clinical strains of non-typhoidal Salmonella and E. coli STEC, and compare between lethality of the
treatment, targeting a 4-log reduction, instead of the classic D value (only adjustable in linear models).
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2. Results

2.1. Organic Acid in DiskxDiffusion Tests

The results of disk-diffusion tests are described in Figure 1. Overall, the acetic and lactic acid had a
higher antimicrobial effect in both pathogen strains, while the citric acid has proved to be less effective
for both bacteria (p < 0.05). When we analyzed E. coli (Figure 1a), all wild-type strains were significantly
different from the ATCC strain for both, the lactic and acetic acid. However, for the citric acid, only
E113-4 and E26-2 strains were different from the ATCC strain (p < 0.05). For Salmonella, the lactic and
acetic acids also had higher inactivation values when compared to citric acid (Figure 1b). For lactic
acid, the only difference between strains was found between S3509 and S6130 (p < 0.05). For acetic
acid, the ATCC and S3509 strains were more susceptible to inactivation (p < 0.05). Finally, for citric
acid, the same inactivation (p > 0.05) was achieved for all strains. In general, the Salmonella group
(average of all strains) presented the same inactivation pattern than the E. coli group for all tested acids
(Figure 1c). When evaluating the results of E. coli versus Salmonella (Figure 1c), it is possible to identify
that Salmonella is more sensitive to acetic and lactic acid than E. coli. However, in citric acid, the same
inactivation values (p > 0.05) were obtained for both groups.
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S6130 was selected because of its difference from ATCC in acetic acid and higher drug-resistant 
profile among the other Salmonella strains [5]. Citric acid presents the lowest inactivation values 

Figure 1. The inhibition zone of Escherichia coli and Salmonella strains by organic acids. Legend: Average
and standard deviation of the Escherichia coli STEC (a); inhibition and non-typhoidal Salmonella
strains (b). Capital letters indicate the statistical difference (p < 0.05) in the same acid in different
strains. Lowercase letters indicate the statistical difference (p < 0.05) between acids in the same strain.
A comparison of E. coli and Salmonella group (average of all strains) inhibition means (c). Capital letters
indicate a statistical difference between acids in the same strain, and lowercase letters indicate a
statistical difference between strains in the same acid.
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For subsequent analysis of inactivation kinetics, we selected the E. coli strain E26-2 once it showed
a difference from the ATCC in the three studied organic acids. Besides, the Salmonella strain S6130 was
selected because of its difference from ATCC in acetic acid and higher drug-resistant profile among the
other Salmonella strains [5]. Citric acid presents the lowest inactivation values between acids in both
analyzed groups. For that reason, it was not used in the subsequent inactivation modeling.

2.2. Inactivation Modeling Using Organic Acid and Sanitizer Treatments

The inactivation kinetics of Escherichia coli and Salmonella cells were determined by survival
models fitted to the survival data (Table 1).

Table 1. Model parameters and coefficient of determination.

Bacteria Treatment Model 4-Log
Reduction R2 Adj Kmax Delta MSE

Salmonella Lactic acid Log Linear 3.92 0.97 2.43 ± 0.13 - 0.0511
Escherichia coli Lactic acid Log Linear 3.92 0.98 2.75 ± 0.11 - 0.0353

Salmonella Acetic acid Log Linear 3.92 0.96 2.52 ± 0.16 - 0.0803
Escherichia coli Acetic acid Weibull 7.37 0.95 - 5.03 ± 0.63 0.1162

Salmonella Sodium
hypochlorite Log Linear 6.95 0.94 0.20 ± 0.02 - 0.0971

Escherichia coli Sodium
hypochlorite

Log
Linear/Tail 5.43 0.96 0.25 ± 0.03 - 0.0524

Salmonella Quaternary
ammonium Log Linear 0.45 0.88 0.54 ± 0.06 - 0.1774

Escherichia coli Quaternary
ammonium Log Linear 0.45 0.94 0.52 ± 0.04 - 0.0765

Legend: Salmonella used was (S45-1), and Escherichia coli was (S26-2). The model was selected according to the
better adjustment of data. 4D reduction: concentration compounds required to 4-log reduction of the bacterial load.
R2 = adjusted determination coefficient: indicates the goodness of fit. Kmax: rate of population inactivation before
the tailing effect. Delta: time required for the first log reduction. MSE: mean square error.

