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Abstract: Diabetic retinopathy (DR) is one of the main causes of vision loss in middle-aged eco-
nomically active people. Modifiable (i.e., hyperglycaemia, hypertension, hyperlipidaemia, obesity,
and cigarette smoke) and non-modifiable factors (i.e., duration of diabetes, puberty, pregnancy and
genetic susceptibility) are involved in the development of DR. Epigenetic mechanisms, modulating
the oxidative stress, inflammation, apoptosis, and aging, could influence the course of DR. Herein,
we conducted a systematic review of observational studies investigating how epigenetics affects
type 2 diabetes retinopathy (T2DR). A total of 23 epidemiological studies were included: 14 studies
focused on miRNA, 4 studies on lnc-RNA, one study on both miRNA and lnc-RNA, and 4 studies on
global or gene-specific DNA methylation. A direct relation between the dysregulation of miR-21,
miR-93, and miR-221 and FPG, HbA1c, and HOMA-IR was identified. A panel of three miRNAs
(hsa-let-7a-5p, hsa-miR-novel-chr5_15976, and hsa-miR-28-3p) demonstrated a good sensitivity and
specificity for predicting T2DR. Little evidence is available regarding the possible role of the long
non-coding MALAT1 dysregulation and MTHFR gene promoter hypermethylation. Despite these
initial, encouraging findings potentially suggesting a role of epigenetics in T2DR, the use in clinical
practice for the diagnosis and staging of this complication encounters several difficulties and further
targeted investigations are still necessary.

Keywords: retinopathy; type 2 diabetes; diabetes complications; epigenetic; miRNA; lnc-RNA;
DNA methylation

1. Introduction

Diabetic retinopathy (DR) is a specific microvascular complication of diabetes mellitus
(DM) which results in the damage of small blood vessels and neurons of the retina. It
is one of the leading causes of vision loss in middle-aged economically active people,
accounting for 4.8% of the number of cases of blindness (37 million) worldwide [1]. It
is worth underlining that, with the increasing incidence of DM, the number of people
DR has been estimated to rise to 191 million by 2030 [2]. A European multicentre study
reported that DR prevalence among patients with type 1 diabetes (T1D) ranges from 25%
to 60% [3]. The burden of DR appears to be lower in type 2 diabetes (T2D) patients, with
a prevalence that ranges from 25% in United Kingdom to 40% in Italy [4–6]. The risk
factors of DR can be broadly classified into modifiable (i.e., hyperglycaemia, hypertension,
hyperlipidaemia, obesity, and cigarette smoke) and non-modifiable factors (i.e., duration
of diabetes, puberty, pregnancy and genetic susceptibility). These risk factors are also
involved in the development of both diabetic nephropathy, neuropathy and macrovascu-
lar complications [7]. Recent strides in comprehension and awareness of risk factors for
DR significantly improved its prevention and the management of DR patients. Specifi-
cally, the increasing access to community screening programs has led to a decline in the
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prevalence and incidence of DR, especially in developed countries [8]. Moreover, several
randomised controlled trials have shown that early treatment of DR might reduce the risk
of severe visual loss by 57% [9]. However, emerging evidence also suggests that a complex
gene–environment interaction is involved in the pathogenesis of diabetes-related microvas-
cular complications [10]. Epigenetic mechanisms—including DNA methylation, histone
modifications, and miRNAs and long non-coding RNA (lnc-RNA) regulation—contribute
to the dysregulation of signalling pathways involved in oxidative stress, inflammation,
apoptosis, and aging, and modulate the expression of several key genes in DM [11,12].
Both preclinical and clinical studies in diabetic patients provided strong evidence concern-
ing the contribution of histone modifications, post-transcriptional RNA regulation, and
DNA methylation in diabetes-related microvascular complications by regulating molecular
pathways involved in the pathogenesis of these complications. Here, we conducted a
systematic review to summarise current evidence from observational studies investigating
the relationship between DR and epigenetic mechanisms.

2. Materials and Methods

The present systematic review was carried out in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements [13] and
the Cochrane Handbook’s guidelines [14].

