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A B S T R A C T

Introduction: Various studies have identified aberrantly expressed miRNAs in breast cancer

and demonstrated an association between distinct miRNAs and malignant progression as

well as metastasis. Even though tumor-associated macrophages (TAM) are known medi-

ators of these processes, little is known regarding their miRNA expression upon education

by malignant cells in vivo.

Methods:We profiled miRNA andmRNA expression of in vitro tumor-educated macrophages

(TEM) by indirectly co-culturing with estrogen-receptor-positive (ERþ) MCF-7 breast cancer

cells. The prognostic power of the resulting miRNA list was investigated in primary breast

cancer datasets and compared to other signatures. Furthermore, miRNA expression levels

were correlated to mRNA expression of macrophage markers and the impact on prognosis

was assessed.

Results: Through the evaluation of the group effects between differentially-expressed

miRNAs and their target mRNAs in TEM, the power of detecting regulated miRNAs was

greatly increased. The resulting list of 96 miRNAs predicts disease-free survival (DFS) in

external datasets of ERþ breast cancer patients and performs well in comparison with

other miRNA signatures. Clustering with the predefined miRNA list revealed a significant

difference in survival between the two resulting patient groups. Furthermore, an optimized

miRNA list, based on correlations with macrophages markers, proved even more capable at

identifying patient clusters significantly differing in DFS.

Conclusions: In vitro profiling of TEM and subsequent bioinformatic verification identified

miRNAs with a high prognostic power for DFS when transferred into the clinical setting

of primary breast cancer. The resulting miRNAs not only verify previously established
B2/HER2, human epidermal growth factor 2; miRNA, micro-RNA; TAM, tumor-associated
hages; PR, progesterone receptor; miRNA, micro RNA.
atology & Oncology, University of G€ottingen, 37099 G€ottingen, Germany. Tel.: þ49 551 39

-goettingen.de (A. Bleckmann), Andreas.Leha@med.uni-goettingen.de (A. Leha), artmanns@
@med.uni-goettingen.de (K. Menck), gsalina@gwdg.de (G. Salinas-Riester), claudia.binder@
s.pukrop@med.uni-goettingen.de (T. Pukrop), Tim.Beissbarth@med.uni-goettingen.de
ttingen.de (F. Klemm).
s work.
3
Elsevier B.V. on behalf of Federation of European Biochemical Societies. This is an open

se (http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:a.bleckmann@med.uni-goettingen.de
mailto:Andreas.Leha@med.uni-goettingen.de
mailto:artmanns@student.ethz.ch
mailto:artmanns@student.ethz.ch
mailto:Kerstin.Menck@med.uni-goettingen.de
mailto:gsalina@gwdg.de
mailto:claudia.binder@med.uni-goettingen.de
mailto:claudia.binder@med.uni-goettingen.de
mailto:tobias.pukrop@med.uni-goettingen.de
mailto:Tim.Beissbarth@med.uni-goettingen.de
mailto:florian.klemm@med.uni-goettingen.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molonc.2014.07.023&domain=pdf
www.sciencedirect.com/science/journal/15747891
http://www.elsevier.com/locate/molonc
http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://dx.doi.org/10.1016/j.molonc.2014.07.023


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 5 5e1 6 6156
findings but also lead to new prognostic markers. Furthermore, our data suggest that TAM

contribute to the total miRNA expression profile of ER þ breast cancers.

ª 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction the stromal compartment is highly tumor-supportive, only
The heterogeneity of breast cancer poses serious clinical chal-

lenges. Thus, different approaches to stratifying patients with

respect to their prognosis have been developed. In clinical prac-

tice, themanagementofbreast cancer isbaseduponestablished

criteria such as tumor size, the presence of distant metastases,

histologic type and grade, the expression of hormone (i.e. estro-

gen and progesterone) receptors (ER and PR), and human

epidermal growth factor 2 (ERBB2/HER2) receptor. Theseparam-

eters are complemented by gene expression studies, which

resulted in the identification of molecular subtypes (Perou

et al., 2000; Smid et al., 2008; Sorlie et al., 2001) such as luminal

A, luminal B, normal-like, basal-like, and HER2-enriched. This

classification has great clinical relevance, as the different sub-

types have distinct prognoses and patterns of metastasis

(Smid et al., 2008). In ER-positive (ERþ) patients, distinct gene

expression signatures have been identified to predict clinical

outcome with a greater degree of accuracy (Arranz et al., 2012).

Subsequently, simplifiedqRT-PCRbasedapproachesofmolecu-

lar subtyping have been developed to allow a transfer into

routine clinical decision making (Parker et al., 2009).

