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A B S T R A C T   

Understanding the effect of focal lesions (stroke) on brain structure-function traditionally relies on behavioral 
analyses and correlation with neuroimaging data. Here we use structural disconnection maps from individual 
lesions to derive a causal mechanistic generative whole-brain model able to explain both functional connectivity 
alterations and behavioral deficits induced by stroke. As compared to other models that use only the local lesion 
information, the similarity to the empirical fMRI connectivity increases when the widespread structural 
disconnection information is considered. The presented model classifies behavioral impairment severity with 
higher accuracy than other types of information (e.g.: functional connectivity). We assessed topological measures 
that characterize the functional effects of damage. With the obtained results, we were able to understand how 
network dynamics change emerge, in a nontrivial way, after a stroke injury of the underlying complex brain 
system. This type of modeling, including structural disconnection information, helps to deepen our under
standing of the underlying mechanisms of stroke lesions.   

1. Introduction 

In the last two centuries, the study of patients with focal brain lesions 
has been the main approach for understanding brain organization and 
localization of function (Bates et al., 2001; Broca, 1861; Corbetta et al., 
2015; Karnath et al., 2018; Mesulam, 1981). More recently, nonetheless, 
it has become apparent that focal lesions cause widespread abnormal
ities of brain network activity that correlate with cognitive deficits and 
recovery of function (Corbetta et al., 2018; He et al., 2007; Ovadia-Caro 
et al., 2013; Siegel et al., 2016; Wang et al., 2019). In parallel new 
methods have been developed to map lesion-related patterns of 
disconnection, either structural (Foulon et al., 2018) or functional (Boes, 
2015), not directly, but using clinical scans and normative connectomes. 
However, which signals provide the most accurate prediction of cogni
tive impairments and recovery of function remains controversial 

(Bowren et al., 2022; J. C. Griffis et al., 2019; Salvalaggio et al., 2020; 
Weiss Cohen & Regazzoni, 2020). 

Correlational studies such as those discussed above do not provide a 
clear mechanistic understanding of how brain lesions affect information 
processing. A recent development -whole-brain models- use biologically 
plausible structural connectivity coupled with a local model of activity 
as the input for the generation of global dynamics, and can thus be used 
to understand the effect of damage on global (whole brain) dynamics 
(Adhikari et al., 2017; Cabral et al., 2012; Cofré et al., 2020; Kringelbach 
et al., 2020; Saenger et al., 2018). Early attempts used volume and 
location information to modify a healthy structural connectome to 
approximate the effect of lesions and fitted the yielded global dynamics 
to the patient’s own blood oxygenation level-dependent (BOLD) signals 
measured with functional magnetic resonance imaging (fMRI) (Adhikari 
et al., 2017; Saenger et al., 2018). These studies showed that focal 

* Corresponding author. 
E-mail address: sebastian.idesis@upf.edu (S. Idesis).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2022.103233 
Received 1 July 2022; Received in revised form 13 October 2022; Accepted 14 October 2022   

mailto:sebastian.idesis@upf.edu
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2022.103233
https://doi.org/10.1016/j.nicl.2022.103233
https://doi.org/10.1016/j.nicl.2022.103233
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage: Clinical 36 (2022) 103233

2

lesions cause a decrease in both segregation and integration at rest, as 
well as a decrease in neural state variability or entropy during 
stimulation. 

In this study, we innovate whole-brain models of stroke lesions in 
two ways. 

First, we optimize the whole brain model (Deco et al., 2017; Jobst 
et al., 2017) by converting it into a generative model to yield Effective 
Connectivity (EC). We described the model as ‘generative’ since the 
underlying BOLD signals are generated from the model. In contrast to 
functional connectivity (FC) that describes the statistical interactions 
between regions, and structural connectivity (SC) that describes the 
undirected anatomical links between two brain regions, EC describes 
causal pairwise interactions that show the influence one region exerts 
over another in a directed way (Gilson et al., 2016). EC links are 
directional and provide information on asymmetrical regional pairwise 
temporal interactions. Second, crucially, we take into consideration the 
effect of lesions on the structural connectome that are driven by direct 
damage to the white matter, rather than focusing solely on the con
nections of damaged grey matter regions. On average, a stroke is ex
pected to cause disconnection in about 20 % of all brain connections 
based on diffusion imaging connectomes (Joseph C Griffis et al., 2019a). 
Moreover, lesions that directly disconnect brain regions and/or inter
rupt intermediate links between brain regions are the main sources of FC 
abnormalities after stroke (J. C. Griffis et al., 2019; Griffis et al., 2021). 
Hence, the whole brain model is adjusted in terms of its input connec
tivity by the pattern of SC disconnection computed in each patient. 

To validate the use of EC whole-brain models, we compare EC to SC 
or FC models for the prediction of stroke-related deficits. Recent studies 
have reported a higher predictive value of EC over FC in normal or 
pathological conditions, such as epilepsy or addiction (Hejazi & Nasra
badi, 2019; Pallarés et al., 2018; Wei et al., 2021). Other studies have 
used machine learning to compare the prediction of neurological deficits 
(motor, language, attention, etc.) based respectively on lesion location, 
SC, or FC disconnection computed indirectly in normative atlases (Pini 
et al., 2021; Salvalaggio et al., 2020). These studies found fairly accurate 
good predictions for lesion and SC disconnection, but not for FC 
disconnection. More clinically oriented studies have applied automatic 
classification methods to grade the severity of the stroke lesion (Acharya 
et al., 2019; Govindarajan et al., 2020; Sprigg et al., 2007). 