2.1. Literature Search

Epidemiological studies evaluating the association between DR and epigenetic mech-
anisms were systematically searched on PubMed-Medline (PubMed.gov: available online:
https://pubmed.ncbi.nlm.nih.gov/, accessed on 1 June 2020), and Web of Science databases
(https://www.webofscience.com/wos/woscc/basic-search, accessed on 1 June 2020), from
inception to June 2020. The search strategy applied the following combination of Mesh
terms: (“MicroRNAs” [Mesh] OR “DNA Methylation” [Mesh]) AND “Diabetic Retinopa-
thy” [Mesh]. Reference lists of potentially eligible articles were also screened.

2.2. Selection Criteria

The following inclusion criteria must have been satisfied: (1) epidemiological ob-
servational studies; (2) evaluating the association of DR; (3) with epigenetic mechanisms
(i.e., DNA methylation and miRNA or lnc-RNA expression); (4) in patients with T1D or
T2D. Only studies published in peer-reviewed journals were included, with no limitations
with regard to publication date or language. Conversely, previous systematic reviews and
meta-analyses, commentary articles, and editorials were excluded.

2.3. Data Extraction and Quality Assessment

Titles and abstracts of all identified articles were independently reviewed by two
authors, applying the selection criteria described above. The full texts of all eligible articles
were further reviewed to assess whether selection criteria were fully met. Controversies
were resolved by consultation with a third author for obtaining consensus. The following
information was extracted by two investigators: first author, study year, location, study
design, sample size, type of DM, level of DNA methylation and/or miRNA/lnc-RNA
expression, main findings.

3. Results
3.1. Characteristics of the Included Studies

Figure 1 illustrates the literature selection process. A total of 275 articles were screened
once duplicates had been removed. According to selection criteria, 202 articles were
excluded after reading article title and abstract: of these, 129 were not conducted on
human, 72 were literature reviews, meta-analyses or microarray/network analyses, and
one study did not focus on DR. Out of the 73 articles that underwent the full-text screening,
50 were excluded for the reasons detailed in Figure 1; therefore, 23 epidemiological studies

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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investigating the role of epigenetic in the pathogenesis of T2D retinopathy (T2DR) were
included in the systematic review (Figure 1).
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Figure 1. PRISMA 2009 flow diagram of study selection.

Regarding the epigenetic biomarkers, 14 studies investigated the expression of miRNA
in plasma (n = 6), serum (n = 6), aqueous humour (n = 1), or tears (n = 1) samples. Another
four studies investigated the plasma (n = 3) or serum (n = 1) level of different lnc-RNA,
while one study focused on both miRNA and lnc-RNA serum expression. The global or
gene-specific DNA methylation was evaluated in four studies.

The majority of the included studies compared the level of the investigated epigenetic
biomarkers in T2D patients also affected by DR with a group without DR and a healthy
control group (HC) (n = 17). Among them, one study also enrolled a group of patients
affected by impaired glucose tolerance (IGT). Instead, in six studies the control group was
represented only by T2D patients without DR (n = 5) or healthy subjects (n = 1). No studies
examined histone modifications.
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3.2. miRNA Profiling

In the last decade, several investigations have been carried out to study the influence
of epigenetic on T2DR. Most of these studies focused on the analysis of miRNA expres-
sion in different human samples, mostly plasma or serum (Table 1). MiR-93, miR-126,
and mirR-221 have been studied in cohorts of both T2D and T1D patients [15–20].

Table 1. Summary of the selected studies focusing on miRNA profiling in type 2 diabetes retinopathy.

First Author and Year Origin Sample Marker T2D Groups (n) Control Group (n) Main Results

Zou H.L., 2017 [15] China Plasma miR-93 DR (75), NDR (65) HC (127) miR-93 level increased in DR

Liu H.N., 2018 [17] China Serum miR-221 PDR (30), NPDR
(34), NDR (37) HC (33)

miR-221 level progressively
increased in NDR, NPDR

and PDR

Rezk N.A., 2016 [16] Egypt Serum miR-126 DR (19), NDR
(81), IGT (86) HC (100) miR-126 level decreased in DR