Recently, the field of clinicogenomics has been further

expanded through the use of microRNA analyses. MicroRNAs

(miRNAs) are small, non-coding RNA molecules of 20e25 nu-

cleotides in length, which can regulate target mRNAs on the

transcriptional and posttranscriptional level (Du and

Zamore, 2005). The latter mechanism is predominant in the

mammalian system (Guo et al., 2010). miRNAs are present at

abnormal levels in human tumors with pathogenetic conse-

quences through the action as tumor suppressors or onco-

genes (Nicoloso et al., 2009; Tian et al., 2013). As such, the

expression of miRNAs has been implicated in various aspects

of breast cancer progression, such as tumor development,

drug resistance, and metastasis (Volinia et al., 2012; Tian

et al., 2013). Several paradigmatic studies (Camps et al., 2008;

Rothe et al., 2011; Volinia et al., 2012) revealed an up-

regulation of miR-210 during invasive transition and correla-

tion with tumor aggressiveness and poor prognosis. Subse-

quently, Buffa et al. validated the previously established

prognostic relevance of miR-210 expression and explored reg-

ulatory effects on target genes integrating miRNA and mRNA

global expression profiles (Buffa et al., 2011). Furthermore,

these authors identified a list of miRNAs independently asso-

ciated with prognosis in breast cancer. On the contrary, a

study investigating another cohort of similar patients found

no single miRNA profile to predict outcome (Lyng et al., 2012).

Most gene expression and miRNA studies rely on the anal-

ysis of whole tumor specimens comprised of malignant epithe-

lial cells and the surrounding tissue. Thus, these data reflect

alterations within both cancer and stromal cells. Even though
limited gene expression data from the tumor stroma of clinical

samples exist (Allinen et al., 2004; Finak et al., 2008; Singer et al.,

2008). This transformed benign tumor compartment contains

large populations ofmyoepithelial cells, fibroblasts, endothelial

cells, and immune cells. Among the latter, tumor-associated

macrophages (TAM) play a pivotal role in facilitating tumor pro-

gression and metastasis (Qian and Pollard, 2010; Quail and

Joyce, 2013). Several clinical studies have demonstrated a corre-

lation between the rate of macrophage infiltration of the pri-

mary tumor and tumor cell infiltration, vascularity, and

ultimately patient prognosis (Eiro et al., 2012; Leek et al., 1996;

Medrek et al., 2012). Furthermore, gene expression studies of

murine TAM have proven to predict poor prognosis and

reduced survival if applied to clinical datasets (Ojalvo et al.,

2010; Zabuawala et al., 2010). However, little is known on the

involvement of miRNA expression in TAM-mediated tumor

progression. While miRNAs regulate macrophage differentia-

tion and response to external stimuli, i.e. alternative M2-type

activation, the implications for TAM function are about to be

elucidated (Squadrito et al., 2013). So far, down-regulation of

miR-155 targeting cytokine production (He et al., 2009) and

up-regulation of miR-511-3p as part of a negative feedback

loop (Squadrito et al., 2012) have been described in TAM.

Assuming that in vitro tumor-educatedmacrophages (TEM)

constitute a model for TAMs in vivo, we hypothesized that

miRNA expression data from TEM can be used to determine

unfavorable clinical subsets in breast cancer. Thus, we ob-

tained miRNA and mRNA expression data from macrophages

co-cultured in vitro with breast cancer cells. These data were

filtered by testing for their meaningful relation, i.e. diametri-

cally opposed miRNA and mRNA expression levels (Artmann

et al., 2012). The resulting miRNA list was then analyzed

further to determine its discriminative power within datasets

frombreast cancer patients (for an overview see Figure 1). This

enabled us to identifymiRNA classifiers distinguishing clinical

subgroups with distinctively different prognoses. These clin-

ical subgroups were finally further refined when correlations

between miRNAs and macrophage marker expression levels

were taken into consideration.
2. Material and methods

2.1. Cell lines, cell culture and co-culture with human
macrophages

The ERþ and PRþ human breast cancer cell line MCF-7 was

purchased from DSMZ and maintained in RPMI-1640 medium

(PAA Laboratories Inc., C€olbe, Germany) supplemented with

10% fetal calf serum (FCS, Invitrogen, Karlsruhe, Germany).

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Figure 1 e Experimental and bioinformatics workflow of this study. After co-culture with breast cancer cells (BCC), the miRNA and target set

mRNA expression levels of tumor-educated macrophages (TEM) were analyzed separately and the p-values obtained were combined. The resulting

miR-iTEM list was mapped to external clinical datasets of breast cancer primaries and tested for prognostic power. In parallel, correlation to

macrophage markers was determined. Prognostic relevance was revealed by supervised clustering and subsequent KaplaneMeier analysis of DFS.
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Human macrophages were derived from mononuclear pe-

ripheral blood cells and were collected with approval of the

local ethics committee in G€ottingen.

Briefly, monocytes were obtained from buffy coats of

healthy donors through double-density-gradient isolation.

