
The vertebrate immune system has traditionally been  
divided into innate and adaptive arms. Cells of the innate  
immune system recognize pathogens and tissue damage  
through germline- encoded pattern recognition receptors  
(PRRs)1,2, which sense diverse pathogen- associated 
molecular patterns and damage- associated molecular 
patterns. The processes activated on engagement of PRRs 
are rapid, are considered to be non- specific and include 
responses such as phagocytosis, cell locomotion, killing 
of pathogens or cells, and cytokine production. These 
innate immune mechanisms are usually very effective 
in eliminating invading pathogens. Additionally, den-
dritic cells (DCs) and specialized T cells and B cells drive 
adaptive immune responses, which can be concomi-
tantly induced. These lymphocyte- dependent adaptive 
immune responses are slower to develop but are antigen 
specific and lead to long- term immunological memory3.

For a long time it was assumed that immunological 
memory was an exclusive hallmark of the adaptive 
immune response. However, a growing body of liter-
ature indicating that innate immune cells — and even 
tissue-resident stem cells — can show adaptive charac-
teristics has challenged this dogma4–8. Greater protection 
against reinfection — a de facto immune memory 
function — has also been reported in plants and inver-
tebrates9–11, which lack an adaptive immune system. This  
demonstrates that adaptation of host defence can occur  
on the basis of innate- like immune mechanisms. More-
over, certain infections and vaccinations can induce 
broad protection against other pathogens through innate 
immune mechanisms5,12. Conversely, the phenomenon 

called ‘LPS tolerance’, which can be induced by low 
doses of lipopolysaccharide (LPS) and other Toll-like  
receptor ligands, is also an adaptation of cellular 
responses to an external stimulus, but which leads to a 
lower inflammatory response to a second stimulation13.

These studies have led to the hypothesis that the 
innate immune system also exhibits adaptive characteris-
tics, a property that has been termed ‘trained immunity’. 
Understanding the properties of trained immunity will 
result in a better understanding of host defence mech-
anisms and the pathogenesis of immune- mediated 
diseases. The conceptual and mechanistic advances in 
this emerging field of science will open new avenues for 
clinical applications in vaccination as well as for disease 
prevention and treatment. In this Review, we discuss 
the latest discoveries in the field of trained immunity 
and highlight possible directions of future research in  
this field.

Defining trained immunity
The concept of trained immunity describes the long- term 
functional reprogramming of innate immune cells, 
which is evoked by exogenous or endogenous insults 
and which leads to an altered response towards a second 
challenge after the return to a non- activated state. The 
secondary response to the subsequent non- specific stim-
ulus can be altered in such a way that the cells respond 
more or less strongly than to the primary response, con-
ferring context- adjusted and time- adjusted responses. 
It is important to underline that trained immunity rep-
resents the concept of long- term adaptation of innate 
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immune cells rather than a particular transcriptional 
or functional programme: indeed, different stimuli (for 
example, β- glucan, LPS or the bacillus Calmette–Guérin 
(BCG) vaccine) can induce different trained immunity 
programmes.

In contrast to adaptive immune responses, epigenetic 
reprogramming of transcriptional pathways — rather 
than gene recombination — mediates trained immunity 
(FIG. 1). The immunological phenotype of trained immu-
nity has been proven to last at least 3 months and up to 
1 year, although heterologous protection against infec-
tions induced by live vaccines can last for up to 5 years14. 
However, even considering this, trained immunity is 
generally reversible and shorter lived than classical 
epitope- specific adaptive immunological memory12,15. 
Importantly however, recent studies have suggested 

transgenerational effects through induction of trained 
immunity16,17.

Immune memory: an evolutionary perspective
The adaptive immune system, in which T cells and B cells 
mediate immunological memory, has developed rela-
tively recently in vertebrates (that is, around 500 million 
years ago). By contrast, invertebrate species rely solely 
on the innate immune system for defence against patho-
gens and recognition of tissue damage. In vertebrates, on 
encounter with a threat and activation of particular lym-
phocyte clones that recognize specific antigens from the 
invading pathogens, de novo rearrangement of immu-
noglobulin and T cell receptor gene segments occurs. 
This ‘on demand’ production of novel and diverse 
receptors forms the basis for lymphocyte- mediated spe-
cific immune memory responses in jawed vertebrates 
(the gnathostomes)18. An alternative adaptive immune 
system evolved in jawless vertebrates, in which specific 
lymphocyte- mediated immune memory is mediated by 
variable lymphocyte receptors generated via the somatic 
rearrangement of gene elements encoding leucine- rich 
repeat motifs19. Both immunoglobulin- based and vari-
able lymphocyte receptor- based adaptive immune pro-
cesses in highly differentiated immune cells (that is, 
memory T cells and B cells or gnathostome lympho-
cytes) induce a recall immune response to the previously 
encountered pathogen that is both stronger and highly 
specific to the pathogen, ensuring improved survival of 
the organism.

Given the evolutionary success of organisms lacking 
adaptive immune responses, which represent up to 97% 
of the total biodiversity on Earth20, it is unlikely that 
immunological memory has evolved only in vertebrates. 
Indeed, over the past two decades, an increasing num-
ber of studies have provided evidence that the immune 
system of plants and invertebrates may be ‘primed’ by an 
initial infection, leading to protection against subsequent 
infections10,11,18,19,21,22. Likewise, memory characteristics 
in the innate immune system of vertebrates have recently 
been described and referred to as ‘trained immunity’, 
a process that results in a heightened reaction to sec-
ondary infections or sterile triggers of inflammation5,12. 
Although trained immunity is controlled by distinctive 
mechanisms and is less specific and of shorter duration 
than adaptive immune memory23, both fulfil the same 
principal function: a quicker and stronger response 
against pathogens and improved survival of the host.

Trained immunity in vertebrates
Evidence of trained immunity in mouse infection models. 
Many studies in mice have documented the existence of 
adaptive characteristics of innate immunity. Together, 
these studies demonstrated that training mice with dif-
ferent microbial ligands could protect against subsequent 
lethal infection in a non- specific manner. For example, 
treatment with the fungal ligand β- glucan protected 
against subsequent infection with Staphylococcus 
aureus24,25, while the peptidoglycan component muramyl 
dipeptide induced protection against Streptococcus pneu-
moniae and Toxoplasma gondii infections26. Other exam-
ples include CpG oligodeoxynucleotide application, 
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Bacillus Calmette–Guérin
(BCG). An attenuated form of 
the bacterium Mycobacterium 
bovis, which is the causative 
agent of bovine tuberculosis. 
Developed at Institut Pasteur 
at the beginning of the 
twentieth century as a vaccine 
to prevent tuberculosis (BCG 
vaccine), it also induces 
protective heterologous effects 
against infections and 
malignancies.
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which leads to protection against subsequent exper-
imental sepsis and Escherichia coli meningitis27, or 
flagellin- induced protection against S. pneumoniae28 
and rotavirus29.

