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Effects of T-2 toxin on digestive 
enzyme activity, intestinal 
histopathology and growth in 
shrimp Litopenaeus vannamei
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T-2 toxin (T-2), a naturally occurring mycotoxin that often accumulates in aquatic animals via 
contaminated feed, is toxic to animals, including humans. In this study, six groups of shrimp (n = 30 
shrimps/group) were given T-2 in feed at concentrations of 0–12.2 mg/kg for 20 days. T-2 accumulation, 
intestinal histopathology, digestive enzyme activities and subsequent effects on shrimp are reported. 
Compared to the control, T-2 significantly reduced weight gain, specific growth rate, and survival. 
The histopathology of shrimp intestine showed concentration-dependent degenerative and necrotic 
changes in response to dietary T-2. Progressive damage to the microstructures of shrimp intestine 
occurred with increasing dietary T-2 concentrations, with initial inflammation of the mucosal tissue 
at T-2 concentrations of 0.5 and 1.2 mg/kg, progressing to disappearance of intestinal villi and 
degeneration and necrosis of the submucosa at 12.2 mg/kg. Intestinal amylase and protease activities 
increased at low T-2 concentrations but showed significant inhibition at high concentrations; however, 
the opposite trend occurred for lipase activity. Collectively, these results indicate that digestive enzyme 
activities and mucosal structures are markedly affected by exposure to T-2, and these may have 
contributed to the lower survival rate of shrimp.

With the rapid development of aquaculture, Litopenaeus vannamei has become one of the largest shrimp exports 
from China to the world1,2. In the past decade, the production of shrimp in aquaculture has intensified and the 
industry expanded extensively. At the same time, mycotoxin contamination of aquatic feed has increased because 
more cereal types with high protein are now incorporated into these feeds, replacing animal proteins to reduce 
feed costs3,4.

T-2 toxin (T-2) is among the most toxic of the trichothecene mycotoxins, a large group of compounds pro-
duced by several Fusarium species that occur in mold-damaged foods around the world5,6. T-2 is rapidly absorbed 
by aquatic animals and causes a wide range of toxic effects7. Ingestion of T-2 by aquatic organisms has been found 
to damage the stomach, hepatopancreas and intestinal mucosa, and reduce feed intake and growth8,9.

As a food safety measure, the residues of T-2 in food and feeds are closely monitored10. Extensive research has 
explored the mechanisms of T-2 toxicity in humans and animals, with inhibition of protein synthesis, damage to 
digestive tract and reduction in immunity being the main mechanisms found. For example, in ducks fed T-2 con-
taining feed for three weeks, the rate of weight gain was significantly reduced, and the digestive tract was severely 
damaged11. On exposure of catfish to T-2 at 1.0 mg/kg in the diet, intestinal immunity declined, and mortality 
increased up to 84%12. In Litopenaeus vannamei and Penaeus monodon given a diet containing T-2 at 1.0–2.0 mg/kg  
for up to 10 weeks, the digestive tract mucosa was severely inflamed13.
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Shrimp intestine is not only a digestive organ, but also an important part of the immune system14. Several 
animal studies have evaluated the effects of a range of nutrients on intestinal structure15–17. However, relatively few 
studies have explored the influence of mycotoxins (especially T-2) on intestinal histopathology. Furthermore, it 
was found that the effects of T-2 on shrimp intestinal histopathology have not been reported. Intestinal digestive 
enzyme activities during shrimp growth have been studied18–20. Protease, amylase and lipase play a key role in 
food digestion and nutrient absorption from the intestine21,22. Effects of T-2 on shrimp digestive enzymes have 
not been reported.

In our previous research, we have found that T-2 damaged the microstructure of shrimp hepatopan-
creas in a concentration-dependent manner and had a significant effect on alkaline phosphatase (AKP), 
glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities23. And the effects 
of T-2 on the survival rate of shrimp weighing 3.5 ± 0.5 g and 8.5 ± 0.5 g were significantly different23,24. In this 
study, shrimp with a body weight of 5.0 ± 0.5 g were studied. Growth parameters, intestinal histopathology and 
digestive enzyme activities were analyzed to better understand the toxic effects of T-2 in shrimp.