Macrophages were differentiated by culturing monocytes in

fluorinated ethylene propylene-coated cell culture bags (Cell-

Genix, Freiburg, Germany) in the presence of M-CSF (Immuno-

tools, Friesoythe, Germany) for 7 days. Differentiation into

mature macrophages was assessed by flow cytometry verifi-

cation of CD11b, CD11c, CD14 and CD45 (Beckman Coulter,

Krefeld, Germany) expression and negativity for CD209 (Bio-

Legend, Fell, Germany). For indirect co-culture experiments,

macrophages were seeded in hanging cell culture inserts

(0.4 mm pore size, PET; Millipore, Billerica, MA, USA) and co-

cultured with MCF-7 cells at a ratio of 2:1 under normoxia

for 24 h. All co-culture experiments were performed with at

least 3 biological replicates, i.e. with different passages of

MCF-7 cells and macrophages derived from different donors.

2.2. RNA extraction

Total RNA for array experiments was isolated using TRIZOL

reagent according to the manufacturer’s instructions (Invitro-

gen, Carlsbad, CA). RNA integrity for each sample was

confirmedwith the Agilent 2100 Bioanalyzer (Agilent Technol-

ogies, Palo Alto, CA). Samples used for microarray experi-

ments exhibited a RIN number greater than 7.5. Each RNA

sample was then split into two aliquots that were either pro-

cessed for the miRNA or the mRNA microarray.

2.3. Gene expression and miRNA microarray studies

Global gene expression analyses utilized the “Human GE

4 � 44K v2 Microarray Kit” (Agilent, B€oblingen, Germany)

and the QuickAmp Labeling Kit Cy3 One-Color (Agilent) as

well as the RNA Spike-In Kit (Agilent). 500 ng of total RNA

were used as starting material for the synthesis of cDNA.

Following in-vitro transcription, the quality and quantity of

labeled RNA was determined using the NanoDrop D-1000

UV-VIS Spectrophotometer (Peqlab, Erlangen, Germany).

1.65 mg of each labeled sample were fragmented and applied

onto “Human GE 4 � 44K v2” (#G4845A, Agilent) microarrays.

Hybridizations were performed for 17 h at 10 rpm and 65 �C
in a hybridization oven (Agilent). Washing and array process-

ing were completed according to the manufacturer’s recom-

mendations. Cy3 intensities were detected by one-color

scanning using the G2505B Agilent DNA microarray scanner
at 5 mm resolution. Intensity data were extracted using the

Feature Extraction application (version 9.5, Agilent).

For human miRNA microarray analyses, 200 ng of total

RNA were labeled using the miRNA Complete Labeling and

Hyb Kit (Agilent). Labeled sampleswere hybridized to “Human

miRNA 8 � 15K V3” microarrays (#G4470C, Agilent), based on

miRBase (release 12.1, (Griffiths-Jones et al., 2008)). Hybridiza-

tions were performed for 20 h at 10 rpm and 65 �C in a hybrid-

ization oven (Agilent). After washing and array processing

according to the manufacturer’s protocol, Cy3 intensities

were detected by one color scanning at 3 mm resolution.

All miRNA and mRNA expression data have been submit-

ted to the NCBI Gene Expression Omnibus (GEO) data reposi-

tory (Barrett and Edgar, 2006), SuperSeries GSE55024.

2.4. Detection of differentially-expressed miRNA

All expression data were log-transformed and quantile-

normalized. We utilized the R-package ‘miRtest’ (Artmann

et al., 2012) to detect miRNAs that were both differentially

regulated and had an effect on their target mRNA set. Match-

ing of miRNA to mRNA data was obtained from microCosm

(Griffiths-Jones et al., 2008). Gene identifiers were mapped us-

ing the biomaRt R-package (Durinck et al., 2005). Group effects

of mRNA target gene sets were determined using the gene set

test ‘Romer’ (Majewski et al., 2010) available in the ‘miRtest’ R-

package. The resulting lists of p-values from miRNA and set-

wise testing were combined by means of Stouffer’s inverse

normal method (Marot and Mayer, 2009; Stouffer, 1949).

Possible confounding effects of macrophage donors and

microarray types were adjusted for in the design matrix.

2.5. miRNA qRT-PCR

2 mg of total RNA was used as starting material for reverse

transcription. SYBR based quantification of mature miR-210

was performed with the miScript system and the appropriate

primer assay (both Qiagen, Hilden, Germany) on an ABI

7900HT instrument (Applied Biosystems, Foster City, CA,

USA). RNU6B miRNA levels were used to normalize between

different samples. Relative miR210 expression was analyzed

using RQManager software (Applied Biosystems). Significance

was tested using the paired two-sided Student’s T-test.