These data suggest that infections by themselves or  
the exposure of the immune system to microorganism- 
derived immune stimulatory agents can provoke not 
only specific protection against reinfection but also 
non- specific protection against a subsequent challenge 
with the same or another pathogen. For example, vac-
cination with the BCG vaccine was shown to protect 
animals against secondary infections with Candida 
albicans, Schistosoma mansoni and Mycobacterium 
tuberculosis30–32. The non- specific character of the 
protection argues against a significant role of adaptive 
immunity for mediating this type of cross protection 
and suggests activation of rather non- specific protective 
innate immune mechanisms. The BCG vaccine also pro-
tects against lethal candidiasis in SCID mice, which lack 
functional T cells and B cells23,33,34. Similarly, a prior mild 
infection with C. albicans protects against the subsequent 
exposure to a normally lethal candidiasis infection35 in 
both athymic mice and in recombination- activating 
gene 1 (RAG1)- deficient mice, further demonstrating 
the T cell- independent mechanisms of trained immu-
nity36,37. In these studies, the ability of a prior infection 
to provide protection against infection with unrelated 
pathogens was dependent on macrophages35 and on 
proinflammatory cytokine production38. Importantly, 
a recent study showed that multiple passages of 
C. albicans through the gut of mice, leading to an adap-
tation of the fungus towards colonization, results in 
a stronger capacity to induce trained immunity and 
improved protection against non- specific infections in 
a lymphocyte- independent manner39.

Trained immunity in humans. An increasing body of evi-
dence suggests that trained immunity plays a critical role 
in humans. First, an extensive collection of epidemiologi-
cal data argues that live vaccines such as the BCG vaccine,  
measles vaccine, smallpox vaccine and oral polio vac-
cine have beneficial, non- specific protective effects 
against infections other than the target diseases40–47 (for 
a review, see also ReF.48). Subsequently, proof- of- principle 
trials with the BCG vaccine in adults23,49 and children50,51 
demonstrated that this vaccine induces non- specific 
activation of innate immune cells. Interestingly, both 
epidemiological and immunological studies have shown 
that the vaccine effects may last for months, but may also 
be modified or even reversed when a non- live vaccine 
is given52,53. Furthermore, BCG vaccination led to pro-
tection against microorganisms in models of controlled 
human infection, such as yellow fever54 or malaria55, and 
this was associated with an augmented proinflammatory 
activity of monocytes (BOx 1). Second, certain infections, 
such as malaria, induce a state of hyper- responsiveness 
that is functionally equivalent to induction of trained 
immunity56–58. Finally, there is evidence that BCG vac-
cination can induce antitumour immune effects lead-
ing to the prevention or treatment of malignancies 
such as bladder cancer59, melanoma60, leukaemia61 and 
lymphoma62. Notably, these anticancer effects of BCG 
seem to be dependent on its capacity to induce trained 
immunity in monocytes and macrophages63.

Diversity of cells that can develop trained immunity. 
The cellular basis of the protection induced by trained 
immunity during bacterial and fungal infections resides 
in the functional reprogramming of myeloid cells. Some 
of the first evidence that macrophages have adaptive fea-
tures came from investigations of LPS tolerance, which 
demonstrated that gene- specific chromatin modifications 
were associated with the silencing of genes coding for 
inflammatory molecules and the priming of other genes 
encoding antimicrobial molecules64. Subsequent studies 
showed that exposure of monocytes or macrophages to 
C. albicans or the fungal cell wall component β- glucan 
enhanced the subsequent response of these myeloid cells 
to stimulation with unrelated pathogens or pathogen- 
associated molecular patterns37. Induction of trained 
immunity in monocytes was accompanied by the 
alteration of several chromatin marks37,65. In addition 
to the data from infections with bacterial and fungal 
pathogens, other studies have shown that monocytes or 
macrophages can mount trained immune responses fol-
lowing infection with parasites66. Recent work has shown 
that DCs can also show immune memory responses. 
In this regard, DCs isolated from mice exposed to the 
fungal pathogen Cryptococcus neoformans displayed 
strong interferon- γ (IFNγ) production and enhanced 
proinflammatory cytokine responses on subsequent 
challenge, which is indicative of a memory response67. 
These effects were dependent on epigenetic changes and 
were impaired by the treatment of mice with a histone 
methyltransferase inhibitor67.

Certain viral infections also exert protective effects 
independently of adaptive immunity. For example, 
herpes virus latency increases resistance to the bacterial 
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Fig. 1 | Trained immunity and tolerance: two opposite functional programmes of 
innate immunity. Infections or sterile tissue triggers induce inflammation and the 
activation of immune effector mechanisms. Concomitant to a proinflammatory response, 
anti- inflammatory mechanisms are provoked to prevent overshooting inflammation and 
tissue damage and to limit the inflammatory response in time. Trained immunity involves 
epigenetic and metabolic reprogramming of the innate immune cells, allowing qualitatively 
and quantitatively adjusted responses of innate immune cells to subsequent time- delayed 
heterologous stimulation. Misguided trained immunity responses can contribute to disease 
progression, resulting in either a chronic hyperinflammatory state or a persistent state 
of immunological tolerance, a mechanism that dampens the inflammatory response of 
the host to maintain homeostasis and prevent tissue damage and organ failure, with the 
subsequent risk of secondary infections and other diseases related to decreased activity 
of the immune system.

Myeloid cells
Cells of the immune system 
that arise from pluripotent 
primordial cells in the bone 
marrow. Myeloid cells 
(monocytes, macrophages, 
dendritic cells and 
granulocytes) have many 
physiological roles, among 
which are roles are to destroy 
the invading pathogens and 
repair tissues.

Chromatin
A complex structure composed 
of DNA and proteins located in 
the nucleus in which the 
genetic material of eukaryotic 
cells is organized. Chromatin 
has a high degree of 
organization, which allows the 
compaction of the genetic 
material, but this remains 
reachable to allow access of 
the protein machinery that 
regulates gene transcription. 
Chemical modification of 
histones, the core proteins  
in chromatin, regulates the 
accessibility of the DNA for  
the transcription machinery.
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pathogens Listeria monocytogenes and Yersinia pestis68, 
with protection achieved through enhanced production 
of IFNγ and systemic activation of macrophages. In the 
past decade, a unique anamnestic response has been 
described in natural killer (NK) cells during cytomegalo-
virus infection. Experimental studies demonstrated that 
mouse and human NK cells possess adaptive immune 
characteristics following infection with mouse cytomeg-
alovirus (MCMV) or human cytomegalovirus, respec-
tively69–73. Mouse NK cells bearing the Ly49H receptor 
possess antigen specificity for MCMV- encoded glyco-
protein m157 (ReFs74,75), can undergo clonal proliferation 
(as much as 104- fold expansion from a single NK cell 
clone)76,77 and persist during the contraction and mem-
ory phases similarly to CD8+ T cells78. On reinfection, 
these memory NK cells undergo a secondary expansion 
and can more rapidly degranulate and release cytokines, 
resulting in a more protective immune response against 
MCMV69,79. In human NK cells, the NKG2C receptor 
can mediate a similar function through recognition of 
human cytomegalovirus- encoded UL40 peptides pre-
sented on the non- classical MHC molecule HLA- E80,81. 
Because these adaptive NK cell responses more closely 
resemble T cell responses than trained immunity in 

macrophages, yet occur in the absence of RAG- mediated 
antigen receptor gene rearrangement82, this unique NK 
cell response may represent an evolutionary bridge 
between the memory response of T cells and that of 
myeloid lineage cells78,83.