In the current study, we implemented a classifier to distinguish the 
performance of stroke patients on different neuropsychological tasks by 
comparing prediction accuracy based on SC, FC, or EC models. 
Furthermore, by taking advantage of the asymmetric property of the EC, 
we measured the topology of graph measures in healthy and stroke 
patients. Treating the whole-brain models as a complex cluster of net
works with nodes and edges characterized by global integration and 
local specialization (Tononi et al., 1994), we measured changes in graph 
topology to understand how network dynamics change after a stroke 
injury (Adhikari et al., 2021a; Vecchio et al., 2019a). Overall, the results 
show the importance of white matter structural disconnection for the 
accuracy of whole brain models of dynamics in stroke. 

2. Methods 

2.1. Subjects 

We used the Washington University Stroke Cohort dataset (Corbetta 
et al., 2015), a large prospective longitudinal (two weeks, three months, 
12 months) study of first-time single lesion stroke in different locations. 
The database includes patients with first-time stroke, studied at 1–2 
weeks (mean = 13.4 days, SD = 4.8 days), 3 months, and 12 months 
after stroke onset. For the current study, only the first time point was 
considered (2 weeks after stroke) excluding from the analysis the other 2 
time points (3 months and 12 months). Furthermore, a group of age- 
matched control subjects was evaluated twice at an interval of three 
months. Being a cross-sectional analysis, from this cohort we selected 96 

S patients and 27 healthy subjects. 
Stroke patients were prospectively recruited from the stroke service 

at Barnes-Jewish Hospital (BJH), with the help of the Washington Uni
versity Cognitive Rehabilitation Research Group (CRRG). The complete 
data collection protocol is described in full detail in a previous publi
cation (Corbetta et al., 2015). Healthy controls were selected based on 
the same inclusion/exclusion criteria as in (Corbetta et al., 2015). This 
group is typically constituted of spouses or first-degree relatives of the 
patients, age- and education-matched to the stroke sample. Patients 
were characterized with a robust neuroimaging battery for structural 
and functional features, and an extensive (~2 h) neuropsychological 
battery. 

2.2. Neuroimaging acquisition and preprocessing 

A complete description of the neuroimaging assessment is given in 
(J. C. Griffis et al., 2019). Neuroimaging data were collected at the 
Washington University School of Medicine using a Siemens 3T Tim-Trio 
scanner with a 12-channel head coil, specifically: 1) sagittal T1- 
weighted MP-RAGE (TR = 1950 msec; TE = 2.26 msec, flip angle =
90 degrees; voxel dimensions = 1.0x1.0x1.0 mm), and 2) a gradient 
echo EPI (TR = 2000 msec; TE = 2 msec; 32 contiguous slices; 4x4 mm 
in-plane resolution) resting-state functional MRI scans from each sub
ject. Participants were instructed to fixate on a small centrally located 
white fixation cross that was presented against a black background on a 
screen at the back of the magnet bore. Between six and eight resting- 
state scans (128 volumes each) were obtained from each participant 
(~30 min total) giving a total of 896 time points for each participant. 

Resting-state fMRI preprocessing included (i) regression of head 
motion, signal from ventricles and CSF, signal from white matter, global 
signal (ii) temporal filtering retaining frequencies in 0.009–0.08 Hz 
band: and (iii) frame censoring, FD = 0.5 mm. Finally, the resulting 
residual time series were projected on the cortical and subcortical sur
face of each subject divided into 235 ROIs (200 cortical plus 35 
subcortical). These areas were taken from the multi-resolution func
tional connectivity-based cortical parcellations developed by Schaefer 
and colleagues (Schaefer et al., 2018), including additional subcortical 
and cerebellar parcels from the Automated Anatomical Labeling (AAL) 
atlas (Tzourio-Mazoyer et al., 2002) and a brainstem parcel from the 
Harvard-Oxford Subcortical atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwik 
i/Atlases). 

A structural connectome atlas was created using a publicly available 
diffusion MRI streamline tractography atlas based on high angular res
olution diffusion MRI data collected from 842 healthy Human Con
nectome Project participants (Yeh et al., 2018) as described previously 
(Griffis et al., 2019, 2021). Briefly, the HCP-842 atlas was built using 
high spatial and high angular resolution diffusion MRI data collected 
from N = 842 healthy Human Connectome Project participants. These 
data were reconstructed in the MNI template space using q-space dif
feomorphic reconstruction (Yeh & Tseng, 2011), and the resulting spin 
distribution functions were averaged across all 842 individuals to esti
mate the normal population-level diffusion patterns. Whole-brain 
deterministic tractography was then performed on the population- 
averaged dataset using multiple turning angle thresholds to obtain 
500,000 population-level streamline trajectories. 

2.3. Neuropsychological and behavioral assessment 

The same subjects (controls and patients) underwent a battery of 
neuropsychological tests in the domains of motor, attention, language, 
visual, and memory functions at each time point. Briefly, the battery 
consisted of 44 measures across four domains of function: language, 
motor attention, and memory (for a complete description of the tasks 
measures, see (Corbetta et al., 2015). A dimensionality reduction was 
applied to the individual test data in each domain using principal 
component analysis as in (Corbetta et al., 2015), yielding summary 

S. Idesis et al.                                                                                                                                                                                                                                    

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases


NeuroImage: Clinical 36 (2022) 103233

3

domain scores: Language, MotorR and MotorL (one score per side of the 
body), AttentionVF (visuospatial field bias), Average performance 
(overall performance and reaction times on attention tasks), and 
AttentionValDis (the ability to re-orient attention to unattended stim
uli), Memory V (composite verbal memory score) and MemoryS (com
posite spatial memory score). Finally, patients’ behavioral scores were z- 
scored with regard to controls’ scores, to highlight behavioral 
impairments. 