2.6. External microarray datasets

Two primary breast cancer miRNA expression datasets were

retrieved from GEO. All data were downloaded as raw

http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://dx.doi.org/10.1016/j.molonc.2014.07.023
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expression data, log-transformed, and quantile-normalized.

For all samples, annotations of the ER status and information

on disease-free survival were available. In both breast cancer

datasets, all ERþ patients included in our analysis underwent

adjuvant antihormonal tamoxifen treatment. Both published

datasets were originally collected with approval of the respec-

tive local ethics committees.

The first dataset (GSE22216) contained 210 whole tumor

samples from patients treated in Oxford, UK and the corre-

sponding miRNA expression levels for 735 miRNAs (Buffa

et al., 2011). No information on the tumor cell content within

the samples was provided. For all 210 samples within the

GSE22216 dataset, mRNA expression levels for 24332 mRNAs

were available via GEO (GSE22219). For the sake of readability,

the datasets will be called “Oxford miRNA” and “mRNA set”,

respectively. The authors reported different miRNA signa-

tures for ERþ and ER� patients. As macrophages were co-

culturedwith hormone-receptor-positiveMCF-7 cells, we split

the dataset into two subsets and only performed the analysis

on the 128 ERþ patients. Within this cohort the authors iden-

tified a set of miRNAs prognostic for distant relapse-free sur-

vival (DRFS). For clarity, this list will be referred to as “miR-

Oxford ERþ”.

The second dataset (GSE37405) comprised three datasets

(GPL14149, GPL13703 and GPL15462) (Lyng et al., 2012) of only

ERþ patients who underwent surgery in Odense, Denmark.

Thus, this dataset will herein after be titled “Odense miRNA”.

The authors included only samples which exhibited >50% tu-

mor cells. Due to the amount of miRNA expression data

missing in the GPL14149 subset, only GPL13703 and GPL15462

were analyzed. Together these two sets comprised 113 sam-

ples with expression levels for 761 miRNAs. No prognostic

miRNA profile could be detected reliably in the original study.

For both these datasets disease-free survival (DFS) as pro-

vided by the authors was used as primary end point. All

probes which were not annotated to any miRNA were dis-

carded. For probes annotated with the same miRNA, the me-

dian of their expression was taken.

2.7. Statistical evaluation of prognostic power of miRNA
sets

All analyseswere performed using the free statistical software

R version 3.0.0 (R Development Core Team, 2013). In cases of

multiple hypothesis testing P-values were adjusted for multi-

plicity using the method established by Benjamini and Hoch-

berg (Benjamini and Hochberg, 1995) using the R function

p.adjust. A false discovery rate (FDR, q-value) up to 5% was

considered significant.

On both external datasets, three miRNA lists were evalu-

ated with respect to their prognostic power: 1) the list of all

miRNAs present on the chip, 2) the set of differentially-

regulated miRNAs in TEM (for details see Results) and 3) the

miR-Oxford ERþ list. The logarithmic gene expression levels

were assessed for their potential to predict disease-free sur-

vival (DFS) based on the Cox proportional hazards model

(Andersen and Gill, 1982). Analysis of survival data was per-

formed using the R package survival. CoxBoost (Binder and

Schumacher, 2009), an algorithm and R package for sparse

Cox modeling, was applied to all three sets for feature
selection. For purposes of comparison, an additional null

model was included into the analysis. This null model was

calculated by permuting the survival information. In order to

avoid empty feature sets in the null model, which occurs if

CoxBoost does not detect any informative features, non-

sparse Cox modeling was applied for the null model estima-

tion. To keep the feature set small enough for non-sparse

Cox modeling, the ten least informative features (tested in

univariate Cox regression), were used in this permutation.

Stable features selected by CoxBoost were determined by

an internal 10-fold cross-validation. The features that were

selected in at least 50% of the internal folds were used as vari-

ables in the final Cox regression model.

To assess the predictive performance of the different

miRNA sets the time-dependent Brier score was calculated

(Brier, 1950). In our setting this score represents differences

between the patient’s disease status and the predicted value

at each time point. The Brier score is expressed in numbers be-

tween 0 and 1 e a lower number indicates an improved ability

to predict DFS. Calculation of the Brier score was performed in

a 10-fold cross-validation with the R package survAUC. The

resulting Brier score curves were tested for significant differ-

ence using a sign-rank test on the integrated Brier scores as

proposed by Wiel et al. (Wiel et al., 2009).

Correlation between miRNA expression levels and the

mRNA expression levels of macrophage markers was deter-

mined using Pearson’s correlation test in the Oxford miRNA

and mRNA breast cancer datasets (i.e. GSE22216 and

GSE22219). The mean of the normalized expression levels of

CD14 and CD68 (IDs: GI_4557416 and GI_4557434) was used

as a macrophage marker. To establish a macrophage-related

list, miRNAs were included according to their correlations

(FDR < 0.05).