A response in innate- like lymphocytes that more 
closely resembles trained immunity is perhaps the 
non- antigen specific priming of NK cells and innate 
lymphoid cells (ILCs) by proinflammatory cytokines. 
Mouse and human NK cells exposed to IL-12 and 
IL-18 showed more robust production of IFNγ weeks 
after initial priming84,85, and transplantation of these 
cytokine- induced memory- like NK cells has shown 
efficacy in clinical trials to treat leukaemias86. Even in 
the adaptive responses of MCMV- specific NK cells, pro-
inflammatory cytokine signals are critical for the forma-
tion of robust effector and memory NK cells87–89. It was 
recently found that liver- resident group 1 ILCs (ILC1s) 
also expand and persist after infection with MCMV, 
acquiring stable transcriptional, epigenetic and pheno-
typical changes 1 month after the resolution of systemic 
infection, and showed enhanced memory responses90.  
In this setting, both proinflammatory cytokines and 
antigen specificity (NK1.1 receptor- mediated recogni-
tion of MCMV- encoded m12) were critical in driving a 
memory response in ILC1s90. ILC2s have also been sug-
gested to possess features of immunological memory 
following stimulation with allergens91, perhaps resem-
bling prior studies of hapten- induced priming of NK 
cells in delayed hypersensitivity responses92. Anamnestic 
immunity in NK cells may also play an important role 
in physiological processes such as pregnancy. A recent 
study showed that NK cells from women who have 
been repeatedly pregnant show a particular epigenetic 
and transcriptomic landscape, with open chromatin 
around the enhancers of IFNG and VEGFA, improving 
placentation and supporting vascular sprouting93.

Trained immunity in stromal and epidermal stem cells. 
Intriguingly, the induction of innate immune memory 
is not exclusively confined to immune cells but can also 
occur in stromal and epithelial cells. The discovery of 
inflammatory memory behaviour in epidermal stem 
cells is of particular relevance, as tissue stem cells are 
the cornerstone of regeneration in homeostasis and 
they reside in distinct microenvironments or niches  
and exchange signals that define their tasks and their 
molecular behaviours6,94. Although the rate of cellular 
replacement during homeostasis is tissue and context 
specific, even quiescent stem cells are mobilized into 
action on tissue injury. Similarly, inflammation and 
infections perturb the niche microenvironment, which 
can override the normal homeostatic cues and prompt 
changes in stem cell behaviours. Thus, through their abil-
ity to sense and respond to niche signals, stem cells can 
adjust to and survive stressful situations. Remarkably, 
stem cells form an enduring epigenetic memory from 
such encounters, which equips them with the ability to 
mobilize more rapidly during subsequent assaults6,95.

Stem cells express receptors for several inflamma-
tory mediators, which enables them to adjust to their 
specific inflammatory milieu96–98. Moreover, stem cells 

Box 1 | Trained immunity as a therapeutic target

Regulating trained immunity can be a powerful therapeutic paradigm in different 
disease contexts176. Depending on the condition, it could be beneficial to induce 
trained immunity to aid specific cancer therapies or to treat the immune paralysis 
associated with sepsis. other exciting therapeutic applications would be to inhibit  
an overly trained innate immune state in chronic inflammatory diseases or to prevent 
potential detrimental trained immunity in organ transplantation.

Promoting trained immunity is particularly relevant for the prevention of child death 
and morbidity; for instance, providing bacillus Calmette–Guérin (BCG) to low- weight 
African children at birth rather than in the subsequent weeks or months is associated 
with a reduction of neonatal mortality by a third40. Also, it could be very relevant in the 
treatment of cancer and can be achieved by activating certain pattern recognition 
receptors. Indeed, the first immunotherapeutic strategy in cancer, developed by 
William Coley177 at the end of the nineteenth century, induced inflammation and may 
have been linked to induction of a trained immunity phenotype. After observing 
spontaneous tumour remission in patients with cancer with concomitant infections, 
Coley developed a method involving injection of streptococcal organisms into 
tumours178. Despite successful treatment of several patients, Coley’s approach was met 
with criticism and scepticism because of its unpredictability and the risk of promoting 
dangerous systemic inflammation. Approximately half a century later, in the late 1950s, 
the BCG vaccine was developed into a novel immunotherapy to treat cancer by  
lloyd old and colleagues179. Currently, BCG vaccination is a uS Food and Drug 
Administration- approved treatment modality for bladder cancer, and although  
not currently part of standard clinical care, it is also used for other treatment of 
malignancies such as lymphoma and melanoma. β- Glucan has long been used in east 
Asia to boost immune responses in patients with cancer, and it is currently in clinical 
trials in the uSA in combination with checkpoint inhibitors180–182. Several alternative 
strategies to activate innate immunity and thereby trained immunity by injecting 
immunostimulatory agents into tumours are currently being developed together with 
checkpoint blockade, including activators of the nlRP3, STInG, Toll- like receptor and 
RIG1 pathways. Trained immunity- induced rebalancing of macrophage and DC 
function may overcome the immunosuppressive microenvironment, facilitating the 
performance of existing T cell immunotherapies, chimeric antigen receptor T cell 
therapy183 and checkpoint inhibitors184. The challenge in the coming years will be to 
identify potent agents that induce antitumoural trained immunity processes without 
promoting excessive systemic side effects. Given that the host microbiota determines 
the effectiveness of checkpoint blockade therapy in cancers185, it is of particular 
relevance to mechanistically untangle the effect of the host microbiota on the 
effectiveness of trained immunity.
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are equipped with receptors to sense whether the epi-
thelial barrier is breached and, in turn, actively recruit 
immune cells to prevent spread of bacteria and to repair 
the damage7. Although it is still unfolding, the mole-
cular communication avenue between stem cells and 
immune cells appears to be bidirectional. Stem cells 
do not merely take instructions but rather they also 
actively instruct the immune system. In the skin, for 
example, stem cells can sense when their niche bar-
rier is breached and produce signals to recruit specific 
immune cell sentinels, even under conditions where 
the immune system itself has been suppressed7. In turn, 
recruited immune cells can signal to stem cells to prolif-
erate and patch the barrier. In this way, the coordination 
is honed to achieve maximal tissue repair. Another cell 
type that can acquire a trained immunity- like phenotype 
is the fibroblast. It was demonstrated that IFNβ treat-
ment of mouse embryonic fibroblasts led to faster and 
higher induction of interferon- stimulated genes that 

correlated with enhanced recruitment of polymerase II 
to interferon- stimulated gene loci on restimulation99.