In addition to domain-specific scores, the patients’ clinical severity 
was assessed through the National Institutes of Health Stroke Scale 
(NIHSS) (Brott et al., 1989) which includes 15 subtests addressing: level 
of consciousness (LOC), gaze and visual field deficits, facial palsy, upper 
and lower motor deficits, limb ataxia, sensory impairment, inattention, 
dysarthria and language deficits. The total NIHSS score was used as an 
averaged measure of the clinical severity for each patient. 

2.4. Neuroimaging features for classification 

2.4.1. Lesions 
Each lesion was manually segmented on structural MRI scans and 

checked by two board-certified neurologists. The location (cortico- 
subcortical, subcortical, white-matter only) of each lesion was assigned 
with an unsupervised K-means clustering on the percentage of total 
cortical/subcortical gray and white matter masks overlay. For a more 
extensive explanation of how the overlap of each lesion group with gray 
matter, white matter, and subcortical nuclei is calculated, see Corbetta 
et al, 2015. 

2.4.2. FC measures 
Based on previous work (J. C. Griffis et al., 2019; Siegel et al., 2016) 

we defined three measures that are consistently impaired in stroke 
patients:  

1. Intra-hemispheric FC: average between pairwise FC of Dorsal 
attention network (DAN) and Default mode network (DMN) regions. 

2. Inter-hemispheric FC: average homotopic inter-hemispheric con
nectivity within each network  

3. Modularity: overall Newman’s modularity among cortical networks, 
a comparison between the number of connections within a module to 
the number of connections between modules (Newman & Girvan, 
2004) 

2.4.3. Lesion disconnection masks 
The Lesion Quantification Toolkit (Griffis et al., 2021) produces a 

comprehensive set of atlas-derived lesion measures that include mea
sures of grey matter damage, white matter disconnection, and alter
ations of higher-order brain network topology. Importantly, the 
measures produced by the toolkit are based on population-scale (e.g. N 
= 842) atlases of grey matter parcel boundaries and white matter 
connection trajectories that were constructed from high-quality resting- 
state functional MRI and diffusion MRI data using state-of-the-art 
methods. 

Taking advantage of the Lesion Quantification Toolkit (LQT), the 
structural disconnection (SDC) masks consisted of a spared connection 
adjacency matrix where each cell quantified the percent of streamlines 
connecting each region pair in the atlas-based structural connectome 
that were spared by the lesion. Therefore, the multiplication of each SDC 
with a template SC provides an atlas-based weight for each region pair 
corresponding to each patient. For the mentioned cohort, DTI was not 
acquired during the subacute stage visit (~2 weeks), only during the two 
subsequent chronic visits (not included in the current study). Therefore, 
the estimates from the LQT were used. 

In addition, for the analysis of the FC impairments metrics, a second 
mask, based on gray matter damage, was tested as a control (gray matter 
in Fig. 2). Inspiredby a previous study (Adhikari et al., 2017) we applied 
a disconnection mask measuring all connections incoming or outgoing 

from the damaged cortical parcels. In other words, the mask for each 
patient included all links observed in healthy controls except, those from 
and to a node with 100 % grey matter damage (Adhikari et al., 2021b). 
The two masks, therefore, capture damage of white matter connections 
to/from the damaged gray matter or capture more directly the discon
nection induced by both gray matter and white matter damage. Since 
many stroke lesions occur predominantly in the white matter or include 
both a gray and white matter component, the SDC mask shall provide a 
more accurate description of the damage to the connectome. It is 
important to realize that for the lesions that were only subcortical, no 
gray matter damage was computed revealing a huge limitation of the 
gray matter mask. 

2.5. Whole-brain Hopf model parameter estimation 

We simulated the BOLD activity at the whole-brain level by using the 
so-called Hopf computational model, which simulates the dynamics 
emerging from the mutual interactions between brain areas, considered 
to be interconnected based on the established graphs of anatomical SC 
(Deco et al., 2017; Kringelbach et al., 2015). The structural connectivity 
matrix was scaled to a maximum value of 0.2 (Deco et al., 2017), leading 
to a reduction of the parameter space to search for the optimal param
eter. We calculated the global scale factor, G coupling value, which as
sesses the influence of the SC in the model. We selected the optimal 
value in which the model phases were more like the empirical data. The 
model consists of 235 coupled dynamical units (ROIs or nodes) repre
senting the 200 cortical and 35 subcortical brain areas from the par
cellation. The local dynamics of each brain area (node) is described by 
the normal form of a supercritical Hopf bifurcation, also called a Lan
dau–Stuart oscillator, which is the canonical model for studying the 
transition from noisy to oscillatory dynamics (Kuznetsov, 1998). When 
coupled together using brain network anatomy (Explained above in the 
“Neuroimaging acquisition and preprocessing” section), the complex 
interactions between Hopf oscillators have been shown to successfully 
replicate features of brain dynamics observed in fMRI (Deco et al., 2017; 
Kringelbach et al., 2015). 