Jiang Q., 2017 [21] China Plasma miR-21 PDR (51), NPDR
(73), NDR (65) HC (115)

miR-21 level progressively
increased in NDR, NPDR

and PDR

Kamalden T.A.,
2017 [22] Malaysia Plasma miR-15a PDR (15), NPDR

(22), NDR (41) HC (19) miR-15a level increased in DR

Blum A., 2019 [23] Israel Serum miR-423 PDR (15), NPDR
(22), NDR (10) HC (22)

miR-423 level progressively
decreased in NDR, NPDR

and PDR

Dantas da Costa E Silva
M.E., 2019 [24] Brazil Plasma miR-29b

miR-200b
PDR (49), NPDR
(46), NDR (91) HC (20)

miR-29b and miR-200b level
progressively decreased
in NDR, NPDR and PDR

Liang Z., 2018 [25] China Serum

hsa-let-7a-5p
hsa-miR-novel-

chr5_15976
hsa-miR-28-3p

DR (29), NDR (50) None

hsa-let-7a-5p and
hsa-miR-28-3p level increased

in DR
hsa-miR-novel-chr5_15976

level decreased in DR

Yang T.T., 2015 [26] China Serum miR-155 PDR (20), NPDR
(20), NDR (18) HC (20)

miR-155 level progressively
increased in NDR, NPDR

and PDR

Pastukh N., 2019 [27] Israel Serum miR-122 PDR (10), NPDR
(10), NDR (10) HC (10)

miR-122 level progressively
increased in NDR, NPDR

and PDR

Shaker O.G., 2019 [28] Egypt Serum miR-20b PDR (20), NPDR
(30), NDR (30) HC (81)

miR-20b level progressively
decreased in NDR, NPDR

and PDR

Ma J., 2017 [29] China Serum miR-3939
miR-1910-3p DR (5), NDR (5) None No differences of miR-3939

miR-1910-3p level

Rovira-Llopis S.,
2018 [30] Spain Serum miR-31 DR (13), NDR (31) HC (24) No differences of miR-31 level

Chen S., 2019 [31] China Aqueous
humour

miR-93-5p
miR-184

miR-150-5p
PDR (9) HC (9)

miR-93-5p, miR-184, and
miR-150-5p level decreased

in PDR

Pinazo-Duran M.D.,
2016 [32]

Spain
Portugal Tears Panel of 14

miRNAs DR, NDR (77) HC (55) miRNAs level increased in DR
and NDR groups

Abbreviations: DR, diabetic retinopathy; NDR, not diabetic retinopathy; HC, healthy controls; PDR, proliferative diabetic retinopathy;
NPDR, non-proliferative diabetic retinopathy; IGT, impaired glucose tolerance.

Mir-93 influences the progression of DR by regulating angiogenesis, although the exact
mechanism remains unclear [33,34]. In a cohort of 140 T2D patients, Zou and colleagues
found a higher expression of plasma miR-93 and VEGF in the group with DR compared
to the group with no ocular complications [15]. Therefore, the expression of miR-93 was
directly associated with course of disease, the level of HbA1c and FPG. More recently,
a study including patients with both type 1 and type 2 diabetes, confirmed an up-regulation
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of miR-93 in patients with DR, in particular with in those affected by severe forms and
recurrent vitreous haemorrhages [18].

Confirming the role of miRNA dysregulation in the pathogenesis of DR, Liu and
colleagues observed a significant overexpression of serum miR-221, VEGF, and angiotensin
II (Ang-II) in T2D patients compared to healthy subjects and a progressive up-regulation in
diabetic patients without DR, non-proliferative diabetic retinopathy (NPDR), proliferative
diabetic retinopathy (PDR) [17]. In addition, the level of miR-221 was positively related
to HbA1c, HOMA-IR, VEGF, and Ang-II. In vitro observations, performed using human
umbilical vein endothelial cells (HUVECs), showed that a hyperglycaemic environment
up-regulates the expression of miR-221 inducing retinal cells proliferation, migration,
apoptosis, vascular endothelial hyperplasia, ischemia and neovascularisation [35]. These
data suggest the potentially utility of miR-221 in predicting both the occurrence and
progression of DR. Similar results were obtained by García de la Torre and colleagues in
T1D patients [19]. They found an increased level of miR-221 in endothelial progenitor
cells (EPCs) of T1D patients compared to HC. Moreover, T1D patients with DR had higher
expression of miR-221 than those without DR.

In the study by Rezk and colleagues, the reduced expression of miR-126 was related
to the onset of both macro-vascular complications and DR [16]. A similar reduction of miR-
126 expression was also observed in the large cohort of the EURODIAB study among T1D
patients with diabetes-related vascular complications, particularly with PDR [20]. MiR-126
is highly represented in endothelial cells playing a crucial role in endothelial homeostasis
and angiogenesis influencing VEGF signalling by blocking two negative regulators of the
VEGF pathway, Sprouty-related protein (SPRED1) and phosphoinositol-3 kinase regulatory
subunit 2 (PIK3R2/p85-b) [16,36].