Central versus peripheral trained immunity
Trained immunity was initially shown to act through 
mature myeloid cells. Until recently this hypothesis 
resulted in a conundrum as mature myeloid cells, such 
as monocytes and DCs, in both mice and humans are 
short- lived, with an average half- life of 5–7 days100–102. 
Therefore, how trained immunity can be maintained in 
myeloid cells for several months, years and even decades41 
remained unknown. More recent work has helped to 
resolve this issue by showing that trained immunity can 
occur in bone marrow progenitor cells (central trained 
immunity), as well as in blood monocytes and tissue 
macrophages (peripheral trained immunity) (FIG. 2).

Recent studies have shown that β- glucan or BCG can 
reprogramme myeloid progenitors in the bone marrow 
to generate trained immunity within the myeloid cell 
compartment103. In a mouse model of tuberculosis, 
Kaufmann and colleagues32 demonstrated that BCG 
vaccination reprogrammes haematopoietic stem cells 
(HSCs) in the bone marrow towards myelopoiesis in 
an IFNγ- dependent manner, which leads to protective 
trained immunity. Similarly, β- glucan increases myelo-
poiesis by promoting the expansion of myeloid- biased 
CD41+ HSCs and cells from the myeloid- biased multi-
potent progenitor 3 (MPP3) subset104. IL-1β and 
granulocyte–macrophage colony- stimulating factor 
(GM- CSF) signalling as well as alterations in glycolysis 
and cholesterol biosynthesis in bone marrow progeni-
tors are putative mechanisms that have been proposed to 
explain β- glucan- induced trained immunity in mice104.

The discovery that HSCs, similarly to epithelial 
stem cells, display a memory function could explain 
the long- standing mystery as to why short- lived 
immune cells such as monocytes can acquire memory. 
Indeed, respiratory epithelial progenitors become more 
stem- like during human allergic inflammatory disease, 
and the associated accessible chromatin changes differ 
in their ability to return to normal when the stimulus is 
withdrawn105.

Several studies have furthermore investigated 
whether trained immunity exists at the level of individ-
ual tissues and if so, how these changes are maintained 
or erased to ensure proper tissue function. Conceivably, 
tissues exposed to the outside world, such as the skin, the 
lungs and the intestine, are prone to encounter immune 
training- inducing stimuli. This concept was explored in 
the lung using two models of viral challenge: namely, 
latent gammaherpesvirus infection and adenovirus 
infection106,107. The severity of house dust mite-induced 
asthma was decreased in the lungs of mice that had pre-
viously been chronically infected with gammaherpes-
virus106. This phenotype was dependent on the long-term 
generation and maintenance of monocyte-derived regu-
latory alveolar macrophages that conferred protection 
against the development of an allergic response in the 
lung. Conversely, adenovirus infection induced remod-
elling in alveolar macrophages, which are long- lived 
tissue- resident cells, such that they retained the infor-
mation of an inflammatory history and subsequently 
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Fig. 2 | Central and peripheral trained immunity. Although trained immunity was  
first established in cells of the mononuclear phagocyte lineage (that is, monocytes and 
macrophages), monocytes have a relatively short lifespan and are unlikely to transmit 
their memory phenotype to their progeny and provide sustainable protection. Thus, 
current vaccine strategies that directly target monocytes or macrophages may have 
limited capacity for generating sustained innate immune memory. By contrast, 
haematopoietic stem cells (HSCs) are long- lived cells with self- renewal properties that 
reside in the bone marrow. The bone marrow is the site of haematopoiesis where HSCs 
continually undergo asymmetric division giving rise to the full repertoire of myeloid  
and lymphoid cell types. HSCs can directly respond to acute and chronic infections. 
Although the exact mechanisms of precursor proliferation or differentiation are not  
well understood, persistent activation of HSCs can result in their exhaustion, leading to 
devastating effects on the systemic immune compartment. Monocytes derived from 
trained HSCs migrate to peripheral organs, where they give rise to monocyte- derived 
macrophages with enhanced effector functions against different types of pathogens. 
Natural killer (NK) cells possess adaptive immune characteristics following infection.  
On reinfection, these memory NK cells undergo a secondary expansion and can more 
rapidly degranulate and release cytokines, resulting in a more protective immune 
response. Epithelial stem cells show memory functions during human allergic 
inflammatory disease, displaying changes in the chromatin accessibility when the 
stimulus is withdrawn. BCG, bacillus Calmette–Guérin; CMP, common myeloid 
progenitor: GMP, granulocyte–macrophage progenitor ; MPP, multipotent progenitor.
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induced more pronounced antibacterial immunity107. 
However, in the case of the adenovirus infection, the 
tissue- specific training phenotype was dependent on  
the polarization of CD8+ T cells by trained alveolar 
macro phages and therefore provided a link between 
trained and adaptive immunity. Together, these two 
recent studies highlight the importance of tissue- specific 
training cues, which are likely to occur consecutively 
over an individual’s lifespan, raising the question of 
how these training cues contribute to protection against 
infections and the development of inflammatory diseases  
and cancer.

Epigenetic reprogramming
Induction of a trained immune phenotype in innate 
immune cells enables them to react with stronger, more 
rapid or qualitatively different transcriptional responses 
when challenged with subsequent triggers. The molecu-
lar basis of this altered responsiveness of a defined subset 
of inflammatory genes is only partially understood, but 
evidence supports the convergence of multiple regula-
tory layers, including changes in chromatin organization 
at the level of the topologically associated domains (TADs), 
transcription of long non- coding RNAs (lncRNAs), 
DNA methylation and reprogramming of cellular 
metabolism (FIG. 3).