The local dynamics of each individual node is described by the 
normal form of a supercritical Hopf bifurcation, which is able to describe 
the transition from asynchronous noisy behavior to full oscillations. 
Thus, in complex coordinates, each node j is described by the following 
equation: (For more information, see Deco et al., 2019). 

dzj

dt
= z(aj + iωj −

⃒
⃒zj
⃒
⃒2
)+ g

∑N

k=1
Cjk

(
zk − zj

)
+ βηj, (1)  

Where 

zj = pjeiθ = xj + iyj (2) 

α and ω are the bifurcation parameters and the intrinsic frequencies 
of the system, respectively. This normal form has a supercritical bifur
cation at aj = 0. Within this model, the intrinsic frequency ωj of each 
node is in the 0.04–0.07 Hz band (i = 1, …, n). The intrinsic frequencies 
were estimated from the data, as given by the averaged peak frequency 
of the narrowband BOLD signals of each brain region. The variable g 
represents a global coupling scaling the structural connectivity Cjk, and η 
is a Gaussian noise vector with standard deviation β = 0.04. This model 
can be interpreted as an extension of the Kuramoto model with ampli
tude variations, hence the choice of coupling (zk − zj), which relates to a 
tendency of synchronization between two coupled nodes. We insert Eq. 
(2) in Eq. (1) and separate the real part in Eq. (3) and the imaginary part 
in Eq. (4) (Deco et al., 2017). 

dxj

dt
=

(
aj − x2

j − y2
j

)
xj − ωjyj +G

∑

ι
Cjk

(
χι − xj

)
βηj(τ) (3)  
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dyj

dt
=

(
aj − x2

j − y2
j

)
yj − ωjxj +G

∑

ι
Cjk

(
yι − yj

)
βηj(τ) (4) 

It is important to clarify that for the EC + SDC model, the SDC in
formation was added to the structural connectivity in order to enhance 
the optimization of it (See “Lesion disconnection masks” section). 

2.6. Effective connectivity calculation 

The analysis of EC incorporates an indirect metric (as it is derived 
from other presented metrics) into the whole-brain model to replace the 
existing descriptive metrics of FC and SC. Previous studies have shown 
how EC is fundamental to understand the propagation of information in 
structural networks (Gilson et al., 2016; Jobst et al., 2017). Methods for 
estimating EC are explained in detail in a previous publication (Deco 
et al., 2019). Briefly, we computed the distance between our model and 
the empirical grand average phase coherence matrices (as a measure of 
synchronization of the system) of the healthy controls group. In the 
stroke patients’ group, we adjusted each structural connection sepa
rately using a greedy version of the gradient-descent approach. In order 
to work only positive values for the algorithm, all values are transformed 
into a mutual information measure (assuming Gaussianity). Therefore, 
the individual subject information is introduced by means of its 
disconnection (SC + each subject SDC) derived from the LQT. The 
equation of the optimization is as follows: (For more information, see 
Deco et al., 2019). 

Cij = Cij + ε
(
FCphases emp

ij − FCphases mod
ij

)
. (5) 

Where “C” is the anatomical connectivity and is updated with the 
difference between the grand-averaged phase coherence matrices 
(Empirical: FCphases emp

ij and model: FCphases mod
ij , scaled by a factor ε <

0.001). The prediction, therefore, is based on the current estimation of 
the structural connectivity, which gets updated optimizing the phase FC 
in each iteration. In summary, the model was run repeatedly with 
recursive updates of EC until convergence was reached. 

The distinction between functional and effective connectivity is 
crucial here: FC is defined as the statistical dependence between distant 
neurophysiological activities, whereas EC is defined as the influence one 
neural system exerts over another providing directionality in the re
lations making the matrices asymmetrical (Friston, 2011; Friston et al., 
2003). 

In the current study, we also added the structural disconnection 
masks (previously mentioned in this section) to the structural connec
tivity information provided by the simulations. Therefore, different 
models were used in the analysis (Fig. 1a). Only using the structural 
information (SC-based model), using the effective connectivity infor
mation (EC-based model), and lastly, using the effective connectivity 
information plus the structural disconnection mask information (EC 
with SDC mask model). For the last one, the optimization benefited from 
the information of the SDC when optimizing the model. 

2.7. EC correlation with clinical and behavioral variables 

Based on the work of (Favaretto et al., 2022), we tested whether the 
EC measures added some significant information to the obtained results 
from the static FC and dynamical FC combination in describing the 
behavioral outcome. We calculated the dynamical functional states 
(DFSs) using a sliding—window temporal correlation (window width =
60 s, window steps = 2 s) followed by eigenvector decomposition and 
clustering to establish the connectivity states that continuously activate 
across time. By construction, only one of the DFSs was active for each 
sliding window. The dynamic of the FC for each patient could be 
described in terms of a single time series of discrete values that alter
nates across time. In other words, a DFS is a spatial map of the edges 
between brain regions which shows consistent co-modulation in time 

(Cabral et al., 2017b; Cabral et al., 2017a). Only a subset (n = 44) of the 
subjects was used for the DFSs analysis. The subset was made in order to 
use patients that were not employed for the principal components 
analysis. For more information, see (Favaretto et al., 2022). For each 
domain score, lesion volume, and total NIHSS score, we estimated the 
parameters of a Generalized Linear Model (GLM) with the Effective 
connectivity static principal components (SPCs) as the regressor and 
each behavioral score as output. We retained only SPCs which explained 
at least 5 % of the total variance, and that corresponded to an eigenvalue 
of the covariance matrix larger than 1, yielding to 2 SPCs. Therefore, for 
the regressor, we used the first two PCs (explaining 32 % and 12 % of the 
variance of the original data, respectively) adding to a total of 44 % of 
the variance explained. Then, we estimated the GLM with both SPCs 
from the EC and three dynamical PCs scores obtained from the above 
DFSs as regressors. The dynamical PCs scores capture numerous mea
sures related to dynamical functional connectivity (Favaretto et al., 
2022). It is relevant to clarify that the DFSs were added to the result of 
the models and were not computed every time. 

