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In mammals, developing ovarian follicles transform from primordial follicles to primary
follicles, secondary follicles, and mature follicles, accompanied by changes in follicular
secretory functions. FoxO3a is a member of the forkhead transcription factor family
(FoxO), which plays an important role in the cell cycle, DNA damage repair, apoptosis,
oxidative stress, and energy metabolism. Recent studies have shown that FOXO3a
is involved in the physiological regulation of follicular development and pathological
progression of related ovarian diseases, which will provide useful concepts and
strategies for retarding ovarian aging, prolonging the ovarian life span, and treating
ovarian diseases. Therefore, the regulation of FOXO3a expression, as well as the
physiological contribution during ovarian follicular development are detailed in this paper,
presenting an important reference for the further study of ovarian biology.

Keywords: transcription factor FOXO3a, cell cycle, apoptosis, oxidative stress, energy metabolism, follicular
development

INTRODUCTION

Follicular development is a complex reproduction-related physiological process characterized by
cell proliferation, differentiation, and apoptosis. Typically, based on morphology and function,
follicular development can be artificially divided into different stages, including primordial follicles,
primary follicles, secondary follicles, and mature follicles (Wei et al., 2012, 2019; Huang et al.,
2016; Wu et al., 2019). Notably, various diseases could be induced by follicular dysplasia,
including premature ovarian failure, polycystic follicular syndrome, and infertility (Yang et al.,
2010; Thanatsis et al., 2019). Forkhead box (Fox) proteins are highly conserved transcription
factors structurally, currently attracting a great deal of attention. Among them, FOXO3a is an
important member, and its discovery originates from its homologous protein DAF-16, which
is also a well-studied transcription factor (Liu et al., 2018). Ogg et al. (1997) revealed that the
FOXO3a homologous protein, DAF-16, is negatively regulated by the insulin signaling pathway.
Furthermore, it participates in the regulation of the cell cycle and life expectancy, which is closely
related to the lifespan, metabolism, and reproduction of worms (Ogg et al., 1997). Thus, FOXO3a
may be closely related to the development, metabolism, and other functions of organisms. Recent
studies have shown that FOXO3a is involved in follicular development, thus presenting a valuable
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target for the study of follicular development, and displays
important theoretical and practical significance for better
understanding the mammalian reproductive mechanism.

THE DEVELOPMENT OF OVARIAN
FOLLICLES

In mammals, the primordial follicle is the basic female
reproductive unit and the only form of ovarian cell reserve (Wei
et al., 2012, 2019; Huang et al., 2016; Wu et al., 2019). Primitive
follicular pools are formed during early life such as the late
embryonic stage in humans and the fourth day after birth in
rats (Tang et al., 2017). Furthermore, once primordial follicles
are formed, their total number remains fixed and is no longer
increased. Usually, after the formation of primordial follicles,
there will be a continuous batch of developing primordial
follicles, and then forming follicles at different developmental
stages, finally becoming dominant follicles triggering ovulation
to commence a new life journey (Zhang Z. et al., 2019). During
follicular development, most follicles die a programmed death
or degeneration, which is termed follicular apoptosis or atresia
(Tang et al., 2017). There are two types of follicular atresia from
the morphological standpoint, starting from oocytes or granulosa
cells, respectively (Manabe et al., 2004; Shimizu et al., 2009).

TRANSCRIPTION FACTOR FOXO3a

The first forkhead protein was discovered in Drosophila
melanogaster by Weigel et al. (1989). To date, more than
100 family members have been verified, from FOXA
to FOXS (Anderson et al., 1998; Lee and Dong, 2017;
Murtaza et al., 2017). FOXO belongs to the “O” class of the
FOX superfamily. In mammals, this group contains four
members: FOXO1/FKHR/FOXO1a, FOXO3/FKHRL1/FOXO3a,
FOXO4/AFX, and FOXO6 (Murtaza et al., 2017). All FoxO
proteins share a highly conserved DNA-binding domain,
presenting 110 amino acids folded into three α-helixes and
two wing-like large loops. In addition, the structure includes a
nuclear localization signal, a nuclear export signal motif, and a
C-terminal transcriptional active region (Obsil and Obsilova,
2008). These proteins are ubiquitously expressed in various
tissues throughout the body, except for FOXO6, which currently
has been reported only in the adult brain tissue (Jacobs et al.,
2003). Notably, the Human Protein Atlas1 indicates that the
expression of FOXO3 in human ovarian stromal and follicular
cells is abundant.

EXPRESSION REGULATION OF FOXO3a
DURING FOLLICULAR DEVELOPMENT

During recent years, several studies have investigated the
regulation of FOXO3a expression. The activity of FOXO3a

1http://www.proteinatlas.org

can be improved at multiple levels, in which post-translational
modification is the main approach, including phosphorylation,
acetylation, and ubiquitination (Figure 1).