In quiescent myeloid cells, most of the proinflamma-
tory gene loci are in a repressed configuration108, hin-
dering access of the transcriptional machinery to the 
regulatory regions driving expression of inflammatory 
factors109. Many studies have demonstrated that stimula-
tion of innate immune cells can leave an ‘epigenetic scar’ 
at the level of stimulated genes, changing the long- term 
responsiveness of the cells that manifests itself as func-
tional trained immunity programmes. Intrinsic to the 
presence of such an epigenetic scar is the question of 
how it is selectively directed to specific locations in the 
genome, either at the promoters of stimulated genes or 
at distal regulatory elements. Two key epigenetic marks 
accompany trained immunity: the acquisition of his-
tone 3 lysine 27 acetylation (H3K27ac) marks at distal 
enhancers (marked with histone 3 lysine 4 methylation 
(H3K4me1)) and the consolidation of histone 3 lysine 4 
trimethylation (H3K4me3) marks at the promoters of 
stimulated genes (FIG. 4). Transcription is an inherently 
stochastic process, which is regulated by several fac-
tors, including the random collision of transcription 
factors with upstream promoter and enhancer DNA 
regions. However, dynamic loop- mediated regulation 
and the resulting stochastic responses in gene expression 
may not be ideal for gene classes that need to respond 
both immediately and uniformly to external stimuli 
across cell populations. This suggests that to reduce 
stochasticity in gene expression, the chromosomal con-
tact between rapidly responding genes may exist in a 
more stable or preformed state, which strongly impli-
cates the influence of chromosomal looping and TAD 
structure on this subclass of transcriptional responses. 
Studies using Hi- C (a method for analysing chroma-
tin interactions) have revealed that several classes of 
innate immune genes are segregated into TADs and 
interact within multigene complexes. A recent study 

demonstrated how TAD structure enables a class of 
lncRNAs called ‘immune gene- priming lncRNAs’ (IPLs) 
to be brought into close proximity with transcriptionally 
poised innate immune genes, before their transcriptional 
activation110. IPLs exploit preformed 3D looping con-
tacts to bring the H3K4me3 histone- modifying com-
plex close to the promoters of highly responsive innate 
immune genes, permitting their epigenetic activation 
and training. The insertion of an IPL in the mouse pre-
formed chemokine TAD confers these genes with the 
ability to transcriptionally respond rapidly and robustly 
(uniformly across all cells in the population) and to be 
accessible to training by β- glucan. The latter is a property 
they previously did not have in the absence of the IPL110. 
As current studies have investigated the role of IPLs only 
in β- glucan- induced trained immunity phenotypes, fur-
ther studies are warranted to explore these mechanisms 
in other experimental settings, including the importance 
of IPLs during in vivo vaccination.

This functional experiment demonstrates the key role 
IPLs play in the ‘writing’ of H3K4me3 marks at discrete 
loci in the genome110. How the H3K27ac mark is directed 
to specific distal enhancer marks (carrying H3K4me1 
epigenetic marks) remains an important outstanding 
question. It is clear from mouse HSC data that after BCG 
exposure, the acquisition of open chromatin as meas-
ured by assay for transposase- accessible chromatin using 
sequencing (ATAC- seq) begins in HSCs, and acetyla-
tion drives the opening of specific TADs32. The specific 
locations of these marks are, at least partially, preserved 
through the differentiation of HSCs into different mye-
loid and lymphoid lineage cells32. It is likely that in termi-
nally differentiated myeloid cells, the H3K4me1 marks 
established in the HSC lineage continue to be present, 
and the gain and loss of H3K27ac occurs in response 
to exposure to LPS tolerization and β- glucan priming, 
even though this question remains to be formally ana-
lysed and established. The transmission of these marks 
through DNA replication and the cell cycle is a central 
conundrum around how trained immunity is stably 
maintained111. Clearly, an as yet undiscovered mecha-
nism preserves H3K4me1 and H3K4me3 marks through 
the cell cycle in HSCs.

In the adaptive responses of NK cells, epigenetic con-
trol of activation, clonal proliferation, contraction and 
memory have been demonstrated in the context of viral 
infection in both humans and mice112,113. Naive, effector 
and memory NK cells possess distinct chromatin acces-
sibility states as determined by ATAC- seq and H3K4me3 
chromatin immunoprecipitation followed by sequenc-
ing, which has revealed a ‘poised’ regulatory programme 
at the memory NK cell stage following MCMV infec-
tion113. Furthermore, concurrent chromatin profiling of 
the MCMV- specific CD8+ T cell response demonstrated 
parallel epigenetic signatures that define memory NK 
cells and CD8+ T cells113. Finally, many transcription 
factors have been identified that promote permissive 
histone modifications and overall chromatin accessibil-
ity at specific loci to drive adaptive NK cell responses, 
including STAT4, STAT1, ZBTB32, T- bet, EOMES,  
IRF8, IRF9, KLF12 and RUNX family transcription 
factors70,87,114–118.

Topologically associated 
domains
(TADs). Large domains of about 
0.5 to 2 million base pairs into 
which chromosomes rolled up 
in loops are organized, where 
different regions frequently 
interact with each other, 
allowing gene promoters to 
interact with all their regions’ 
regulators even over long 
distances. Within each TAD, 
several genes and the elements 
that regulate them are 
packaged together and are 
isolated from neighbouring 
TADs.
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MicroRNAs might also have a role in the induc-
tion and regulation of these mechanisms. miR-155 was 
shown to be critical for adaptive NK cell responses to 
MCMV infection through the regulation of targets, 
including NOXA and SOCS1 (ReFs119,120). The upregu-
lation of miR-155 during inflammatory processes has 
also been correlated with the hyperactivation of cells 
from the myeloid compartment. This is likely owing to 
a decreased activity of phosphatases that act as negative 
regulators of a series of intracellular pathways121, includ-
ing the phosphatase SHIP1, which was recently demon-
strated to act as a negative regulator in the induction of 
trained immunity122.

New studies also suggest that changes in DNA meth-
ylation patterns discriminate between ‘responders’ 

(people who are able to undergo trained immunity) and 
‘non- responders’ to stimuli that induce trained immunity, 
such as BCG. In this regard, individuals who exhibit an 
enhanced containment of M. tuberculosis replication after 
BCG vaccination displayed a wide loss of DNA methyl-
ation among promoters of genes belonging to immune 
pathways compared with individuals characterized as 
non- responders123. A follow- up study identified 43 genes 
with differential methylation patterns in BCG- naive 
responders compared with non- responders that could 
potentially be used as predictors of responsiveness to 
stimuli that induce trained immunity124.

As mentioned earlier, non- haematopoietic cells, such 
as epidermal stem cells, also show features of trained 
immunity. The epigenetic memory of epidermal stem 
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Fig. 3 | Interplay between epigenetics and metabolism. The correct 
initiation of the mechanisms necessary for the induction of trained 
immunity relies on the active interplay between epigenetic and metabolic 
reprogramming of the innate immune cells on stimulation. During primary 
challenge, the recognition of specific ligands by pattern recognition 
receptors triggers a series of intracellular cascades that lead to the 
upregulation of different metabolic pathways, such as glycolysis, 
tricarboxylic acid (TCA) cycle and fatty acid metabolism. Certain 
metabolites derived from these processes, such as fumarate and acetyl 
coenzyme A (acetyl- CoA), can activate or inhibit a series of enzymes 
involved in remodelling the epigenetic landscape of cells, such as the 
histone demethylase lysine- specific demethylase 5 (KDM5) or histone 
acetyltransferases, leading to specific changes in histone methylation and 