The behavior of Salmonella and Escherichia coli inactivation is described in Figure 2. The pattern of
inactivation was linear for quaternary ammonium, and the rate of inactivation (Kmax) resembles in
both strains, affirming that the strains are susceptible to this compound. For sodium hypochlorite,
the Salmonella inactivation model indicates a linear pattern. However, for the E. coli strain, a log-linear
decrease with a tail in higher concentrations of the sanitizer was found. The Kmax of sodium
hypochlorite indicates a higher susceptibility in E. coli in the initial contact. However, it is possible to
verify a resistance in the last three levels used in E. coli strains that evidenced the tail effect (an almost
constant survival rate) (Figure 2). Concerning organic acid, all models had a linear dispersion for both
pathogens and close to the Kmax value, with the exception of E. coli in acetic acid, where the best data
adjust was for the Weibull model, and the δ (delta) parameter (concentration required for first log
reduction) was obtained. The parameters of each model are described in Table 1.

Results regarding a 4-log reduction of each bacterial load are described in Figure 3. Escherichia coli
showed a higher (p < 0.05) resistance to acetic acid exposure when compared to Salmonella (Figure 3).
However, the sodium hypochlorite inactivation of the strains showed a contrary behavior, where E. coli
presented a higher inactivation than Salmonella (p < 0.05). The quaternary ammonium and lactic acid
did not differ among the strains used (p < 0.05).
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Figure 3. Levels required for each substance reach 4 log-reductions based on the models obtained.
Legend: Non-typhoidal Salmonella used was S45-1, and E. coli STEC used was S26-2. The capital letter
indicates a statistical difference in concentration compounds required to 4-log reduction of each substance
(column). Adjusted means (LS means) were separated by the Student’s t-test. Concentration values are
presented as average ± standard deviation.
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3. Discussion

Quaternary ammonium and sodium hypochlorite are commonly applied in the food industry.
In the present study, wild Salmonella and E. coli strains showed a linear pattern of inactivation when
exposed to quaternary ammonium. The obtained results indicate an efficacy on the inactivation of
Salmonella and E. coli. This finding is relevant, indicating that the use of this substance remains a good
alternative to the inactivation of microbial pathogens. However, the use of quaternary ammonium in
farm facilities destined to livestock is still banned in some countries due to the capacity of induction of
multi-drug resistance in bacteria [35]. This fact is highlighted for generic efflux pump mechanisms and
cassette collectors of resistance. Both are responsible for resistance in some antimicrobial substances
too [36]. For example, Deng et al. [37], evaluated Salmonella isolates from foods of animal origin at
retail, and the results indicated that the use of disinfectants was related to MDR strains by selective
pressure and the mechanisms described above. Moreover, other studies have also evidenced that
quaternary ammonium compounds induce antimicrobial resistance [27].

Concerning sodium hypochlorite, the results indicate an inactivation tail for the wild E. coli
strain. This substance is commonly applied in the facilities and directly in products of vegetal origin.
The constant use of this substance and, consequently, resistance due to selective pressure, as well as its
volatile characteristic, is an additional challenge to be used in the food industry [38]. Our hypothesis
for the inactivation tail is based on the saturation of efficacy of the sodium hypochlorite due to the
lower availability of free-chlorine or volatilization of this compound. Furthermore, the wild genetic
profiles can have an influence because metabolic transcriptions are generally more active [3].