The behavioral domains’ assessment was described more in detail in 
the “Neuropsychological and behavioral assessment” section. We used 
all the regressors (static in combination with dynamic) at the acute stage 
to estimate the behavioral scores. No adjustments were necessary as the 
number of regressors was kept constant. In other words, as the com
parison was made within the SPCs and within the SPCs + dyn PC, but not 
between them, the amount of regressors was the same in each com
parison and therefore, not requiring any correction to solve the differ
ence in their quantity of variables. 

2.8. Classification procedure 

Previous literature performed classification analysis by using EC, we 
tested how EC classification differs from other models using SC and FC as 
division criteria. The subjects were split into two equal groups by using 
the corresponding medians of SC lesion (number of damaged voxels in 
the lesion) and FC principal components. Therefore, our results could be 
compared with those of previous studies. The same procedure was 
performed with the principal components of two different models (EC 
and the EC + SDC mask) to end up with the four separation criteria (SC, 
FC, EC and EC + SDC). To achieve this classification, we used the neu
ropsychological scores to classify patients who were divided based on 
their median split, applying a random forest algorithm. 

Briefly, the random forest algorithm builds upon the concept of a 
decision tree classifier, where samples are iteratively split into two 
branches depending on the values of their features (Breiman, 2001; Sanz 
Perl et al., 2021). 

We trained and evaluated a random forest classifier to distinguish 
different levels of severity, estimated based on the neuropsychological 
test results. We used the neuropsychological scores (see “Neuropsy
chological and behavioral assessment”) as features to classify using a 
random forest algorithm whether patients belonged to the low severity 
or high severity group based on the above criteria (SC, FC,EC, EC +
SDC). Diving the dataset by using the median of:  

1) The lesion volume obtained from the SC segmentation (from the 
lesion itself) indicating the number of voxels affected by the lesion.  

2) The summation of the singular values of the first two PCs obtained 
from the FC information.  

3) The summation of the singular values of the first two PCs obtained 
from the EC information.  

4) The summation of the singular values of the first two PCs obtained 
from the EC information (with the SDC mask). 

We trained random forest classifiers with 1000 decision trees using 
80 % of the subjects through cross-validation analysis. Different training 
criteria were calculated and presented in Fig. S5. All accuracies were 
determined as the area under the receiver operating characteristic curve 
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(AUC) (For more information, see (Sanz Perl et al., 2021)). 

2.9. Topological measurements 

The directionality of EC opens the field to explore various topological 
attributes that cannot be done or are less informative in symmetrical and 
undirected networks such as the FC. In the current study we introduce a 
small group of these metrics:  

1) Broadcasters’ percentage was calculated as the mean of the number 
of successors (number of nodes forming directed edges from which 
the node is the source, without counting the reciprocal relations) 
divided by the amount of the neighbors (all the nodes connected, 
disregarding the directionality). A connection is labeled as reciprocal 
when the number of successors and receivers are the same, while a 
connection is directed when these values are not identical. 

Broadcasters
′

percentage =
Successors(excluding reciprocal relations)

Amount of neighbors    

2) Receivers’ percentages were obtained in the same way but with 
predecessors (number of nodes forming directed edges from which 
the node is the target, without counting the reciprocal relations) 
instead of successors. 

Receivers
′

percentage =
Predecessors(excluding reciprocal relations)

Amount of neighbors    

3) Broadcasters’ amount was calculated by counting how many nodes 
were having a higher weight of outgoing information than incoming 
and then average across patients. 

Brodcasters′ amount =
∑

nodes, if Succesors > Predecessors    

4) The receivers’ amount was calculated by counting how many nodes 
were having a higher weight of incoming information than outgoing 
and then average across patients. 

Receivers’ amount =.
∑

nodes, ifSuccesors < Predecessors  

5) Reciprocity was calculated by obtaining the ratio between reciprocal 
connections and the total amount of neighbors of the corresponding 
node. Since the EC estimation procedure set some directional con
nections to zero, reciprocity is present in fewer connections than in 
FC calculations. 

Reciprocity =
Reciprocal relations
Amount of neighbors    

6) Average path length was calculated as the mean distance of the 
nonzero values of the network. of the Effective Connectivity Matrix 
(ECM). 

Distance matrix = min(Distance(ECM))

7) Communicability was used to calculate the relation between 
different nodes by using the shortest path of the Effective Connec
tivity Matrix (ECM). 

Communicability matrix =
ECM − Min(ECM)

max(ECM) − min(ECM)

2.10. Lesion assessment based on region interaction 

To analyze the interaction between brain regions, each patient’s 
structural connectivity matrix was segmented into three different 

groups: The intersections connecting cortical nodes with other cortical 
nodes, cortical nodes with sub-cortical nodes, and finally subcortical 
nodes with other subcortical nodes. The association between each of 
three different groups and other variables of interest was inspected. For 
assessing the value of each group, three different approaches were used 
giving similar results. These approaches consisted of total disconnection 
(how many nodes were completely disconnected), partial disconnection 
(percentage of disconnection of nodes that were not completely 
disconnected), and the combination of both. As in the previous sections, 
the relationship between the variables was assessed without performing 
any type of prediction. 