acetylation of genes involved in the innate immune responses. 
β- Glucan- mediated activation of dectin 1 signalling also triggers calcium 
influx, which leads to the dephosphorylation of nuclear factor of activated 
T cells (NFAT), allowing its translocation into the nucleus, where it may bind 
to DNA and activate gene transcription. This facilitates the accessibility of 
the DNA to the transcriptional machinery and gene regulatory elements 
and specific long non- coding RNAs, promoting and facilitating an enhanced 
gene transcription on secondary stimulation of the cells. IGF1R , insulin- like 
growth factor 1 receptor ; MLL1, mixed- lineage leukaemia protein 1 (also 
known as histone- lysine N- methyltransferase 2A); mTOR , mechanistic 
target of rapamycin; Pol, polymerase; UMLILO, upstream master long 
non- coding RNA of the inflammatory chemokine locus; WDR5, WD 
repeat- containing protein 5.
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cells is also interesting as certain features of it can 
still be detected months after the inflammation has 
resolved6. Additionally, the lingering accessible chro-
matin domains harboured within the epidermal 
stem cells of inflammation- exposed skin can act as 
inflammation- sensing enhancers when excised and 
used to drive reporter expression in the skin in vivo. 
Thus, although the molecular mechanisms underlying 
this memory are still unfolding, as they are for inflam-
matory memories rooted in other cell types, the field 
is coming to the view that cells and tissues may have 
evolved to possess memory for the benefit of confront-
ing recurrent disease pathologies and maintaining  
tissue fitness.

Immunometabolic circuits
Cellular metabolism is a critical mediator of the trained 
immunity- dependent epigenetic reprogramming 
of innate immune cells and their progenitors125–127 
(FIG. 3). It is well established that metabolites can mod-
ulate the activity of chromatin- modifying enzymes128; 
hence, metabolic rewiring of innate immune cells 
or their progenitors will regulate their plasticity and 
epigenomic reprogramming in the context of trained 
immunity125. Increased aerobic glycolysis is a hallmark 
of β- glucan- trained monocytes; this is mediated by a 
pathway that involves the activity of AKT, mechanistic 

target of rapamycin (mTOR) and hypoxia- inducible 
factor 1α (HIF1α). Consistently, blockade of the AKT–
mTOR–HIF1α pathway abrogates trained immunity129. 
Furthermore, BCG- induced trained immunity requires 
the functional reprogramming of monocyte metab-
olism towards aerobic glycolysis to develop enhanced 
responsiveness to subsequent stimulation130.

Subsequent studies with integrated metabolomic 
and transcriptomic analyses of human β- glucan- trained 
monocytes revealed crosstalk between glycolysis and 
glutaminolysis in trained immunity131. Trained mono-
cytes accumulate the tricarboxylic acid cycle (TCA) 
metabolite fumarate, which influences epigenetic repro-
gramming by downregulating the activity of KDM5 
histone demethylases131. Moreover, different TCA 
intermediates exert distinct effects on innate immune 
cell activity. For instance, α- ketoglutarate promotes 
anti- inflammatory activation of macrophages via epi-
genetic reprogramming that is mediated by the H3K27 
demethylase JMJD3. Moreover, α- ketoglutarate facili-
tates endotoxin tolerance after classic LPS- mediated or 
IFNγ- mediated activation of macrophages132.

By contrast, LPS- induced succinate regulates a 
proinflammatory HIF1α–IL-1β pathway in mouse 
bone marrow- derived macrophages133. The metab-
olite itaconate, the concentration of which is highly 
upregulated in LPS- activated macrophages, exerts  
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anti- inflammatory activity by inhibiting the succi-
nate dehydrogenase- mediated oxidation of succinate  
to fumarate134,135. Itaconate itself acts in an anti- 
inflammatory fashion in macrophages by supporting the 
activity of the anti- inflammatory transcription factor 
NRF2 (ReF.136) and the inhibition of LPS- mediated IκB 
induction. The latter effect of itaconate is independent 
of NRF2 but requires activating transcription factor 3 
(ATF3)137. Of note, itaconate- induced tolerance in 
human monocytes is counteracted by β- glucan- induced 
trained immunity as β- glucan inhibits the expression of 
immune- responsive gene 1 (IRG1) protein, the enzyme 
responsible for itaconate generation. Consistent with 
fumarate accumulation in β- glucan- trained mono-
cytes131, β- glucan- mediated inhibition of IRG1 results in 
elevated expression of succinate dehydrogenase138. Thus, 
β- glucan- induced trained immunity is associated with 
enhanced succinate dehydrogenase activity and accumu-
lation of fumarate as well as with reversing the endotoxin 
tolerance- inducing effects of itaconate, which acts as an 
antagonist of succinate dehydrogenase.

Enhanced cholesterol synthesis is also an impor-
tant hallmark of β- glucan- trained monocytes. The 
3- hydroxy-3- methylglutaryl coenzyme A (HMG- CoA) 
reductase inhibitor fluvastatin blocks trained immu-
nity in primary human monocytes131. Interestingly, 
this is accomplished not by cholesterol biosynthesis but 
rather by an accumulation of the upstream metabolite 
mevalonate. Brief exposure to mevalonate can trigger 
training of monocytes via the insulin- like growth fac-
tor 1 receptor and stimulation of mTOR signalling139. 
Importantly, enhanced cholesterol synthesis is critical 
for the β- glucan- induced training of not only mature 
myeloid cells but also of their progenitors (haemato-
poietic stem and progenitor cells (HSPCs)). The 
long- term myelopoiesis bias conferred to HSPCs by 
β- glucan- induced training is associated with accumu-
lation of cholesterol esters and lipids with more satu-
rated acyl chains104. Inhibition of HMG- CoA reductase 
diminishes β- glucan- induced HSPC population expan-
sion and myelopoiesis104. The enhanced cholesterol 
levels that occur in HSPCs as a result of innate train-
ing may promote a myelopoiesis bias via upregulation 
of CD131, the common β- subunit of the IL-3/GM- CSF 
receptor104. This is consistent with findings showing that 
inhibition of cholesterol efflux in HSPCs, due to defi-
ciency in the ATP- binding cassette transporter ABCA1, 
also enhances CD131 expression and myelopoiesis in the 
bone marrow140,141.

Pathological outcomes of trained immunity
Infections were the most common causes of death 
throughout the world 150 years ago, and they continue 
to represent the most significant threats to health in 
low- income countries. Therefore, strong evolutionary 
pressure has shaped antimicrobial immune functions, 
including trained immunity. Although trained immunity 
evolved as a beneficial immune process to protect against 
infection, one may envisage situations in which repro-
gramming of innate immunity and increased inflamma-
tory responses to exogenous or endogenous stimuli may 
also have harmful effects. It is becoming increasingly 

evident that sterile inflammation in response to lifestyle 
changes in Western societies forms the basis on which 
chronic inflammatory diseases develop142. It will thus be 
necessary to better understand how sterile inflamma-
tory insults induce trained immunity and how trained 
immunity mechanisms could contribute to chronic 
inflammation in various diseases associated with 
Western lifestyle142.