Breast cancer samples were clustered within the obtained

lists according to their miRNA expression profile by means

of hierarchical clustering. Individual results of the cluster vali-

dation methods were combined by rank aggregation (Pihur

and Datta, 2009) using the R package clValid (Brock et al.,

2011). The resulting clusters were subsequently subjected to

a KaplaneMeier analysis of disease-free survival (DFS). These

KaplaneMeier curves were then compared using a log rank

test. Hazard ratios (HR) and 95% confidence intervals (CI)

were computed using the Cox proportional hazard model us-

ing the function coxph from the R package survival.
3. Results

3.1. miRNA profiling in TEM through miRNA and mRNA
group effects

Our aim was to identify differentially-expressed miRNAs by

comparing naive macrophages with tumor-educated macro-

phages (TEM). We therefore performed both miRNA arrays

and mRNA arrays from the same macrophage preparations

with andwithout the addition of tumor cells. In this combined

dataset we identified differentially-expressed miRNAs

through the test statistic miRtest that evaluates not only the

individual miRNAs but also their predicted target genes for

consistent differential expression.

http://dx.doi.org/10.1016/j.molonc.2014.07.023
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Table 1 e Stable feature selection of miR-iTEM in breast cancer datasets. List of stably selected miRNAs from the different miRNA sets (miR-
iTEM list, miR-Oxford ER D list, all miRNAs list) and their corresponding inclusion frequencies (in % of all cross validation runs) for the two
external breast cancer datasets. “-“ indicates that this miRNA was not present in the respective list of miRNAs.

Oxford dataset (GSE22216) Odense dataset (GSE37405)

miRNA miR-iTEM miR-Oxford ERþ All miRNAs miRNA miR-iTEM miR-Oxford ERþ All miRNAs

hsa-miR-767-3p 90 100 50 hsa-miR-767-3p 0 100 0

hsa-miR-210 100 e 20 hsa-miR-941 100 e 90

hsa-miR-486-5p 90 e 30 hsa-miR-548c-5p 100 e 90

hsa-miR-941 100 e 60 hsa-miR-30a* 70 e 20

hsa-miR-769-3p e 100 50 hsa-miR-769-3p e 100 0

hsa-miR-181d 60 e 0 hsa-miR-128 e 70 0

hsa-miR-135a e 100 30

hsa-miR-125a-5p 60 e 0

hsa-miR-128a:9.1 e 100 0

hsa-miR-296-5p 70 e 0

hsa-miR-578 60 e 0

hsa-miR-493 50 e 0

HS_285 e e 50
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Out of the 738 miRNAs present on the array, 642 had anno-

tated gene sets that allowed the application of the miRtest

method. Thus, group effects were determined individually

for each of these 642 miRNAs and combined with their

mRNA target gene sets. Through this approach, 96 miRNAs

revealed both a differential expression and consistently regu-

lated target mRNA sets in TEM. This panel of miRNAs will be

referred to as miRNAs in TEM e miR-iTEM. Combined p- and

FDR-values for these miRNAs are given in Supplementary

Table 1. An assessment of the direction of the respective

fold changes is shown in Supplementary Table 2.

Interestingly, miR-210 was among the members of the

miR-iTEM list, which has previously been shown to be associ-

ated with poor patient outcome (Camps et al., 2008; Rothe

et al., 2011; Volinia et al., 2012).

We thus aimed to verify its increased expression levels by

qRT-PCR in independent samples of TEM. In line with the
miR−Oxford ER+
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Figure 2 e Low estimated error of the miR-iTEM list for survival predictio

time points of the different miRNA sets ( green:miR-iTEM; brown: miR-O

dataset are illustrated in (a) and the Odense data set in (b). Lower curves
array data these experiments showed a significant increase

of miR-210 expression (Supplementary Figure 1).
3.2. Mapping of miRNA sets to external breast cancer
datasets

The retrieved miR-iTEM list of 96 miRNAs was mapped to the

two external microarray datasets. While for the Oxford

miRNA dataset thirteen out of the 96 miRNAs could not be

mapped, mapping was successful in all cases for the Odense

dataset (Supplementary Table 1). To increase mapping effi-

ciency and retain asmuch information as possible we allowed

for mapping to the complementary strand if no exact match

was found.

The miR-Oxford ERþ list contained four miRNAs, of these

only three were found in the Odense dataset because miR-
miR−iTEM
miR−Oxford ER+
All miRNAs
Nullmodel
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(b)

n in breast cancer datasets. Brier score for DFS prediction at different

xford ERD; blue: all miRNAs; red: null model). Results for the Oxford

indicate fewer prediction errors.
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135awas not present (Table 1) on the array used in the original

study.

3.3. Robustness of miR-iTEM as a stratifier in clinical
breast cancer samples

To validate the usefulness of the miR-iTEM list obtained

in vitro in a clinical setting, we investigated its prognostic po-

wer for DFS in external datasets of primary breast cancers.