Phosphorylation and Dephosphorylation
FOXO3a can be phosphorylated by kinases such as protein
kinase B (PKB), extracellular-regulated kinase, serum and
glucocorticoid-induced kinase, and inhibitor kappa B kinase β

(Brunet et al., 2001). The transcriptional regulation of FOXO3a
is closely related to phosphoinositide-3 kinase (PI-3K)/protein
kinase B (PKB) signaling, which was first proposed by Brunet
et al. (1999). In mammals, FOXO3a can be phosphorylated by
PKB in the nucleus and then transported from the nucleus to
the cytoplasm, utilizing the 14-3-3 molecular chaperone after the
activation of insulin signaling. FOXO3a is translocated into the
cytoplasm and could bind with the polyubiquitination system, to
be subsequently degraded by proteasomes (Plas and Thompson,
2003; Wang et al., 2015), which accompanies the transcriptional
activity loss of FOXO3a, which no longer plays a regulatory
role during cell development and metabolism (Datta et al.,
1999; Brunet et al., 2002; Plas and Thompson, 2003, 2005).
Therefore, the localization of FOXO3a in the cytoplasm not
only inactivates its function but is also extremely crucial for the
degradation of FOXO3a.

Phosphatase and tensin homolog deleted on chromosome
ten (PTEN) is a key negative regulator for PI3K/PKB signaling,
which can improve the suppression of FOXO3a through
dephosphorylation (Ding et al., 2010; Jang et al., 2016; Li
J. et al., 2020). Additionally, endogenous PKB and FOXO3a
can form a complex. Furthermore, FOXO3a can negatively
regulate PKB and its downstream molecules (Takaishi et al.,
1999; Lin et al., 2001; Junger et al., 2003; Puig et al., 2003).
Simultaneously, elevated 14-3-3 can increase FOXO3a expression
and phosphorylation, maintaining the phosphorylated FOXO3a
protein stability (Cahill et al., 2001).

Reddy et al. (2005) reported the activation of PKB and
suppression of FOXO3a in mouse and rat oocytes using stem cell
factor (SCF) during follicular development. Meng et al. (2007)
showed the stage/cell-specific expression patterns of FOXO3a
and PKB, suggesting that these proteins might play potential
roles in the follicular development of the mini-pig. Furthermore,
consistent results were observed in fetal and neonatal pig ovaries
(Ding et al., 2010). These results indicate the important role of
PKB/FOXO3a and the impact of PKB regulation on FOXO3a
phosphorylation during follicular development.

Acetylation and Deacetylation
In addition to the regulation of PKB, FOXO3a is also mediated
via acetylation and deacetylation (Kim et al., 2010; Xiang et al.,
2012; Zhang et al., 2013; Wang et al., 2014; Zhou et al., 2014;
Liu et al., 2015; Long et al., 2019). CREB binding protein,
p300, and other nuclear proteins can acetylate lysine on the
DNA-binding region of FOXO3a protein, resulting in reduced
FOXO3a transcriptional activation (Watroba et al., 2012). Sirtuin
1 (SIRT1) is a NAD-dependent histone deacetylase (Long
et al., 2019). Typically, SIRT1 in the nucleus may activate the
transcriptional activity of FOXO3a, regulating cellular functions
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FIGURE 1 | The regulation of FOXO3a expression and its physiological role of during follicular development. (1) FOXO3a can be phosphorylated by PKB, and then
transported from the nucleus to the cytoplasm by 14-3-3 molecular chaperone, accompanied by the loss of transcriptional activity. PTEN can inhibit the inactivation
of FOXO3a by dephosphorylating p-PKB. (2) In the cytoplasm, the polyubiquitination of FOXO3a results in its degradation by proteasomes. (3) Acetylase CBP, p300,
and other nuclear proteins can acetylate FOXO3a protein. In the nucleus, SIRT1 may activate FOXO3a by deacetylating Ac-FOXO3a. (4) Under oxidative stress, the
accumulated ROS can increase post-translational modifications of FOXO3a, whereas SIRT1 can downregulate ROS. (5) FOXO3a is involved in autophagy by
regulating mTOR. Caloric restriction may activate SIRT1 signaling and suppress mTOR. Collectively, the regulation of FOXO3a can mediate cell cycle arrest and
apoptosis by inducing the transcription of downstream target genes, as well as by participating in oxidative stress and energy metabolism through communication
with PKB, SIRT1, ROS, and mTOR, thereby affecting the activation of primordial follicles, oocyte and granulosa cell apoptosis, and regulating the growth and
development of follicles. PKB, protein kinase B; PTEN, phosphatase and tensin homolog deleted on chromosome ten; SIRT1, sirtuin 1; ROS, reactive oxygen
species; mTOR, mammalian target of rapamycin.