Trained immunity and inflammatory diseases. It is 
possible that the augmented immune functions arising 
from trained immunity could lead to pathological tissue 
damage in certain situations. Trained immunity could, 
in part, explain the epidemiological link between infec-
tions and atherosclerotic cardiovascular disease143,144. 
In addition to microbial products, endogenous triggers 
of innate immunity, including oxidized low- density 
lipoprotein particles, lipoprotein (a), vimentin and high- 
mobility group box 1 (HMGB1), can induce trained 
immunity145–147.

Recent work has assessed whether a Western- type diet  
(that is, a diet enriched in fats, sugars and salt and low in 
fibre) can induce trained immunity. In atherosclerosis- 
prone Ldlr−/− mice, 4 weeks of such a Western- type diet 
induced profound proinflammatory transcriptional and 
epigenetic reprogramming of circulating monocytes 
and their bone marrow myeloid progenitor cells. The 
dietary intervention induced increased inflammatory 
responses to subsequent innate immune stimuli. This 
trained immunity phenotype persisted even after the 
mice had been switched to a standard chow diet for 
another 4 weeks, despite circulating cholesterol levels 
and systemic inflammatory markers returning to nor-
mal8. Several small proof- of- principle studies in patients 
suggest that trained immunity also occurs in the setting 
of dyslipoproteinaemia: monocytes from patients with 
familial hypercholesterolaemia are characterized by an 
enhanced cytokine production capacity and enrich-
ment of H3K4me3 on their promoters, which remains 
present even after 3 months of cholesterol- lowering sta-
tin treatment148. Furthermore, circulating monocytes 
from patients with severe coronary artery atheroscle-
rosis exhibit a trained immune phenotype in terms of 
enhanced cytokine production capacity and glycolytic 
metabolism and epigenetic reprogramming at the level 
of histone methylation149,150.

Another clinical scenario in which sterile endog-
enous stimuli could trigger trained immunity in 
monocyte- derived cells is organ transplantation146. 
Braza et al.146 recently showed in a mouse heart trans-
plantation model that donor allografts upregulate 
vimentin and HMGB1, which induced local training 
of graft- infiltrating monocyte- derived cells. Short- term 
treatment with a high- density lipoprotein nanobiologic 
that specifically inhibited mTOR in myeloid cells was 
able to prevent aerobic glycolysis and epigenetic mod-
ifications underlying trained immunity. The resulting 
Ly6Clow monocyte- derived macrophage- like cells with 
a regulatory phenotype prevented alloreactive CD8+ 
T cell- mediated immunity and promoted tolerogenic 
CD4+ regulatory T cell expansion, which improved 
allograft survival.
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Trained immunity and neurodegenerative diseases. 
Trained immunity could potentially be important to 
ameliorate the consequences of immunosenescence, 
which is associated with the loss of adaptive immune 
system function. For example, prior BCG vaccination 
has been shown to enhance antibody responses to 
many other vaccines that are subsequently adminis-
tered151,152. On the other hand, there could be negative 
consequences. Neurodegenerative diseases constitute 
a significant group of age- related diseases associated 
with chronic inflammation153. Peripheral application of 
inflammatory stimuli in a mouse model of Alzheimer 
disease leads to long- lasting training of microglia, the 
brain- resident macrophages, which exacerbates cere-
bral β- amyloidosis154. The functional changes of micro-
glia are accompanied by activating epigenetic changes 
at the HIF1A gene locus, consistent with the peripheral 
trained immunity response129. As a consequence of epi-
genetic reprogramming, microglia also show changes 
in transcription and protein expression. Even infections 
of mice very early in life as a means of immunological 
training seem to be able to contribute to the impair-
ment of microglial function followed by amyloid- β- 
induced synapse damage and cognitive impairment155. 
Together, these studies suggest that systemic inflam-
mation induces microglia reprogramming, resulting in 
potentially hyper- responsive ‘trained’ states of the brain 
immune system.

Another brain pathological abnormality linked to 
systemic inflammation and associated with dementia 
is cerebral small vessel disease156. In patients with cer-
ebral small vessel disease, peripheral blood- derived 
monocytes showed trained immunity characteris-
tics such as enhanced IL-6 and IL-8 production after  
ex vivo stimulation, which was also associated with 
the severity and progression of the disease157. A causal 
link to the pathophysiology of the small vessels in the 
brain remains to be determined. The pathophysiology 
of acute stroke is unaltered by prior peripheral immune 
stimulation154, which might suggest that chronic rather 
than acute inflammatory conditions are associated with 
both trained immunity and the induction of neuro-
inflammation and neurodegeneration. Accumulating 
evidence suggests that there is a link between trained 
immunity and ‘inflammageing’, the inflammatory condi-
tion related to an ageing immune system158. For example, 
age- related reprogramming of specific innate immune 
cells might enhance effector mechanisms associated with 
trained immunity (such as production of IL-8 (ReF.159) 
and CCL1 (ReF.160)), thereby leading to hyper- reactivity. 
Collectively, a better understanding of the dark side of 
trained immunity in ageing populations might help us 
to fight inflammageing- related chronic diseases such as 
dementia in elderly patients.

Tumour growth and metastasis. Robust and efficient 
activation of the immune system is fundamental to elim-
inate cancer cells from the organism. However, excessive 
or prolonged inflammatory responses can also promote 
tumour progression as chronic inflammation fuels and 
sustains disease progression and neoplastic transfor-
mation in particular tumour entities. The induction of 

trained immunity and the metabolic processes in can-
cer cells share several common features, such as reli-
ance on glycolytic metabolism and the upregulation of 
the expression and activity of transcription factors such 
as HIF1α. The induction of trained immunity can be 
either beneficial or detrimental in the interplay between 
tumour cells and the cells of the innate immune system.

On the other hand, innate immune cells infiltrating 
the microenvironment of specific tumours can undergo 
a reprogramming process that leads to the develop-
ment of maintained inflammatory responses, so- called 
smouldering inflammation, that can increase the degree 
of antigen- driven lymphoproliferation161, impair apop-
tosis, promote mitochondrial dysfunction and increase 
oxidative stress in the tumour microenvironment, which 
ultimately promotes the progression of the tumour. 
Tumour cells can also reprogramme infiltrating innate 
immune cells to acquire a more anti- inflammatory 
phenotype that is reminiscent of the immunoparalysis 
observed in patients with sepsis; for instance, mono-
cytes from patients with chronic lymphocytic leukaemia 
show low levels of cytokine production, high phagocytic 
activity and impaired antigen presentation162. Efficient 
long- term cell reprogramming is necessary to ensure the 
efficacy of pharmacological treatments directed against 
cancer, as shown by the failure of patients with cancer to 
develop durable responses after treatment with check-
point inhibitors owing to epigenetic stability of exhausted 
T cells163. Cytokines such as IL-6 and tumour necrosis 
factor (TNF) that are produced by trained cells are asso-
ciated with increased tumorigenicity and the spread of 
metastases in specific types of tumours, including oral 
squamous cell carcinoma and lung, kidney and breast 
cancer164,165. Cancer cells also produce a series of soluble 
mediators that can induce direct epigenetic and meta-
bolic reprogramming in immune cells and can thereby 
contribute to the progression of the tumour166.