Through this approach, we aimed to clarify whether our

miR-iTEM list is beneficial in comparison with already estab-

lished prognosticmiRNApanels. Hence, we trained prognostic
(a)
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Figure 3 e Supervised clustering according to miR-iTEM distinguishes DF

both datasets) based on the miRNA expression values of the miR-iTEM l

Corresponding KaplaneMeier graphs of DFS are depicted in (c) and (d), p
models for DFS and compared the prediction accuracy of the

miR-iTEM list to that of the miR-Oxford ERþ list. It is note-

worthy that there was a low overlap between the two lists e

only miR767-3p was present in both. To prove that the miR-

iTEM list is suitable to predict DFS, we also included for each

dataset the list of all miRNAs identified in the corresponding

experiment and a null model into our calculations.

The estimated error, i.e. Brier score, for survival prediction

was calculated for the Oxford dataset (Figure 2a). This statisti-

cal measure determines the accuracy of prediction e the

lower the Brier score the better the accuracy. As was to be ex-

pected, the miR-Oxford ERþ list demonstrated the lowest
(b)
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S. Heatmap of the two separate clusters (given in orange and green in

ist in the (a) Oxford and (b) Odense breast cancer datasets.

-values were determined by log rank test.
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prediction error in the dataset in which it was generated (p-

value of comparison to null model 0.10). Surprisingly, the list

of all miRNAs provided only marginal improvements

compared to the null model. However, the miR-iTEM list

exhibited a low prediction error compared to both the null

model and the list of all miRNAs (p-value of comparison to

null mode 0.14). Its performance was only slightly worse

than the miR-Oxford ERþ list (p-value 0.24). This highlights

the validity of themiR-iTEM list evenwhen transferred to clin-

ical in vivo data.

In order to perform a further unbiased analysis to validate

our findings and compare the performance of themiR-iTEM to

the miR-Oxford ERþ list, we tested their impact on DFS in an

independent dataset. Thus, we calculated the Brier scores in

the Odense dataset. The miR-Oxford ERþ and complete

miRNA lists perform comparably and show distinct improve-

ment over the null model, whereas both were outperformed

by the miR-iTEM list from the macrophages (Figure 2b). Only

the miR-iTEM list yields a significantly reduced prediction er-

ror (p-value 0.3) while the miR-Oxford ERþ stays not signifi-

cant (p-value 0.10).
Table 2 e Correlations of miR-iTEM list to macrophage markers.
Significant correlations between members of the miR-iTEMMF list
and the macrophage markers CD68 and CD14.

miRNA rho FDR
3.4. Identification of clinically relevant subgroups by
miR-iTEM

Having shown that miR-iTEM is suitable as a stratifier in

external datasets of breast cancer patients, we were inter-

ested as to whether this would translate into any prognostic

ability. Thus we performed cluster analysis based on the

expression profile of the miR-iTEM list in the Oxford and

Odense breast cancer datasets to define clinically relevant

subgroups. In both ERþ, tamoxifen-treated patient cohorts

clustering defined two distinct patient sets (Figure 3a and b)