In 2017, Jiang and colleagues evaluated plasma expression of miR-21 in T2D patients
with different severity of DR, showing a positive relation between miR-21 expression
and the course of retinopathy [21]. In particular, they observed a significant increase of
miR-21 level in the PDR group compared to both the NPDR and control groups. These
data suggest the influence of miR-21 as an indicator for the severity of T2DR. Although the
authors demonstrated that the role of miR-21 in the pathogenesis of DR was related to T2D
course, HbA1c, fasting plasma glucose, and the homeostasis model assessment of insulin
resistance (HOMA-IR), further investigations are necessary to clarify the molecular mecha-
nisms determining the involvement of miR-21 on T2DR. In a previous study, the aberrant
expression of miR-21 in aqueous humour samples of diabetic patients was associated with
retinal fibrosis mediated by the transforming growth factor beta (TGF-β) [37]. Moreover, a
possible angiogenetic role of miR-21 could be speculated: Liu and colleagues found that
miR-21 induces vascular endothelial growth factor (VEGF)-mediated tumour angiogenesis
through targeting phosphatase and tensin homolog (PTEN) and activation of AKT/ERK
signalling [38,39].

A very interesting study by Kamalden and colleagues demonstrated that miR-15a was
increased in the plasma of T2D patients with DR, although a correlation with DR grade
was not found [22]. Moreover, the authors observed a similar expression of miR-15a in the
human Müller cells (MIO-M1), human retinal endothelial cells (HRECs), human retinal
pigment epithelial cells (HRPEs), and rat Müller cells (rMC-1) exposed to high glucose or
advanced glycated end-product environment, thus excluding a role of hyperglycaemia.
Notably, by culturing rat pancreatic β-cells (INS-1) cells in high-glucose media, they
demonstrated an exosome transfer of miR-15a from pancreatic to retinal cells. These
findings support the finding that miR-15a, produced in pancreatic β-cells, is transported
in blood exosomes towards retinal cells, where could promote DR, increasing oxidative
stress. In a previous study, Hirota and colleagues observed an increased expression of
miR-15a in aqueous humour of diabetic patients with PDR [33]. It has been shown that
miR-15a controls the insulin synthesis in pancreatic β-cells [40]. In T2D, the increased
insulin production due to insulin-resistance, could led to an increase of miR-15 synthesis.



Int. J. Mol. Sci. 2021, 22, 10502 6 of 13

MiR-15a is also known to regulate angiogenesis by suppressing fibroblast growth factor
(FGF2) and VEGF [33].

Conflicting data are available regarding the role of miR-423, miR-29b, and miR-200b
on the course of DR. Mir-423 seems to be inversely related with DR. Blum and colleagues
measured the plasma level of miR-423 in T2D patient with different retinal conditions and
healthy subjects, showing an overall not statistically significant negative trend in correlation
to diabetic retinopathy progression [23]. In contrast, other studies, carried out in patients
with different types of diabetes, reported an increased expression of miR-423 in diabetic
patients affected by retinopathy [33,41]. These studies speculated on a possible cross talk
between miR-423 and VEGF signalling and NOS function influencing miR-423 influencing
vascular retinal proliferation [23]. However, further investigations are necessary to clarify
these findings.

An inverse relation with T2DR was also observed for the plasma level of miR-29b and,
most of all, miR-200b [24]. Furthermore, in another study, Zeng and colleagues observed a
higher expression of Mir-29b in diabetic patients with DR. The authors identified the dys-
regulation of miR-29b-3p/SIRT1 as a potential mechanism of human retinal microvascular
endothelial cells (HRMECs) apoptosis in DR [42].

In a recent study, three miRNAs (hsa-let-7a-5p, hsa-miR-novel-chr5_15976, and hsa-
miR-28-3p) were shown to be significantly associated with DR of patients with T2D [25].
This panel presented a sensitivity and specificity of 0.92 and 0.94, respectively, for predicting
DR and 0.93 sensitivity and 0.86 specificity for differentiating early stage NPDR from late-
stage PDR, representing a potential diagnostic biomarker for DR. The authors, studying
the in vitro proliferation rates of HRMECs with overexpression of hsa-let-7a-5p, described
an increased proliferation of these cells demonstrating how miRNAs may be involved in
the pathogenesis of DR.