Results
Growth parameters of shrimp exposed to T-2 toxin.  Growth parameters of shrimp (n = 30/group) 
exposed to T-2 are presented in Fig. 1. Compared to the control group, all growth parameters of T-2 dosed shrimp 
declined significantly. As the concentration of T-2 increased, the weight gain rate and specific growth rate of 
shrimp gradually decreased. The survival rate showed a highly significant difference between treatments and 
control (P < 0.05). The worst survival rate was observed in the group given 1.2 mg/kg. However, the survival rate 
began to rise gradually with higher T-2 concentrations in the feed.

Effects of T-2 toxin on shrimp intestinal histopathology.  The criteria for evaluation of the extent of 
damage caused by T-2 toxin on shrimp intestinal histopathology are shown in Table 1. According to the criteria, 
the degree of damage was divided into 5 levels: normal (−), minimal (+), mild (++), moderate (+++) and 
severe (++++). The microstructures of shrimp intestine in the control and test groups (n = 5) are shown in 
Fig. 2. The shrimp intestine in the control group exhibited a well-defined striated border, complete mucosal folds 
and a clear organelle structure (Fig. 2-a). In the 0.5 and 1.2 mg/kg T-2 concentration groups, the shrimp intestine 
appeared inflamed with enlarged striated edge and shorter mucosal folds (Fig. 2-b,c). In the 2.4 mg/kg group, the 
intestinal submucosal space was increased, the villi were almost non-existent, and the mucosal folds were much 
shorter (Fig. 2-d). In the 4.8 mg/kg group, the intestine was swollen, the striated border was missing, and the 

Figure 1.  Reductions in growth parameters and survival as a function of dietary concentrations of T-2 toxin. 
Different superscripts indicate significant differences. Weight gain is shown as WG, specific growth rate is 
shown as SGR, and survival rate is shown as SR.

Damage degree Criteria

Intestinal structure

A B C D E

Striated border Mucosa Submucosa Muscular layer Whole structure

− Normal Arranged closely Folds, villi & crypts normal Tight intercellular 
space Cells arranged in order Clear and complete

+ Minimal Arranged closely Shorter folds & short villi Large spaces Space enlarged Loose structure

++ Mild Swelling Less folds, Shorter villi Large spaces Vacuolation & dispersed Loose tissue

+++ Moderate Degeneration Folds almost disappeared, Very short villi Not compact or dense Marked vacuolation, Nucleolysis Necrosis

++++ Severe Exfoliation Disintegration of villi, some necrosis Dissolution Separation Necrosis

Table 1.  Criteria used to evaluate the degree of damage to shrimp intestine. A, B, C, D refers to different parts of 
the intestine as referred to in Fig. 2.
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intercellular space was even larger, so that the layers were separated (Fig. 2-e). In the highest T-2 concentration 
group (12.2 mg/kg), the intestine was severely damaged, the intestinal villi had disappeared, mucosal folds were 
extremely short, and the submucosa had undergone marked degeneration and necrosis (Fig. 2-f).

Effects of T-2 toxin on shrimp digestive enzyme activities.  The effects of different T-2 concentrations 
on shrimp intestinal digestive enzymes are shown in Fig. 3. With increasing concentrations of T-2, the activity 
of intestinal protease and amylase decreased and this would have reduced protein and carbohydrate digestion. 
The reason for the reduction in protease activity may be that T-2 inhibited the expression of protein. Significant 
differences (P < 0.5) were observed in intestinal lipase activity. It was highest with T-2 at 1.2 mg/kg of feed. As T-2 
concentrations increased to higher levels, step-wise reductions in lipase activity were noted, but only the highest 
(12.2 mg/kg) concentration was associated with activity that was significantly below that of the control.