by deacetylating Ac-FOXO3a (Glauser and Schlegel, 2007).
Gorczyca et al. (2019) demonstrated the presence of SIRT1 and
SIRT6 in ovarian cells, and their involvement in the control of
follicular atresia. Recent studies revealed that energy restriction
can increase the expression of SIRT1 and activate SIRT1-
related signaling pathways in adult mice (Xiang et al., 2012;

Zhang et al., 2013; Liu et al., 2015; Long et al., 2019). Additionally,
Kim et al. (2010) reported that the high expression of FOXO3a
can upregulate SITR6 activity, whereas the inhibition of FOXO3a
expression could downregulate SIRT6 activity. Simultaneously,
the downregulation of FOXO3a can prevent the effect of SIRT6
on energy limitation, as well as on SIRT1 (Kim et al., 2010).
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PHYSIOLOGICAL ROLES OF FOXO3a
DURING FOLLICULAR DEVELOPMENT

Currently, numerous studies have presented that FOXO3a
is associated with follicular development (Brenkman and
Burgering, 2003; Adhikari and Liu, 2009; Monniaux et al.,
2016). Experimental studies have reported that female FOXO3a
knockout mice exhibit global follicular activation at an early
stage of follicular growth, leading to oocyte death, early
depletion of functional ovarian follicles, and secondary infertility
(Castrillon et al., 2003). Conversely, FOXO3 overexpression
can delay the development of primordial follicles, increase the
follicular reserve, and ovarian reproductive capacity in mice.
Compared with wild-type littermates, increased follicle numbers
and decreased gonadotropin levels were documented in aging
FOXO3-transgenic mice (Pelosi et al., 2013). Thus, FOXO3a
may play an important role in maintaining the pool number
of primordial follicles and the physiological functions of the
ovarian reserve, as well as female fertility. Furthermore, some
researchers have reported that the FOXO3 protein regulates
follicle growth and atresia by promoting apoptosis of granulosa
cells and oocytes in mammalian ovaries (Liu et al., 2009;
Matsuda et al., 2011).

Although the function of FOXO3a in ovarian follicle
development has been relatively known, its mechanism remains
unclear. It is generally accepted that FOXO3a is widely involved
in the cell cycle, DNA damage repair, apoptosis, oxidative stress,
and metabolism. Hence, we presented evidence postulating that
the role of FOXO3a in follicular development is related to these
processes (Figure 1).

Cell Cycle Arrest and Apoptosis
FOXO3a activity impacts the expression of downstream target
genes, resulting in cell cycle and apoptotic disturbances (Medema
et al., 2000). FoxO3a can increase the expression of the
cyclin-dependent kinase inhibitor protein, p27kip, and decrease
the expression of cyclin D in the nucleus, maintaining cells
in a stationary phase and inhibiting follicular development
(Schmidt et al., 2002). Liu et al. (2009) suggested that FOXO3a
is involved in oocyte apoptosis in the neonatal rat ovary,
and the SCF-PI3K/PKB-FOXO3a signaling pathway mediates
primordial follicle formation and oocyte apoptosis by regulating
the expression of p27kip1 and proapoptotic factors such as
Bim, Bad, and Bax. Moreover, research on chicken primary
ovarian granulosa cells indicated that in the absence of FOXO3,
mRNA levels of proapoptotic factors BNIP3 and BCL2L11
decreased, along with poly [ADP-ribose] polymerase 1 (PARP-
1) and cleaved caspase3 protein levels. After treatment with
a recombinant FOXO3 protein, mRNA levels of BNIP3 and
BCL2L11, as well as protein levels of PARP-1 and caspase3,
were reportedly increased (Cui et al., 2019). Experiments in
human ovarian granulosa-like tumor cells (KGN) have shown
that expression of the proapoptotic factors FASLG and BCL2L11
is upregulated and cell death is induced by transfection of FOXO3
expression vectors (Matsuda et al., 2011). Collectively, these
studies have consistently demonstrated that FOXO3 is expressed

in reproductive tissues, including ovarian oocytes and granulosa
cells, and promotes apoptosis.

Oxidative Stress
Reportedly, accumulated evidence suggests that oxidative stress
is associated with disrupted follicular development, which may
result in increased follicular atresia (Yan et al., 2020). Under
oxidative stress, accumulated reactive oxygen species (ROS)
leads to post-translational modifications of FOXO3a, thereby
regulating the activity and function of FOXO3a. Park et al.
(2020) demonstrated that SIRT1 can downregulate ROS and
form a complex with FOXO3a in cells, which can improve
the ability of FOXO3a to induce cell cycle arrest and promote
cell survival. Recent findings have indicated that resveratrol, a
plant polyphenolic compound, can enhance SIRT1 and decrease
ovarian oxidative stress as well as inhibit phosphorylation of
p66Shc, both in vivo and in vitro (Wang et al., 2020). Thus,
in terms of follicular development, there undoubtedly exists
an interactive relationship between ROS, SIRT1, and FOXO3a.
However, the specific mechanism needs to be elucidated.