Yang and colleagues analysed the expression of miR-155, regulatory T (Treg) cells
(CD4+ CD25+ Foxp3+), and TGF-β in peripheral blood of T2D patients with different
severity of DR in comparison with T2D patients not affected by DR and HC [26]. MiR-155
is a multifunctional miRNA essential to the immune response by regulating the Treg cells
cytokines secretion [43]. This study observed a significantly higher expression of miR-155
and a significantly lower percentage of Treg cells in the PDR and background diabetic
retinopathy (BDR) groups compared to not diabetic retinopathy (NDR) group and in the
PDR group compared to the BDR group. These data suggest a possible role of miR-155 in
the pathogenesis of T2DR by regulating the Treg cells with TGF-β.

Additionally, miR-122 seemed to be related with the severity of DR. A prospective
study by Pastukh and colleagues showed that the serum expression of miR-122 increased
from HC to NDR group and from NDR to NPDR groups [27]. Instead, the miR-122
was significantly reduced in patients with PDR. Notably, a positive trend was observed
between miR-122 levels and the number of serum endothelial progenitor cells. The increase
of miR-122 in patients with DR is explained by its role in preventing angiogenesis and
proliferation, while the decline in patients with more severe grade of DR may represent an
inhibition or exhaustion of the anti-angiogenic anti-proliferative defence system.

Another miRNA influencing the onset and progression of DR is miR-20b. Recently,
Shaker and colleagues observed a significant down-regulation of miR-20b in T2D patients
with progressive severity of DR [28]. The authors indicated this miRNA as promising novel
biomarkers for prediction of DR severity, distinguishing PDR from NPDR. Nevertheless,
these findings should be confirmed by larger studies and the pathogenesis of miRNAs
involvement in DR should be clarified.

The role of miR-31, miR-3939, miR-1910-3p was investigated in different serum sam-
ples of different cohorts of T2D patients [29,30]. Nevertheless, these studies excluded their
involvement in the development of T2DR.

While most of the studies analysed the expression of miRNA in plasma or serum
samples of T2D patients, several studies have investigated these epigenetic biomarkers
in vitreous humour or tears [31,32]. In 2019, Chen and colleagues explored the miRNA
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and piwi-interacting RNA (piRNA) profile in the aqueous humour of nine PDR and
nine cataract control patients [31]. In addition, a mice retinopathy model supported
the investigation of the relation between miRNA expression and angiogenetic processes.
Among the eight miRNAs and thirty piRNAs analysed, the relative expression patterns
of miR-93-5p (confirmed in the mice model), -184 and -150-5p in aqueous humour were
differently expressed in patients with PDR compared to cataract controls, suggesting a
role in the in the pathogenesis of PDR in T2D. This differential expression of miRNA was
predicted to regulate Rho protein signal transduction, neurotransmitter uptake and histone
lysine methylation.

A case–control study by Pinazo-Durán and colleagues studied the RNA concentration
and the miRNAs expression in tears samples of 77 T2D patients and 55 healthy subjects.
A significant difference in both total RNA and miRNAs concentration between T2D and
HC groups was observed. Moreover, the authors found a direct correlation between a
panel of 14 miRNAs and age, obesity, T2D duration, and a negative correlation with visual
acuity. Nevertheless, other studies are necessary to better investigate the role of miRNA
expression in tears as molecular biomarkers for DR.

3.3. lnc-RNA Profiling

The need to improve the knowledge about the molecular basis of DR has directed,
in recent years, the efforts of researchers toward the identification of novel molecular
biomarkers involved in the pathogenesis of this condition. Lnc-RNA is a functional non-
protein-coding RNA of at least 200 nucleotides which modulating both transcriptional
and post-transcriptional regulation plays pivotal functions in several human diseases [44].
However, very little evidence is currently available regarding the influence of lnc-RNA on
DR (Table 2).

Table 2. Summary of the selected studies focusing on long non-coding RNA profiling in type 2 diabetes retinopathy.