3. Results 

We derived a whole brain model to infer the dynamical effects of 
stroke lesions two weeks after onset. We calculated four different 
models: Healthy control model (without EC) and Healthy control model 
(with EC) based on a healthy atlas structural connectome (see methods) 
in combination with individually measured fMRI BOLD signal. A vari
ation of the second one was calculated for a posterior comparison using 
the stroke patients’ fMRI BOLD signal instead of the previously 
mentioned healthy control fMRI BOLD signal (referred as SC-model). 
Stroke model with EC (referred as EC-Model) integrates the healthy 
connectome with each patient fMRI BOLD signal in order to use the 
resulting EC as input for the model. Lastly, the Stroke model with EC +
SDC (referred as EC + SDC model) integrates the healthy connectome 
weighted in stroke patients by the structural disconnection produced by 
each individual lesion (one connectome per patient) next to each patient 
fMRI BOLD signal as input for the model. In contrast, one structural 
connectome was used for the healthy subjects as an average for the 
entire group based on the Yeo atlas (Yeo et al., 2011). To render the 
connectome directional, it was adjusted by the phase differences be
tween regions computed on group average functional connectivity data. 
Then, we estimate the computational model based on coupled Stuart 
Landau oscillators (Fig. 1a). The presented model contains a global scale 
factor, also referred to as G coupling value, which assesses the influence 
of the SC in the model. We selected the optimal value in which the model 
phases were more like the empirical data. As the optimal model fit 
(simulated FC to empirical FC) is dependent on the global coupling, in 
the current study, we use the healthy control dataset to calculate this 
parameter. The result was a value of 3.1, as the most efficient for the 
used model, obtained by an exhaustive exploration of the homogeneous 
parameter space (a, G) around the Hopf bifurcation (a ≈0). It is 
important to clarify that the G value is a scaling factor of the SC, which 
was adjusted in the model through iterations for each subject. 

We developed an effective connectivity (EC) model in healthy con
trols and adjusted it in stroke patients to account for different de
scriptions of the structural damage. EC captures directional interactions 
between regions of the brain. In the healthy control group, we computed 
the distance between the model and the empirical grand average phase 
coherence matrices obtained from the empirically measured fMRI sig
nals. In stroke patients’ group, we adjusted each structural connection 
separately using a greedy version of the gradient-descent approach. The 
resulting EC (Fig. 1a) reveals the influence of one region over another in 
a direct way and provides information on asymmetrical regional pair
wise temporal interactions. The model fitting was assessed for each 
patient in order to represent the similarity between the simulated and 
the empirical data at the subject level (Fig. 1b). 

By using a principal component analysis (PCA) of the resulting ECs, 
we calculated the relation between the main components and behavioral 
performance of the stroke patients (Fig. 1c). Furthermore, we classify 
the level of damage severity using a machine learning algorithm, 
revealing the enhanced performance compared to approaches used in 
previous studies. Finally, we calculated graph topological metrics in 
order to show how network dynamics change after a stroke injury. 

The presented mechanistic generative whole-brain model reveals the 
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consequences of the stroke lesions by benefiting from structural 
disconnection maps revealing the importance of the anatomical con
nectivity disruption at the subject level. 

3.1. EC-based whole-brain models with disconnection masks reproduce 
FC impairments in stroke patients 

In the first analysis, we intend to test how different whole brain 
models predict the most common FC abnormalities found in stroke pa
tients, specifically: 1) a decrease of negative intra-hemispheric FC be
tween regions of the Dorsal attention networks (DAN) and Default mode 
network (DMN); 2) a decrease of inter-hemispheric homotopic FC; 3) a 
decrease of modularity. We compared models that simulated FC or EC, 
each with different kinds of information: no lesion information, gray 
matter damage, and white matter SDC. 

We first considered the Intra-hemispheric FC, i.e., the average pair
wise correlation between regions of the DAN and DMN. We only 
considered the damaged hemisphere to avoid diminishing the effect 
with the preserved hemisphere. As in previous work (J. C. Griffis et al., 
2019; Siegel et al., 2016), the empirical FC in healthy controls shows a 
negative correlation that is decreased (less negative) in stroke (t(121) =
− 2.08, p =.03). In contrast, the model FC, both without or with gray 
matter or SDC mask, is not significantly different between healthy and 
stroke (t(121) = 0.2, p =.83). However, the simulated EC, only when the 
SDC mask is applied, showed a significantly less negative correlation 
than controls, in agreement with the empirical data (t(121) = − 10.5, p 
<.01) (Fig. 2a). It should be also noted that all FC and EC model mea
sures have a much smaller variability than the empirical measures. This 
is due to the optimization of the model that used the same parameter 
value (G-coupling). Therefore, the only source of variability in the 
model for all the patients was the noise, losing variability information 
through the process. 

Next, we consider the Interhemispheric FC measured in healthy and 
stroke patients. As in previous work, interhemispheric homotopic FC 

was significantly stronger in healthy subjects than in stroke patients (t 
(121) = 3.84, p <.01). Using SC-based models there was no significant 
FC difference between groups (t(121) = − 1.09, p =.27). Again, the EC- 
based model only when using the SDC mask replicated the normal 
pattern (t(121) = 68.60, p <.01)(Fig. 2b). 