Energy Metabolism
Mammalian target of rapamycin (mTOR) is a major negative
regulatory factor of autophagy (Choi et al., 2011). It has been
previously reported that PKB-mediated activation of mTOR
inhibits granulosa cell autophagy during follicular development
(Choi et al., 2014). Growing evidence strongly indicates that
FOXO3a is involved in autophagy. If abundant energy is
available, the modification of FoxO3 inhibits its activity,
thereby decreasing the transcription of autophagy genes and
downregulating autophagy. However, PI3K-PKB-FOXO3 can
promote autophagy by mediating mTOR inhibition (van der
Vos et al., 2012). Long et al. (2019) reported that oocyte-
specific SIRT1-overexpressing mice demonstrated an improved
follicle reserve and a prolonged ovarian lifespan by continuously
activating FOXO3a and suppressing mTOR. Furthermore, SIRT1
can facilitate primordial follicle recruitment through directly
modulating PKB and mTOR transcription, independent of
deacetylase activity (Zhang T. et al., 2019). High-fat diet-induced
obesity may accelerate ovarian follicle development and the
rate of follicle loss by activating mTOR and suppressing SIRT1
signaling. Caloric restriction may improve the adverse effects of
high-fat diet-induced obesity on ovarian follicles (Xiang et al.,
2012; Wang et al., 2014; Li et al., 2015; Liu et al., 2015).
Thus, FOXO3a, mTOR, PKB, and SIRT1 may be implicated in
autophagy and energy metabolism during follicular development.

FOXO3a AND OVARIAN DISEASE

Reportedly, the deletion of FOXO3a, FOXL2, PTEN,
and p27 leads to early exhaustion of the primordial
follicle pool and premature ovarian insufficiency in
transgenic mice (Thanatsis et al., 2019). Melatonin prevents
cisplatin-induced primordial follicle loss by suppressing
the PTEN/AKT/FOXO3a pathway in the mouse ovary
(Jang et al., 2016). Li Y. et al. (2020) observed that
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oral oyster polypeptide can protect the ovaries from D-galactose-
induced premature ovarian failure, mediated via anti-oxidative
stress activity. Meanwhile, growing data demonstrate that excess
androgen may be the primary cause of polycystic ovary syndrome
(PCOS). During the early stage of mouse folliculogenesis,
testosterone induces the redistribution of FOXO3a, suggesting
the involvement of FOXO3a in the pathogenesis of PCOS
(Yang et al., 2010).

It has been well established that ovarian cancer presents
the highest mortality rate among gynecological malignancies.
Reportedly, FOXO3a expression can be increased by LSD1
knockdown, thereby inhibiting the proliferation and metastasis
of ovarian cancer HO8910 cells (Liu et al., 2020). Kaplan-Meier
survival analysis suggested that the low expression of FOXO3a
was significantly related to poor prognosis in ovarian cancer
patients (Fei et al., 2009). Recently, Xia et al. (2020) revealed that
microRNA-506-3p inhibits proliferation and promotes apoptosis
in ovarian cancer cells by targeting the AKT/FOXO3a signaling
pathway. O’Neill et al. (2013) suggested that blocking the
epidermal growth factor receptor (EGFR) results in PI3K-PKB
inhibition and increases FOXO3a activation, which provides a
new and valuable treatment strategy for breast cancer, prostate
cancer, and ovarian cancer.

SUMMARY AND CONCLUSION

Based on the studies investigating the regulation of FOXO3a
expression, it is currently established that FOXO3a can enhance
the transcriptional regulation of its target genes, thereby
enhancing its physiological contribution during the cell cycle
and apoptosis regulation, resistance to oxidative stress, and
prolongation of life span in organisms (Figure 1). Furthermore,
FOXO3a signaling can induce oocyte and granulosa cell
apoptosis, inhibit the activation of primordial follicles, and
regulate the growth and development of follicles. The activation

of FOXO3a signaling can inhibit the developmental initiation
of primordial follicles, maintain the initial state of primordial
follicles, reduce the number of primordial follicles transformed
into mature follicles, thus preserving the follicular reserves,
delaying the depletion of follicles, and delaying the aging of
ovaries. It is important to further explore the mechanism
concerning the regulation of FOXO3a expression on its target
genes, the physiological contribution of FOXO3a during ovarian
follicular development, and its future clinical applications,
further advancing the field of reproductive biology.
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