First Author and Year Origin Sample Marker T2D Groups (n) Control Group (n) Main Results

Shaker O.G., 2019 [28] Egypt Serum MALAT1
HOTAIR

PDR (20), NPDR
(30), NDR (30) HC (81) MALAT1 and HOTAIR level

increased in NPDR and PDR

Toraih E.A., 2019 [45] Egypt Plasma MALAT1
RNCR2 DR (75), NDR (55) HC (108) MALAT1 and RNCR2 level

decreased in DR

Zha T., 2019 [44] China Plasma LINC-PINT DR, NDR (244) HC (126) LINC-PINT decreased in DR

Wang L., 2018 [46] China Serum CASC2 DR (33), NDR (146) HC (56) No differences of CASC2 level

Fawzy M.S., 2020 [47] Egypt Plasma H19GAS5 DR (66), NDR (53) HC (110) No differences of lnc-RNA
H19 and GAS5 level

Abbreviations: MALAT1, metastasis-associated lung adenocarcinoma transcript 1; HOTAIR, homebox antisense intergenic RNA; RNCR2,
retinal non-coding RNA2; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; NDR, not diabetic
retinopathy; HC, healthy controls; DR, diabetic retinopathy; LINC-PINT, long intergenic non-protein coding RNA p53 induced transcript;
CASC2, cancer susceptibility candidate 2.

Recently, Shaker and colleagues evaluated the serum expression of homebox antisense
intergenic RNA (HOTAIR) and metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) in T2D patients with various degree of DR in comparison to those not affected
by this complication [28]. A significant increase in HOTAIR and MALAT1 was observed in
both NPDR and PDR groups compared to the NDR group, indicating a possible role of
HOTAIR and MALAT1 as promising novel biomarkers for prediction DR. In contrast with
these results, Toraih and colleagues observed a reduced expression of circulating MALAT1—
also called nuclear-enriched abundant transcript 2 (NEAT2)—and retinal non-coding RNA2
(RNCR2) in T2D patients with DR compared to those without DR [45]. Nevertheless, the
expression of MALAT1 and RNCR2 did not correlate with the severity of retinopathy and
with the response to aflibercept therapy [45].

Two different studies evaluated the expression of MALAT1 in aqueous humour of
diabetic patients [48,49]. In both of them, the level of MALAT1 was significantly increased
in patients with DR confirming the role of this lnc-RNA as a potential biomarker for
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DR. MALAT1 was shown to regulate retinal endothelial cell function and microvascular
growth in diabetic patients. Liu and colleagues observed that the knockdown of MALAT1
improves DR in vivo and regulates the proliferation of endothelial cells in vitro through the
p38-mitogen-activated protein kinase pathway [50]. Furthermore, Zhang and colleagues
found an increased secretion of VEGF up-regulating MALAT1, confirming the influence of
this lnc-RNA on the regulation of the angiogenetic process [51]. Further molecular studies
may aid in the clarification of the exact roles of these lncRNAs in T2DR.

In 2019, Zha and colleagues published the results of their investigation regarding
the role of long intergenic non-protein coding RNA p53 induced transcript (LINC-PINT),
lnc-RNA known to be involved in tumour cell invasion in human cancers, in T2D retinopa-
thy [44]. The authors analysed the expression of LINC-PINT in 244 T2D patients with
different chronic diabetes-related complications (nephropathy, retinopathy, cardiomyopa-
thy, diabetic foot) and 126 healthy subjects, and in ARPE-19 and AC16 cells. LINC-PINT
was downregulated in patients with retinopathy, cardiomyopathy or both. The in vitro
experiments showed that the treatment with high glucose limited the LINC-PINT expres-
sion in the ARPE-19 and AC16 cells, while the overexpression of LINC-PINT increased
the viability of ARPE-19 and AC16 cells. Instead, the siRNA-mediated silencing of LINC-
PINT elicited the opposite effect. Although further confirmations are necessary, these
results suggest a role of LINC-PINT in inhibiting the progression of both retinopathy and
cardiomyopathy in T2D patients.

No correlation with T2DR was found for circulating levels of cancer susceptibility
candidate 2 (CASC2), growth arrest-specific transcript 5 (GAS5), and RNAs H19 [46,47].

3.4. DNA Methylation

Both global and gene-specific DNA methylation are involved in the epigenetic reg-
ulation of gene transcription and expression by modulating binding factor or promoting
the binding of methyl binding proteins [52]. Emerging evidence suggests a relationship
between a hyperglycaemic environment and changes in DNA methylation, identifying
these mechanisms as a possible biomarker of diabetic complications [53]. However, the
association between DNA methylation and T2DR has been poorly explored (Table 3).