Concentration-response relationships between T-2 toxin and digestive enzyme activities.  
Concentration-response correlations illustrate the relationships between intestinal enzyme activities expressed 
as the ratio between the test and control groups in the y-axis and T-2 concentrations in feed (mg/kg) in the 
x-axis (Figs 4–6). The activities of intestinal protease, amylase and lipase were consistent when analyzed using 
Allometric25, LogNormal26 and GaussAmp models27, respectively. The concentration-response correlations 
between the T-2 concentration and digestive enzyme activities were high (R2 = 0.8976 to 0.9891), and variance 

Figure 2.  Histopathology of shrimp intestine exposed T-2 (×400). Description of letter abbreviations: A- 
Striated border, B- Mucosa, C- Submucosa, and D- Muscular layers. Figures a to f are the shrimp given 0 
(control), 0.5, 1.2, 2.4, 4.8, 12.2 T-2 mg/kg respectively.

Figure 3.  The effect of T-2 on digestive enzyme activities (Mean + SD) in shrimp intestine. Bars with different 
superscript letters for each enzyme are significantly different (P < 0.05) compared with the control (0).
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analysis showed that the differences were significant. Intestinal amylase exhibited the minimal EC50 induced by 
T-2. In contrast to protease and amylase, at concentrations between 0.5 and 3.2 mg/kg, T-2 had a stimulating effect 
on lipase activity, and the highest lipase activity occurred at the T-2 concentration of 1.52 mg/kg.

Discussion
Contamination of feed ingredients with toxic concentrations of mycotoxins has been so serious in recent years, 
that it seems likely to limit the expansion of aquaculture in Asia28,29. It has been shown that dietary aflatoxin B1 
caused poor growth performance and deformities of juvenile grass carp30. Dietary mixtures of aflatoxin B1 and 
fumonisin B1 resulted in reduction in growth performance in juvenile catfish31. Weight gain and survival of 
shrimp were impaired by dietary deoxynivalenol after five weeks of exposure32. It is clear that mycotoxins can 
inhibit the growth of shrimp. In this study, shrimp (5.0 ± 0.5 g) were exposed to different T-2 concentrations in 
feed for 20 days, and it had a major impact on the weight gain rate and specific growth rate of shrimp after 20 d 
of exposure. Both of these parameters declined in shrimp given T-2 at any concentration, responses that reflect 
toxicity. However, it was very interesting that the survival rate of shrimp was not consistent with the theoretical 
speculation. The group exposed to the lowest T-2 concentration was associated with the most severe impact on 
survival. This might have been due to the higher concentrations of T-2 inducing damage to the intestine that was 
severe enough to reduce further T-2 absorption and thus systemic toxicity. By contrast, in our previous research 
with shrimp weighing 8.5 + 0.5 g, there was a modest decline in survival rate with T-2 in feed at concentrations 
of 1.2 mg/kg and greater24. In our various studies with dietary T-2, survival was the lowest (72%) in shrimp that 
weighed 3.5 + 0.5 g that were given the toxin at 1.2 mg/kg of feed23. In addition, Bundit et al.33 also discovered 
that T-2 inhibited black tiger shrimp (average weight = 4.7 g) survival rate even at 0.1 mg/kg. Combined with the 

Figure 4.  Effect of T-2 exposure concentration on the ratio of amylase enzyme activity (treatment group/
control group) in shrimp intestine. NOAEL: No Observable Adverse Effect Level; EC50: T-2 concentration for 
50% of amylase enzyme activity.

Figure 5.  Effect of T-2 exposure concentration on the ratio of intestinal protease enzyme activity (treatment 
group/control group) in shrimp intestine. NOAEL: No Observable Adverse Effect Level; EC50: T-2 
concentration for 50% of protease enzyme activity.
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results of this study, it seems that low T-2 concentrations have a marked inhibitory effect on the survival rate of 
juvenile shrimp (average weight ~ 5.0 g).