Another point is that sodium hypochlorite is applied to biofilm control in the food industry,
which may trigger resistance to this substance since the biofilm populations are dense and the inner
layer can survive the use of sanitizer [39]. Our results show the need to evaluate alternative substances
for biofilm control, since a population of resistant bacteria may be responsible for several cases
of contamination in food [40,41]. It is essential to notice that Salmonella had a linear inactivation
pattern, which indicates a susceptibility of this wild strain to sodium hypochlorite. According to the
study performed by Köhler et al. [42], an efficient reduction in gram-negative bacteria with sodium
hypochlorite was found. However, the presence of organic matter and MDR strains was highlighted as
limiters of the sanitizer efficiency. For this reason, we performed the assays in Brain Heart Infusion
Broth (BHI) broth to simulate the organic matter in the food industry and the time of exposure based
on the general protocol used in the facilities.

Organic acids are regarded as an alternative compound for microbiology control in the food
industry due to their secure handling, low cost, and quick action [43]. Lactic acid had a linear
inactivation pattern in both strains. This finding may be related to the prohibition of the use of lactic
acid in the meat production system in Brazil, where the lack of exposure of wild strains to lactic acid in
food processing may have led to bacterial strains without previously developed resistance against
the acid. Moreover, our results on E. coli inactivation kinetics are similar to other studies, pointing
out that lactic acid is more effective than acetic acid, although the use of lactic acid in carcass for
decontamination in the USA is permitted [44]. Another advantage of lactic acid compared to acetic acid
is its volatile characteristics, where lactic acid is odorless, while acetic acid has a strong characteristic
odor. Besides, this characteristic of acetic acid can irritate the skin or eyes.

In contrast to lactic acid, a different behavior was found using acetic acid to inactivate E. coli
strains. Linear inactivation was verified in Salmonella, while for E. coli, the model of inactivation fitted
was non-linear (Weibull). This behavior may be associated with intrinsic resistance of low pH in
E. coli [45,46]. Moreover, the study performed by Hamdallah et al. [47] shows that an experimental
evolution was performed to estimate the adaptation and growth capacity of E. coli at adverse pH.
The results indicated that pH is the key to transcriptional regulators for acid resistance, and together
with selective pressure, it directs the evolution of the strains towards higher resistance profiles.
Besides, Chapman and Ross [48] suggested that Salmonella and E. coli protect themselves against acetic
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acid by mechanisms that retard acidification of the bacterial cytoplasm. In accordance, our results
indicate that E. coli may have triggered this previously mentioned mechanism.

On the other hand, for Salmonella, these effects were either not elicited or insufficient. It is
important to note that the acetic acid is employed in the practice of nutritional supplementation in
animals as a growth promoter tool (usually in poultry reared) [49]. This fact may be associated with
the resistance to the wild E. coli strain in the present study.

Another factor corroborating the discrepancy in acetic acid is the screening step used in the
present study. The wild-type strains showed higher resistance to organic acids when compared to
the ATCC strains, and E. coli was more resistant than Salmonella in lactic and acetic acids (Figure 1).
A hypothesis is related to the mechanism of the acid tolerance response (ATR) that remains more
active in wild strains subjected to abiotic stresses than in clinical strains stored for long periods [3].
The extensive presence of bacteria resistant to several drugs has been related to Brazilian meat and
poultry production [5,50,51]. However, the lack of research associated with the use of sanitizers against
bacteria with multi-drug resistance in Brazil and the possible exposure to antimicrobials in the food
chain emphasizes the need to use wild strains in studies for the inactivation of pathogens. We evaluated
different models of inactivation in wild strains that had virulence genotype and occasional multi-drug
resistance. The fitted models for organic acid and sanitizers showed suitable adequacy when explaining
the microorganism inactivation kinetics. The statistical parameters of adequacy and adjustment were
satisfactory, reinforcing the excellent fit to the data (Table 1).

Moreover, the legislation behind the use of disinfectants is still an essential topic of discussion.
The direct use or presence of the quaternary of ammonium in food products is prohibited by the
ANVISA (Brazil) [52]. The use of sodium hypochlorite for fruit disinfection is the exception [53]. On the
other hand, the direct use of organic acids in the processing of beef is allowed by the European Union
and the United States of America to decrease the total count of microorganisms [44,54]. However, the use
of organic acids is not permitted in Brazil for beef production [43]. The use of organic acid in the
animal production system in Brazil is only approved for chicken processing during the sanitization
step and the acetic acid as a growth promoter. In this regard, our study encourages the use of organic
acid in the food industry, directly or indirectly, as a sanitization process.