Table 3. Summary of the selected studies focusing on global and gene-specific DNA methylation in type 2 diabetes retinopathy.

First Author and Year Origin Sample Marker T2D Groups (n) Control Group (n) Main Results

Maghbooli Z., 2015 [53] Iran PBL

Global DNA
methylation

(5-methylcytosine
content)

PDR, NPDR (74)
NDR (94) None

Global DNA methylation
progressively increased

in NDR, NPDR and PDR

Dos Santos Nunes M.K.,
2017 [54] Brazil PBL

Methylation of
MTHFR gene

promoter
DR (16), DN (29) T2D with no

complications (60)

MTHFR gene promoter
hypermethylation

is associated with DR

Santana Bezerra H.,
2019 [55] Brazil PBL

- Methylation of
MTHFR gene

promoter;
- Polymorphisms

C677T and A1298C
of MTHFR gene

DR (22), NDR (25) T2D with no
complications (60)

MTHFR gene promoter
hypermethylation

associated with the 1298AA
polymorphism was related

to higher values of
glycaemia, total cholesterol

and LDL cholesterol

Dos Santos Nunes M.K.,
2018 [56] Brazil PBL

Methylation of
miR-9-3, miR-34a,
and miR-137 gene

promoter

DR (19), DN (29) T2D with no
complications (60)

Hypermethylation of
miR-9-3 gene promoter was
related to an increased risk

for DR, while
hypermethylation of

miR-137 gene promoter
could be protective from
microvascular diabetes

complications.

Abbreviations: PBL, peripheral blood leucocytes; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy;
NDR, not diabetic retinopathy; DR, diabetic retinopathy; DN, diabetic nephropathy; T2D, type 2 diabetes.
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To the best of our knowledge, Maghbooli and colleagues were the first suggesting that
differences of the global DNA methylation profile in T2D patients with or without DR could
be predictive of this complication [53]. Patients with DR compared to those not affected by
DR had a significantly higher content of 5-methylcytosine, assessed to evaluate the global
DNA methylation, also after correction for dyslipidaemia, hypertension, hyperglycaemia
and duration of diabetes. Moreover, the authors observed a significant increasing trend
of global DNA methylation in parallel with DR progression (no DR, 4.22 ± 0.13; NPDR,
4.62 ± 0.17; PDR, 5.07 ± 0.21, p = 0.006).

The methylation of the of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene
promoter has been studied in relation to the onset of DR [54,55]. MTHFR is involved in the
methionine–homocysteine cycle. The methyl group bound to a cytosine that precedes a
guanine can be methylated by MTHFR to produce 5-methyltetrahydrofolate which pro-
duces methyl donor for the conversion of homocysteine to methionine. Several studies
have observed a correlation between MTHFR gene polymorphisms and the risk of devel-
oping cancer, vascular diseases, diabetes and its complications [57,58]. Dos Santos Nunes
and colleagues investigated the methylation profile of MTHFR gene promoter and its
relationship with biochemical (glycemia, glycated haemoglobin, and lipid level), inflam-
matory (C-reactive protein and alpha-1 acid glycoprotein) and oxidative stress markers
(total antioxidant and malonaldehyde) in Brazilian T2D patients affected or not by DR [56].
They found a significant association between the hypermethylation of the MTHFR gene
promoter, DR, higher total cholesterol and LDL levels. In 2019, the same group confirmed
that the hypermethylated MTFHR gene profile, associated with the 1298AA polymorphism
of this gene, was related to higher values of glycaemia, total and LDL cholesterol in T2D
patients [55]. These results suggest that changes in the methylation of MTHFR gene pro-
moter are involved in T2DR onset influencing both homocysteine and lipid metabolism.
Dos Santos Nunes and colleagues also studied the methylation profiles of specific miRNA
gene promoter in T2D patients [56]. They found that the methylated profile of miR-9-3 was
related to an increased risk for DR, while methylated miR-137 could be protective from
microvascular diabetes complications. These data showed that the methylation in miRNA
promoters may differently affect the course of DR.