Shrimp intestine is a digestive organ and an important part of the immune system that plays a major role in nutri-
ent and also toxin absorption14,34. Because the gastrointestinal mucosa is the first barrier between the body and orally 
ingested exogenous compounds, it has developed various mechanisms to limit absorption of toxins35. Studies have 
shown that T-2 not only reduces the shrimp growth but also can cause marked changes to the digestive system structure9.  
Supamattaya et al.13 have shown that feeding Litopenaeus vannamei and Penaeus monodon a diet containing T-2 at 
1.0–2.0 mg/kg for 8 and 10 weeks can cause serious degeneration and atrophic changes in the intestines. T-2 can 
induce gross and histologic changes in the intestine of rats36. T-2 altered intestinal morphology in turkeys with 
resultant shorter and thinner villi37. In our study, marked intestinal tissue damage was evident as T-2 concentration 
increased. In the high T-2 concentration group, the shrimp intestinal tract was severely damaged, where almost all of 
the intestinal villi were detached or non-existent, the mucosal structure was loose, and the submucosa had partially 
undergone dissolution. Such drastic damage will affect shrimp health by reducing nutrient digestion and absorption. It 
is inferred that there was a direct relationship between the damage to the intestinal structure and shrimp survival rate.

There were changes in the activities of three key enzymes, protease, lipase and amylase, which could alter 
shrimp nutrient metabolism38,39. Studies have shown that low concentrations of certain mycotoxins in feed can 
stimulate the activity of digestive enzymes in experimental animals. For example, aflatoxin B1 at 2.5 mg/kg in 
the diet of chickens increased amylase activity, and 40 μg/kg increased both amylase and protease activity40,41. 
Digestive enzymes of broiler chickens were also influenced by T-242. These results are similar to the trend of 
intestinal digestive enzymes of shrimp observed in the low T-2 concentration groups of this study. The activities 
of the three digestive enzymes increased slightly at T-2 concentrations of 0.5 and 1.2 mg/kg with lipase reaching 
a maximum of 66.42 ± 3.60 U/mg protein in the shrimp fed a diet containing T-2 at 1.2 mg/kg. We postulate 
that shrimp were stressed by the two lower concentrations of T-2 in a manner that increased lipase secretion. 
However, protease and amylase activities were decreased in response to higher concentrations of T-2, and those 
changes might be attributable to reduced protein synthesis.

Based on the concentration-response relationship between T-2 and digestive enzyme activities, the corre-
lation coefficients of the concentration-response curves were high (R2 = 0.8976 to 0.9891), indicating that the 
concentration-response curves fitted the experimental data well. The NOAEL values of intestinal protease and 
amylase activities were ~0.50 mg/kg, indicating that T-2 can inhibit protease and amylase at fairly low concentra-
tions43. Comparing the curve equation of the digestive enzymes, the EC50 for T-2 toxin-induced intestinal amylase 
activity was the lowest. This means that as a biomarker of T-2 intoxication, amylase would be more sensitive than 
intestinal protease and lipase of shrimp.

Rotter et al.44 and Awad et al.45 found that deoxynivalenol, a type B trichothecene, can cause necrosis of the diges-
tive tract mucosa, which would then seriously impact on the healthy growth of animals. When digestive enzymes 
are induced by exogenous compounds and thus stimulate the activity of the host’s natural digestive enzyms, it can 
lead to a change in shrimp growth38,46. Some mycotoxins can decrease digestive enzyme activity as well as other 
digestive functions in animals, and thereby inhibit their growth and development47,48. The survival rate of shrimp 
sharply decreased in the T-2 high concentration groups. This appears to suggest that intestinal tract inflammation, 
intestinal wall thinning, shrinkage of intestinal villi and folds, and inhibition of key digestive enzymes collectively 
caused significant changes in shrimp digestive function, resulting in reduced survival of the organism.

Methods
Animals and chemicals.  Litopenaeus vannamei (5.0 ± 0.5 g) were purchased from East Island (Zhanjiang, 
China). T-2 (purity ≥98%) was purchased from Enzo (USA). All other chemicals (Analytical reagents) used in 
the study were obtained from Qiyun Biological Technology (Guangzhou, China).