as the optimal number of clusters. More strikingly, these

two clusters separate clearly in their DFS (Oxford: p ¼ 0.0341,

HR ¼ 1.8, 95% CI [1.04 to 3.11]), Odense: p ¼ 0.00654,

HR ¼ 2.33, 95% CI [1.24 to 4.36] (Figure 3c and d) as confirmed

by the log rank test.
hsa-miR-150 0.22 <0.001

hsa-miR-30a* �0.31 <0.001

hsa-miR-342-3p �0.2 0.001

hsa-miR-148b �0.27 0.001

hsa-miR-941 0.26 0.002

hsa-miR-138 0.26 0.003

hsa-miR-194 �0.25 0.004

hsa-miR-766 0.24 0.004

hsa-miR-185 0.24 0.004

hsa-miR-125a-5p �0.23 0.006

hsa-miR-483-3p �0.23 0.006

hsa-miR-578 �0.23 0.006

hsa-miR-550* 0.22 0.008

hsa-miR-184 �0.21 0.011

hsa-miR-151:9.1 �0.21 0.011

hsa-miR-18a* 0.21 0.011

hsa-miR-645 �0.21 0.014

hsa-miR-602 �0.2 0.014

hsa-miR-181d �0.2 0.015

hsa-miR-579 0.19 0.025

hsa-miR-130a 0.18 0.035

hsa-miR-767-3p 0.18 0.035

hsa-miR-384 �0.18 0.04
3.5. Stable feature selection within miR-iTEM

Our aim was to condense the information contained within

the miR-iTEM list into a smaller subset. To achieve this goal,

we performed stable feature selection, i.e. determination of

themost informativemiRNAs. To this end, sparse Coxmodels

(see Methods) were used and a miRNAwas defined as stable if

chosen in at least 50% of the training steps of cross validation

runs. The resulting stable miRNAs from the different lists are

given in Supplementary Table 1. Unsurprisingly, all of the four

miRNAs from the miR-Oxford ERþ list were selected consis-

tently in the original Oxford miRNA dataset. From the miR-

iTEM list nine miRNAs were considered stable. The overlap

of both lists comprised only one miRNA (miR-767-3p), which

was stably selected from both lists. In the Odense miRNA

dataset, three out of the four available miR-Oxford ERþ miR-

NAs were chosen, while from the miR-iTEM list three miRNAs

were picked. Among these only miR-941 was congruently

selected from our miR-iTEM list as a stable feature in both

external datasets.
3.6. Correlation of miR-iTEM with mRNA expression of
macrophage markers

As stable feature selection did not yield a subset applicable to

all external datasets, we hoped to extract themost usefulmiR-

NAs frommiR-iTEM by regarding the data from amore biolog-

ical point of view. We therefore evaluated whether the

individual miR-iTEMs are associated to the extent of TAM

infiltration in primary breast cancers. We thus correlated

miRNA expression levels of the miR-iTEM members to

mRNA expression levels of macrophage markers, i.e. CD68

and CD14, in the OxfordmRNA dataset. In order to uncover re-

lations within the complex tumor tissue, even low correlation

coefficients were considered meaningful as long as the FDR

was <0.05. Out of the original 96 miR-iTEM members only 23

e which will be referred to as the miR-iTEMMF set e signifi-

cantly correlate with CD14 and CD68 (Table 2, Figure 4).
3.7. Improved prognostic subgroups based on miR-
iTEMMF

To verify whether the smaller miR-iTEMMF set still contains

the same information as its precursor we performed once

again supervised clustering of the external datasets. Remark-

ably, using the miR-iTEMMF list leads to the identification of

two clusters in both external datasets (Figure 5,

Supplementary Figure 2) which once again exhibit a signifi-

cant difference in DFS (Oxford: p ¼ 0.00141, HR ¼ 2.24, 95%

CI [1.35 to 3.71]), Odense: p ¼ 0.00423, HR ¼ 2,48, 95% CI [1.30

to 4.73]. While these clusters significantly overlap with the

previously described patient groups their discriminative

http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://dx.doi.org/10.1016/j.molonc.2014.07.023
http://dx.doi.org/10.1016/j.molonc.2014.07.023


rho = 0.22
FDR < 0.001

rho = −0.31
FDR < 0.001

rho = −0.20
FDR = 0.001

rho = −0.27
FDR = 0.001

rho = 0.26
FDR = 0.002

rho = 0.26
FDR = 0.003

hsa−miR−150 hsa−miR−30a*

hsa−miR−342−3p hsa−miR−148b

hsa−miR−941 hsa−miR−138

13.0

13.5

14.0

14.5

15.0

15.5

10

12

14

12.5

13.0

13.5

14.0

14.5

11

12

13

9

10

11

12

8

9

10

11

12

0 2 4 0 2 4
CD68_CD14 Mean Expression (log2)

m
iR

N
A

 E
xp

re
ss

io
n
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ability is increased in comparison to the miR-iTEM clusters.

This suggests that the miR-iTEMMF carries additional prog-

nostic power.
4. Discussion

In our study, miRNAs that were regulated in human TEM

in vitro proved to be prognostic if transferred to datasets of

breast cancer primaries. Analyzing miRNA expression in

TEM can be challenging, as the regulatory effects are small

and thus can be difficult to separate from the biological back-

ground. As a consequence, the induction of an M2 phenotype

in TAM often relies on an induction through external stimuli

such as IL-4 or TGF-b treatment (Graff et al., 2012; Yang et al.,

2011) or the use of a murine model (Squadrito et al., 2012).

Even under these stringent conditions there appears to be
only little detectable regulation of miRNA expression. This

can be attributed to increased basal miRNA abundance in

macrophages relative to their monocytic predecessors.

Consequently, polarizing conditions result in smaller fold-

changes in miRNA expression in macrophages than in acti-

vated monocytes (Graff et al., 2012). However, the induction

of a tumor-supportive phenotype through the co-culture of

tumor cells with macrophages is robust and has been vali-

dated previously (Hagemann et al., 2005; Pukrop et al.,

2006). Our approach of combining the expression levels of

miRNAs and their respective target genes greatly increased

the power of detecting differentially-expressed miRNAs

(Artmann et al., 2012). This method mimics the physiologic

functions of miRNAs, since their effects are orchestrated

through the combined regulation of multiple target genes.