Thirdly, we consider modularity. In stroke, when considering a given 
functional parcellation, modularity is decreased and recovers over time 
(Siegel et al., 2018). This result was replicated: controls showed a 
significantly higher modularity value than patients (2 weeks post- 
stroke) (t(121) = 2.98, p <.01). Again, the FC models with or without 
masks failed to replicate the empirical pattern (t(121) = 2.05, p =.06), 
while EC models that included the SDC mask did replicate (t(121) =
53.14, p <.01)(Fig. 2c). 

In Summary, this analysis shows that whole brain EC models that 
include structural disconnection information resemble the empirically 
observed FC abnormalities in stroke patients including intra- 
hemispheric, inter-hemispheric, and modularity. Other models that do 
not include lesion information or only gray matter damage, do not 
resemble empirical results. 

3.2. EC-based whole-brain models show the best fitting to the empirical 
data when including structural disconnection information 

Next, in order to inspect the validity of the models, we checked how 
the different models fit the empirical data. Therefore, we assessed the 
quantitative similarity between empirical FC and simulated FC from 
different models (SC, EC, and EC with SDC mask) in stroke patients. 

The EC-based model with SDC masks showed the highest correlation 
with the empirical data (mean = 0.52), next the EC-based model without 
SDC masks (mean = 0.32), last the SC-based model (mean = 0.27). 
Fig. 3a displays the topology of the empirical and simulated FC. Fig. 3b 
reveals the group analysis of this phenomenon including the correlation 
by node of one example subject (bottom). This result shows the validity 
of the presented model and the importance of the SDC mask. The same 

Fig. 1. Pipeline of methods used for the anal
ysis. (A) Pipeline: Four different models were 
created: Healthy model without effective con
nectivity (EC) and Healthy model with EC, 
both composed of healthy controls SC and 
healthy controls FC; Stroke model with EC, 
composed of healthy controls SC and stroke 
patients FC; Stroke model with EC plus SDC 
mask, composed by Stroke patients SC 
(Healthy SC + SDC mask) and stroke patients 
FC. A variation of the second model (Healthy 
model with EC) was calculated as a compari
son, later called as SC-Model where instead of 
the healthy controls FC, the stroke FC was 
used. The control parameters of all the models 
were tuned using the grand average FC derived 
from the healthy controls’ fMRI BOLD data. 
For modeling local neural masses, it was used 
the normal form of a Hopf bifurcation. EC is 
calculated by optimizing the effectiveness of 
the synaptic connections between brain re
gions as specified by the SC. (B) Model com
parison (fitting): The model fitting was 
assessed for each subject and the Pearson cor
relation was calculated to check the similarity 
between the empirical and the simulated. (C) 
Model analysis and behavior: To analyze the 
properties underlying the EC, we performed a 
Principal Component Analysis (PCA), with 
which results, we measure their associative 
strength with the neuropsychological assess
ment (behavior) and their sensitivity to clas

sify the severity of the stroke in each patient. Furthermore, topological metrics were calculated taking advantage of the asymmetric feature of the EC.   
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analysis was run on the control group model showing that the level of 
correlation in healthy controls is similar to that obtained in stroke pa
tients (Fig. S9). 

In summary, this analysis shows that whole brain models that 
include SDC information have the highest resemblance to the empirical 
data showing the value of the lesion information in the presented 
models. 

3.3. EC-based whole-brain models show abnormalities of network 
communication in stroke 

Having established that EC-based whole brain models replicate the 

most common FC abnormalities in stroke, and that are the most accurate 
in replicating empirically measured FC, it is now possible to examine 
deficits in communication, specifically differences in directional in
teractions both within stroke patients and between stroke and controls. 

Hence, we compared within and between network communication of 
EC in both patients and controls (Fig. 4A). The sum of weights of the 
connections was Fisher z-transformed to show the difference. The matrix 
is organized with sender nodes on the vertical axis and receiving nodes 
on the horizontal axis. 

In controls there are strong within-network and inter-hemispheric 
homotopic interactions. There are also strong interactions between 
networks. It is apparent that the DMN is the strongest sender (left: [F 

Fig. 2. FC impairment in stroke and 
replication with whole-brain mechanistic 
model: Comparison between patients and 
controls in their empirical FC (left), SC- 
based model (center), and EC-based 
model (right) in (A) intrahemispheric 
value, (B) interhemispheric value, and 
(C) modularity value. Both models are 
performed with and without mask 
including the comparisons between the 
SDC mask and the gray matter mask (See 
Methods). The model based on EC 
showed to be more like the empirical FC 
(compared to the model based on SC) due 
to it was trained to optimally fit the 
empirical data.   
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(6,119) = 7.78, p <.01]; mean = 1.28, SD = 1.25; right hemisphere: ([F 
(6, 119) = 2.73,p =.01]; mean = 0.53, SD = 0.77). DMN therefore ap
pears to be the network with the strongest influence on other networks 
(See discussion). 

Stroke patients seem to maintain robust within-network homotopic 
interactions, but much weakened between-network interactions. This 
can be observed clearly in the difference matrix in Fig. 4A (EC 

difference). Statistical comparisons among networks are shown in 
Fig. S8 with the strongest differences in DMN, somatomotor, brainstem, 
and basal ganglia. 

However, more information emerges when all lesions are flipped to 
one side and then comparing healthy to damaged hemisphere (Fig. 4B). 
These matrices indicate that regions in the damaged hemisphere do not 
‘send’ to homotopic healthy hemisphere regions, while such influence is 

Fig. 3. Model similarity: (A) FC 
matrices for empirical data (top), Simu
lated FC using SC (center-top), Simu
lated FC using EC (center-bottom) and 
Simulated FC using EC plus the SDC 
mask (bottom). Matrices were illustrated 
in brain surfaces to help visualization 
revealing the topological localization of 
the effects. (B) The correlation between 
the empirical data and each of the 
aforementioned models. The highest 
correlation was observed in the model 
based on EC plus SDC masks. Group re
sults are displayed (top) while also in
dividual result from one example subject 
is shown (bottom).   