Figure 6.  Effect of T-2 exposure concentration on the ratio of intestinal lipase enzyme activity (treatment 
group/control group) in shrimp intestine. NOAEL: No Observable Adverse Effect Level; MEC: T-2 
concentration of maximal lipase enzyme activity.
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Shrimp toxicity study.  T-2 mixed shrimp feed was prepared according to Dai et al.49. Shrimp were divided 
into six groups (30 shrimps/group) and placed in six water tanks (75 × 60 × 50 cm; water volume: 150 L) for 7 d for 
them to adapt to the conditions (pH: 7.5 ± 0.1; water temperature: 25 ± 1 °C; salinity: 10‰; dissolved oxygen: 7.0–
7.5 mg/L). According to the increasing concentration grouping paradigm of 20 d accumulation toxicity test, the 
concentrations of T-2 used were 0 (control), and 1/50, 1/20, 1/10, 1/5 and 1/2 LC50 (LC50 = 24.4 mg T-2/kg feed)50, 
thus the concentrations were 0 (control), 0.5, 1.2, 2.4, 4.8 and 12.2 mg T-2/kg feed respectively. Shrimp were fed 
three times a day (total daily feed intake ~ 5% of body weight) for 20 days10,24. One-third of the water in the tank 
was replaced with fresh water every morning. On day 21, the total weight of all shrimp in each tank was deter-
mined. Shrimp were anesthetized with ice, killed, and the midgut was removed and stored at −70 °C until required.

Growth parameters of shrimp.  The weight gain rate, survival rate and specific growth rate of shrimp 
(n = 30/group) in different treatment groups were calculated51,52 as follows:

= − ×Weight gain rate (%) (W W)/W 100;f i i

Survival rate (%) (N N )/N 100;i f i= − ×

Specific growth rate (%) [(lnW lnW)/days] 100;f i= − ×

where Wf and Wi are the final and initial average body weights on day 21 and 1 respectively. Nf and Ni are the final 
and initial (=50) number of shrimp in each group.

Histopathology of intestine.  The midgut of fresh shrimp intestine (n = 5) from each group was fixed in 
10% neutral-buffered formalin for 24 h and dehydrated with a gradient of alcohol (50% to 95%). Next, intestines 
were embedded, sectioned using a microtome and stained as described by Qiu et al.23. Histopathologic changes in 
the intestine were observed using a light microscope (Olympus CKX41, Tokyo, Japan).

Digestive enzyme analyses.  Midguts (n = 5) of shrimp intestine from each group were homogenized 
(IKAT 25, Staufen, Germany) for 1 min (5000 × g) in cold distilled water and centrifuged (Himac CS150GXII, 
Hitachi, Tokyo) for 20 min (8,000 × g) at 4 °C. The supernatant was used to measure the digestive enzyme activ-
ities. Protease activity was determined by the casein-hydrolysis method of Furne et al.53. Amylase activity was 
determined by the starch-hydrolysis method of Zokaeifar et al.54. Lipase activity was determined according to the 
method of Muralisankar et al.19 by degrading triacylglycerol to free fatty acids. Digestive enzyme activities are 
expressed as U/mg of protein.

The concentration-response curves between T-2 and digestive enzyme activities in shrimp intestine were con-
structed using Origin 8.5. The curves were drawn with T-2 concentration (mg/kg) as the x-axis, and the ratio 
between the value of the experimental group and the control group (relative coefficient) as the y-axis. The NOAEL 
(no observable adverse effect level, concentration of T-2 when the ratio of enzyme activity was 1), MEC (maximal 
effect concentration of T-2, concentration of T-2 when the ratio of enzyme activity was maximum) and EC50 
(concentration for 50% of maximal effect, concentration of T-2 when the ratio of enzyme activity was 0.5) were 
calculated by GraphPad Prism 7 (GraphPad Software, La Jolla, CA).

Statistical analyses.  Data are presented as the mean ± standard deviation (SD). All statistical analyses were 
conducted using GraphPad Prism 7, SPSS 22.0 (IBM, Chicago, USA) and Origin 8.5 (OriginLab, Massachusetts, 
USA). One-way ANOVA was performed and Duncan’ s multiple range test at a significant level of 0.05 was used 
to determine differences among groups.
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