4. Discussion

DR is a highly specific microvascular complication of diabetes and its main risk factors
are long diabetes duration and poor glucose, lipid, and blood pressure control [59–61]. In
addition, unhealthy lifestyles—low physical activity level, unbalanced diet and tobacco
consumption—could directly contribute to the development of DR and other diabetes-
related vascular complications [7,62,63]. Nevertheless, it has also been observed that
some diabetic patients without these traditional risk factors for DR can likewise develop
this complication, suggesting the involvement of other, less well-known, pathogenetic
elements [61,64,65]. Thus, over the last decade, researchers have increasingly directed
their efforts towards understanding how epigenetics contributes to the initiation and
progression of DR. DNA methylation, histone modifications, and miRNAs and lnc-RNA
dysregulation have been studied to be proposed for predicting the course of DR in both
T1D and T2D. In vitro, in vivo and clinical studies, ruled out in patients with diabetes,
have been performed to explore how epigenetic dysregulation contributes, by regulating
molecular pathways, to the pathogenesis of diabetes-related microvascular complications.
Our study provides a systematic review of epidemiological studies investigating the
predictive value of epigenetic biomarkers in T2DR. Most of this research analysed the
role of several miRNAs in patients with T2D (Table 1). The expression of miRNAs in
human tissues changes as a result of physio-pathological responses. Moreover, due to
the properties of stability in biological samples, miRNAs are potentially useful as disease
biomarkers [66]. This systematic review summarised the different possible roles of miRNAs
in the development of T2DR (Table 1). While the dysregulation of some specific miRNAs
(miR-15a, miR-93, miR-93-5p, miR-126, miR-150-5p, miR-184, hsa-let-7a-5p, hsa-miR-novel-
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chr5_15976, hsa-miR-28-3p) was only related with a higher risk to develop T2DR, for other
miRNAs (miR-20b, miR-21, miR-29b, miR-122, miR-155, miR-221, miR-423) an association
with the grade of DR was also identified (Table 1). Moreover, the identification of a direct
relation between the dysregulation of miR-21, miR-93, and miR-221 and glycometabolic
parameters, such as FPG, HbA1c, and HOMA-IR, confirms the crucial role of glucose control
and insulin resistance in the development of T2DR, by providing an epigenetic explication
of this mechanism [15,17,21,67]. Nevertheless, despite the broad number of miRNAs that
have been investigated in relation to T2DR, their application in clinical practice is not
currently feasible. Indeed, the majority of the reported results is not reproduced in multiple
independent cohorts of T2D patients or, in some cases, conflicting and not univocal. Only
in the case of miR-93, miR-126, and miR-221 dysregulation has the evidence obtained
from T2D patients been confirmed in cohorts of T1D patients [15–20]. To overcome these
critical issues, and also due to the heterogeneity of the biological samples and laboratory
methodologies, a standardisation of both sample collection and analysis methodologies
is mandatory [66]. Certainly, the usage of combinations of multiple biomarkers could
improve their predictive value in detecting DR; recently, a panel of three miRNAs (hsa-let-
7a-5p, hsa-miR-novel-chr5_15976, and hsa-miR-28-3p) presented a good level of sensitivity
and specificity (about 90%) for predicting DR and differentiate early-stage NPDR from
late-stage PDR [25].

With respect to the role of lnc-RNA and DNA methylation in T2DR, several studies
have been conducted (Tables 2 and 3). Initial, not univocal evidence is available regarding
the possible role of the lnc-RNA MALAT1 dysregulation [28,45] and MTHFR gene promoter
hypermethylation [54,55] in T2DR.

5. Conclusions

Our systematic review described the main epigenetic biomarkers known to be in-
volved in T2DR. Nevertheless, the aim of their application in clinical practice encounters
several challenges because of the insufficient level of the evidence available. There is cur-
rently an unresolved need to standardise the biological samples and laboratory procedures
and to confirm the obtained data in independent cohort. In clinical practice, the early
detection of DR is based on instrumental retinal examinations (fundus oculi, fluorangiogra-
phy, optical coherence tomography), although the timing and modality of these screening
procedures are not often correctly applied on the territory. Nevertheless, the possibility of
a tele-retinal evaluation, in particularly in this period of the COVID-19 pandemic, could
improve patients’ adhesion to screening programs [68,69].

Of course, an integrated approach including different epigenetic biomarkers, possibly
matched with patients’ clinical, instrumental and biochemical features, will be useful to
identify accurate panels for the prediction of T2DR. Further prospective investigations are
necessary to achieve this aim.
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