Moreover, the use of organic acids is a potential alternative to overcome bacteria antimicrobial
resistance [33,55,56]. Antimicrobial resistance has increased the global incidence of infectious diseases,
and thus, organic acids, due to the penetration and disintegrating capacity of the outer membrane
of gram-negative cells, represent a potential tool to combat this issue [33,55,56]. Besides, it is worth
pointing out that the organic acids can be directly applied in food or on food processing surfaces once
they are safe for human intake and do not have a daily limit established.

4. Materials and Methods

4.1. Sample Collection and Preparation

A total of 12 bacterial strains (six E. coli and six Salmonella) were used and are described in Table 2.
The wild-type non-typhoidal Salmonella strains used in the study were previously isolated from chicken
meat, as described by Cunha-Neto et al. [5], and E. coli STEC strains were isolated during the processing
of beef by Santos et al. [57]. Besides, the ATTC culture of non-typhoidal Salmonella (ATCC-23564) and
Escherichia coli STEC (ATCC-2196) was used as a reference to address the comparison with wild-type
strains. The criteria for inclusion of the strains in the present study were according to the relevance of
the serotype (involvement in food outbreaks) and the resistance to one or more classes of antibiotics.
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Table 2. Bacterial strains used in the present study.

Strain Resistance Profile 1 Isolation Source Reference

S. O:4,5 (S45-1) AMP, ATM, CFL, CTF, GEN, SUL, SUT, TRI Chicken meat [5]
S. Agona (SAg-2) AMP, ATM, CFL, CFO, SUL, SUT, TRI Chicken meat [5]
S. Abony (SAb-3) AMP, ATM, CFL, CFO, CTF, SUL, TRI Chicken meat [5]
S. Infantis (SI-4) AMP, ATM, CFL, CFO, SUL, TRI Chicken meat [5]

S. Shwarzengrund (SS-5) SUL, SUT, TRI Chicken meat [5]
S. Typhimurium (ATCC) - Clinical strain ATCC–23564

E. coli O26 (E26-1) - Rectal swab of bovine [57]
E. coli O26 (E26-2) - Hide swab [57]
E. coli O26 (E26-3) - Rectal swab of bovine [57]

E. coli O113:H21 (E113-4) STR Retail beef [57]
E. coli O113:H21 (E113-5) - Carcass swab [57]

E. coli O26 (ATCC) - Clinical strain ATCC–2196

Legend: 1 AMP, ampicillin; ATM, aztreonam; CFL, cephalothin; CFO, cefoxitin; CTF, ceftiofur (β-lactams);
CLO, chloramphenicol; GEN, gentamicin; TET, tetracycline; TRI, trimethoprim; SUL, sulfonamide; STR, streptomycin,
and SUT, trimethoprim and sulfamethoxazole (folate pathway inhibitors).

The strains were stored at −80 ◦C in Brain Heart Infusion Broth (BHI; Kasvi®, São Paulo, Brazil),
medium with 20% glycerol as stock cultures. Posteriorly, the reactivation of the strains was performed.
Briefly, an aliquot of 0.1 mL of the stored culture was collected, inoculated into 9 mL of BHI and
incubated at 37 ◦C for 24 h. Subsequently, a second reactivation round was carried out to maximize the
cellular metabolic process.