The data presented above suggest that the ability of 
immune cells to tune their responses to adapt to chang-
ing environments is an important feature that evolved 
to prepare immune cells for unpredictable events, such 
as pathogen invasion. However, the epigenetic mech-
anisms that control the memory of the environmental 
trigger may also lead to the persistence of pathological 
responses that drive disease.

Conclusions and future challenges
In this Review, we have presented evidence to suggest 
that trained immunity, as an epigenetic memory of 
inflammatory encounters, is a fundamental characteris-
tic of host defence of multicellular organisms, including 
mammals.

There are many remaining questions and important 
lines of study that need to be followed in this exciting 
new field of immunology. One goal should be to describe 
in more detail the molecular mechanisms that mediate 
trained immunity. This should involve an exploration 
of the entire range of immune and non- immune cell 
populations in which trained immunity can be induced, 
as well as the precise definition of the immunologi-
cal, metabolic and epigenetic processes that mediate 
trained immunity. We need to better understand how 
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long- lasting trained immunity is as a consequence of 
infections, vaccination or even sterile triggers, and the 
influence of the host microbiota on the trained immu-
nity responses. A fascinating further area of research 
would be to investigate whether trained immunity 
can be transmitted epigenetically in the germline, as  
previously reported for plants and insects17,167–169.

An important area of future research will be to use 
the mechanisms induced by trained immunity for the 
design of a new generation of therapies and vaccines 
that combine induction of classical adaptive immune 
memory and trained immunity (BOx 2). The World 
Health Organization recommends more research into 
non- specific effects of vaccines170; so far, the evidence 

shows that a vaccination programme that ensures that 
live vaccines are given would provide optimal spe-
cific protection as well as trained immunity, and this 
would have a substantial impact on overall mortality171. 
Furthermore, new epidemiological study results intrigu-
ingly suggest that the non- specific beneficial effects of 
live vaccines may be amplified if the vaccines are given 
in the presence of pre- existing immunity, be it from 
parental priming or from a previous vaccine16,172. Thus, 
a modified vaccination programme that provides live 
vaccines earlier, in the presence of maternal immunity, 
and in multiple doses may lead to increased innate train-
ing. Given that trained immunity can induce heightened 
immune responses, potential non- specific effects of vac-
cines with regard to chronic inflammatory conditions 
should be investigated.

Finally, one of the most critical future lines of 
research is to explore the impact of trained immunity 
on disease: how does trained immunity contribute to the 
pathogenesis of immune- mediated diseases on the one 
hand, and how can trained immunity be approached as a 
therapeutic target on the other hand? Trained immunity 
is expected to have an important role both in diseases 
with impaired host defence, such as postsepsis immune 
paralysis or cancers, and in autoinflammatory and 
autoimmune diseases, in which an exacerbated trained 
immunity phenotype could contribute to disease patho-
genesis. The impact of trained immunity, and more 
generally of epigenetic rewiring in various processes of 
priming, adaptation or tolerance during disease111, war-
rants further studies. Also, the role of trained immunity 
during the ageing process, and the potential association 
with clonal haematopoiesis, is an important area for 
future research. On the basis of a profound understand-
ing of these mechanisms, therapeutic applications of the 
concept of trained immunity are expected to emerge: 
new generations of vaccines that combine adaptive 
and innate immune memory173; development of induc-
ers of trained immunity for the treatment of immune 
paralysis in cancer174,175 or sepsis13; and the modulation 
of the potentially deleterious consequences of trained 
immunity in immunomediated and neurodegenerative 
diseases. Only sustained efforts by the community of 
researchers working on trained immunity will be able 
to achieve these aims and fulfil the potential brought by 
the understanding of the role of trained immunity in 
health and disease.

Published online 4 March 2020

Box 2 | Clinical relevance of inhibiting or reversing trained immunity

Trained immunity is relevant to a range of conditions in which an exacerbated immune 
response drives disease progression, such as in inflammatory bowel disease, gout, allergy 
and atherosclerosis and its clinical consequences, namely myocardial infarction and 
stroke. Therefore, suppressing ongoing trained immunity or preventing its induction 
will be a relevant treatment modality for numerous diseases associated with a chronic 
inflammatory state. In addition, ochando and colleagues146 recently implicated trained 
immunity in organ rejection. using a trained immunity- inhibiting and mechanistic target 
of rapamycin (mToR)- specific nanotherapeutic, they showed that a short treatment 
regimen resulted in prolonged allograft survival without the need for long- term 
immunosuppression in a mouse heart transplantation model. notably, preventing 
trained immunity rebalanced the myeloid cell compartment from proinflammatory  
to anti- inflammatory, while the adaptive immune system was characterized by an 
increased frequency of regulatory T cells. Co- treatment with a nanoimmunotherapeutic 
agent that prevents CD40–CD40l co- stimulation186 led to the induction of tolerance. 
These observations highlight that the innate and adaptive immune systems work in 
conjunction, and that immune memory can be best considered a feature relevant to 
phagocytes and lymphocytes187.

In addition to targeting myeloid cell metabolic pathways such as the mToR or 
hypoxia- inducible factor 1α pathway, inhibiting endogenous mediators of trained 
immunity such as the nlRP3 inflammasome or Il-1β release is an alternative strategy  
to suppress trained immunity’s inflammatory component. This was explored in patients 
with cardiovascular disease in the Canakinumab Anti- inflammatory Thrombosis outcome 
Study (CAnToS)188. Finally, regulating epigenetic processes is another compelling 
therapeutic avenue towards inhibiting trained immunity. Suppression of trained immunity 
may also be achieved by restricting epigenetic changes with, for example, inhibitors  
of histone or DnA methylation. moreover, after the promotion or inhibition of trained 
immunity, the duration of this phenomenon may be managed by epigenetic modulators 
that can maintain a certain state of the chromatin in relevant genomic regions. Small 
molecules that target various epigenetic enzymes (from histone deacetylase inhibitors to 
modulators of histone methylation and bromodomain inhibitors) are being developed for 
use in cancer therapy189,190. The applicability of such approaches for other immunomediated 
diseases is an important avenue to be investigated soon. Finally, approaches targeting 
such novel compounds to the relevant cell population, especially myeloid cells and their 
precursors, should be attempted for specific therapy with weak side effects. Bone 
marrow- targeted nanotherapeutics may offer such a path towards novel therapies.
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