On the whole, this allowed us to use a syngeneic human

co-culture system.

http://dx.doi.org/10.1016/j.molonc.2014.07.023
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Figure 5 e Increased prognostic value of the miR-iTEMMF list. Cluster analyses based on miR-iTEMMF miRNA expression values lead to two

separate clusters (orange and green) in both breast cancer datasets: (a) Oxford, (b) Odense. DFS analyses are depicted in (c) and (d) respectively.
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By testing for these aforementioned grouped effects, we

identified 96 miRNAs, whose expression is significantly regu-

lated in macrophages upon co-culture with ERþ MCF-7 cells.

This approach differs from the work of other groups, which

generate their signatures from whole tissue samples. The

observation that our miR-iTEM panel carries prognostic infor-

mation even if applied to clinical data of ERþ breast cancer pri-

maries highlights the validity of our procedure. Moreover, in a

second independent dataset, the miR-iTEM list’s prediction

error for DFS was even lower than that of the miRNA list ob-

tained by Buffa et al. (Buffa et al., 2011). Interestingly, the pre-

dictive ability of themiR-iTEM list unfolds its greatest effect in

the long term. This mirrors the clinical course of ER positive

breast cancers, which greatly benefit from adjuvant
chemotherapy and endocrine therapy but exhibit a great risk

for late recurrence (Esserman et al., 2011). This risk persists

even under adjuvant endocrine therapy as in the two external

cohorts studied in our manuscript (Cuzick et al., 2010).

Nonetheless, the miR-iTEM list is still quite extensive e

containing approximately one eighth of all themiRNAs tested.

The information contained within these 96 miRNAs appears

to depend on the context. This is highlighted by the fact that

the stable feature selection results in two distinct panels of

13 and 6 miRNAs for the Oxford and Odense datasets, respec-

tively. There is little overlap of the stably selected features be-

tween these two independent datasetse only miR-941 is

chosen in both lists. This miRNA is restricted to humans and

has been shown to target hedgehog and insulin signaling.

http://dx.doi.org/10.1016/j.molonc.2014.07.023
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Both pathways have been implicated in cell differentiation

and stemness (Hu et al., 2012), suggesting a possible involve-

ment in cancer. Further studies of miR-941 expression and

more importantly localization in tumor samples by e.g. in-

situ hybridization are warranted. On a side note, this result

greatly reinforces the use of a human system, since it would

not have been detectable in a murine model.

Beside its low prediction error, the mi-iTEM list also

carries a substantial prognostic value as illustrated by its

ability to identify patient cohorts which differ significantly

in their DFS. In order to improve our miRNA list further, we

examined its correlation to macrophage markers. While

macrophage infiltration has already been demonstrated as

being prognostic (Eiro et al., 2012; Leek et al., 1996; Medrek

et al., 2012), there are only sparse data on miRNAs in

breast-cancer-associated macrophages. Excitingly, most of

the miRNAs chosen in the stable feature selection were also

present in the miR-iTEMMF list e once again miR-941 was

among the results. Another interesting finding is miR-150,

which has been linked so far to natural killer cell maturation

(Bezman et al., 2011).

The correlation coefficients observed by us are rather low,

which may be attributed to the complex nature of the tumor

tissue. However, as our approach includes a priori knowl-

edge, i.e. the miR-iTEM list, we are confident that we identi-

fied TAM-enriched rather than tumor-cell-intrinsic

prognostic miRNAs. One may hypothesize that instead of

mirroring macrophage infiltration, these miRNAs represent

a specifically polarized subset of TAMs, i.e. of a pro-

metastatic vs. pro-angiogenic phenotype (Laoui et al.,

2011). This would fit our observation of both positive and

negative correlations. Furthermore, the low values of the

correlation coefficients could be accounted for by a directed,

horizontal miRNA transfer between TAMs and breast cancer

cells through microvesicles (Yang et al., 2011). This can

result in a dynamic exchange of miRNAs between different

cellular populations of the tumor tissue. Along these lines

we found that miR-210 which has previously been impli-

cated in breast cancer cell proliferation, migration and inva-

sion in vitro and is associated with poor patient outcome

(Camps et al., 2008; Rothe et al., 2011; Volinia et al., 2012),

was also significantly upregulated in TEM. It remains to be

seen whether this is an actual increase of miR expression

in the TEM or due to possible exchange between the

different cell populations.

Overall, the narrowed-down miR-iTEMMF subset results in

even more defined clusters with distinct DFS in two indepen-

dent datasets.
5. Conclusions

In summary, prognostic miRNAs in ERþ tumors were identi-

fied through the integration of miRNA and mRNA expression

data from breast cancer TEM. These miRNAs partially corre-

lated with the expression levels of macrophage markers and

have proved able to distinguish patient clusters with distinct

DFS. Thus, even though it originates from in vitro TEM data,

our approach can be reasonably applied to the study of whole

tumor sample miRNA expression.
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