4.2. Selection of Resistant Strains in Organic Acid Using Disk Diffusion Method

To select the strains with the highest resistant profile to be used in the inactivation modeling, a disk
diffusion assay for organic acids was performed. Acetic, lactic, and citric acids were standardized for
4096 µg/mL concentrations. Each strain was transferred to Müller-Hinton 2 broth (MH; Himedia®,
Mumbai, India) and incubated between 2 and 4 h up to 0.5 MacFarland scale [58]. The assay was
carried out according to the Kirk Bauer disk-diffusion test [59]. Briefly, the strains were streaked on
Müller-Hinton 2 agar (MH; Himedia®, India) and diffusion disks (LB; Laborclin®, São Paulo, Brazil)
with 10 µL of each organic acid were included in the diffusion disks. After the incubation period of
24 h at 37 ± 0.1 ◦C, the halos were measured.

4.3. Organic Acid and Sanitizer Treatments and Enumeration of Survival Cells

According to disk-diffusion results, two strains were selected for the study of the inactivation
kinetics Salmonella (S45-1) and Escherichia coli (E26-2). To determinate the working concentrations,
a minimum inhibitory concentration (MIC) was determined for both pathogens. Therefore, MIC
was performed by a microdilution test on a 96-well plate. Briefly, 0.2 mL of BHI with Salmonella
strain at 105 CFU/mL was included in each well. The concentration of the tested organic acids was
calculated according to the volume of the total solution. Besides, the doses with a minimum inhibitory
concentration for each pathogen were identified, and the doses required for the model were determined.
The dose for total inactivation (DTI) was used as the highest working concentration to study the
inactivation efficiency of each compound.

Ten concentrations lower than DTI were utilized to study the bacterial inactivation kinetics.
The ranges used for acetic and lactic acids were: 4.00–7.50% (v/v), to sodium hypochlorite: 29.00–70.00%
(v/v) and quaternary ammonium: 0.45–0.68% (v/v). The analyses were performed following the
microdilution method with an exposure time of fifteen-minutes per substance. Briefly, 100 µL of BHI
with their respective inoculated bacteria were distributed in 8-wells into a 96-well plate. The percentages
of sanitizers and organic acids were calculated according to each point and included in the BHI broth.
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After fifteen minutes, the aliquot of 0.1 mL was transferred to 0.9 mL of saline peptone water (for
neutralization of the substances). Posterior dilutions were performed, and an aliquot of 0.1 mL was
plated on plate count agar (PCA; Kasvi®, São Paulo, Brazil). The plates were incubated at 37 ◦C for
24 h and counted on the electronic plate counter (Eddy-jet-IUL, Barcelona, Spain).

4.4. Statistical Analyses and Mathematical Modeling

To evaluate the effects of different organic acids on different strains of E. coli and Salmonella, as well
as to choose the highest organic acid-resistant strains, the data of disk-diffusion assay were analyzed
using ANOVA with Tukey’s test. In order to compare Salmonella vs. E. coli in disk-diffusion inhibition
and dose required for 4-log reduction (obtained by inactivation modeling) of each sanitizer and organic
acid, a Student’s t-test was performed. Models of inactivation were constructed using the software
Gina FIT version 1.6 (Katholieke Universiteit Leuven, BEL, Leuven, Belgium). The following models
were fitted to the survival data: Log-Linear Bigelow [60], Geeraerd-tail model [61], and the Weibull
model [62]. The model evaluation and performance were assessed through the adjusted coefficient of
determination (R2

adj) and mean square error (MSE) [63]. The significance level used was 0.05.

5. Conclusions

The use of some chemical compounds is being related to the induction of antimicrobial
resistance [17], and organic acids are gaining popularity as an alternative strategy for antimicrobial
control [33,55,56]. Properties such as low cost, easy handling, fast application, and a non-limited daily
intake to consumers pointed to the use of the organic acids. Moreover, organic acids, mainly lactic acid,
can be directly used on the beef surface, in the water employed to sanitizations, or in industrial facilities
for inactivation of wild strains with resistance to several antimicrobials. Our study indicates the levels
of organic acids and sanitizers to be used in the inactivation of emerging foodborne pathogens while
using wild-type strains of E. coli STEC and Salmonella, with a multi-drug resistance profile for the
construction of such models that incorporate higher reliability with the expected reduction since they
are based on strains with higher resistance profiles.
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