Fig. 4. Networks interactions: (A) Network interactions for the EC of (left) controls, (center) patients. The right panel exposes the difference for each interaction 
between the two groups. (B) Network communication comparing damaged from healthy hemisphere: In center and right panels, the matrices were re-organized to 
have all the damage hemispheres together on one side and all the healthy hemisphere on the other. 
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maintained in the opposite direction from healthy to damaged hemi
sphere (compare off-diagonal interaction for healthy (upper) and 
damaged (lower) hemisphere networks). Between networks interactions 
seem to be damaged in both healthy and damaged hemispheres. 

In summary, the EC models show interesting impairments in 
communication from the lesioned to the healthy hemisphere, and a loss 
of interaction between networks which is especially evident in the DMN 
and a few other networks. This approach will be discussed in relation to 
other methods to study interactions, e.g., Granger causality. 

3.4. EC-based whole-brain models and correlation with clinical variables 

In the next analysis, we explored the correlation between (simulated 
FC from) EC-based models and lesion, clinical, and behavioral variables. 
The analysis aims to shed light on the relation between lesion metrics 
(such as lesion volume and NIHSS score) and behavioral variables (such 
as motor tasks). Furthermore, we compared the obtained outcome with 
previously reported results in order to show the robustness of the pre
sented models. 

To reduce the spatial variability across all brain regions, we first 
computed the PCs (calculated as the singular value of the first two 
principal components) from the EC model. Two static PCs explained 44 
% of the total variance (see methods) and explained a significant per
centage of the lesion volume variability (R2 = 0.17, p <.01), and clinical 
severity based on the NIHSS score (R2 = 0.12, p <.01) (Fig. 5a). 

Next, we explored how these PCs were related to behavioral deficits 
using a subset of patients from (Favaretto et al., 2022), in contrast to the 
complete set used in the previous analysis. Here we considered both 
static components (computed on the time-averaged data) or dynamic 
components based on a state decomposition analysis (see Methods) 
(Favaretto et al., 2022). It is important to clarify that the comparison 
was made only with the subjects for which we obtained the SPCs and 
Dynamic PCS. 

The EC static principal components (SPCs) did not show any signif
icant association with behavior (Fig. 5b). However, the behavioral as
sociation in some domains improved when static and dynamic EC 
components were combined: Motor-Left (R2 = 0.36, p <.01), Motor- 
Right (R2 = 0.23, p =.05) and Attention Visual Field-effect (Atten
tionVF) (R2 = 0.41, p <.01). In all domains, except for Attention val
idity/Disengagement, PCs from EC associative value were higher when 
performed with the damage mask (Sup Fig. 3). 

In summary, not only the PCs from the EC model were related to 
lesion metrics but also outperformed previously reported metrics in 
existing literature, in their relation to clinical variables such as behav
ioral impairment. 

3.5. EC-based whole-brain models and classification of behavioral 
impairment 

In the next analysis, we intend to test the utility of the whole brain 
models for the classification of patients’ lesion severity in order to 
contribute to their diagnosis. Hence, we implemented a classification 
algorithm in order to distinguish patients’ lesion severity using as input 
the results of the behavioral tests. The division of patients according to 
their structural disconnection was based on the median value of their 
lesion volume, separating the sample into two equal groups. 

Given the heterogeneity in lesion location and behavioral deficits 
across patients, we infer that FC dynamics would be differently affected 
depending on the severity of the static FC impairment. Therefore, we 
applied a Principal Component Analysis (PCA) to the static FC of acute 
patients (after z-scoring to the average FC of control subjects) to split 
into a low and high severity group. Then, we used the same logic to 
divide the sample using the PCs of the previously mentioned models. As 
a result, the prediction of behavioral impairment is based on a median 
split of the subjects’ singular value (Derived from PCA analysis) ac
cording to different criteria (SC, FC, EC, EC with SDC mask). By using a 
random forest classifier, we obtained the area under the curve (AUC) 
representing the accuracy of the classifier for high severity injury pa
tients and low severity injury values, according to the median score. We 
used the performance in the neuropsychological tests, including all the 
behavioral domains (explained in the methods section), of the patients 
to test the algorithm and assess the classification. The scores were z- 
scored to get one score across domains. The outcome is visualized as 
histograms (Fig. 6). Each row represents classification based on different 
signals (SC, FC, EC, EC with SDC mask). The histograms in blue corre
spond to the AUC values obtained using the real data, while the histo
grams in red indicate the AUC values obtained after shuffling the data 
labels. Label shuffled is used as a null model to obtain the p-values 
shown in the insets. 

To measure the statistical significance of the accuracy values, we 
trained and evaluated a total of 1000 classifiers using the behavioral 
scores of the patients but scrambling the class labels. Afterward, we 

Fig. 5. Association strength of EC and 
enhancement by using SDC mask: (A) Rela
tion between the values obtained from the 
PCA of the EC and (top) the lesion volume 
(Calculated in voxels amount from the SC), 
and (bottom) the NIHSS score. (B) Associa
tive strength of three behavioral domains 
given by the static PCA (SPCs) of the three 
approaches (FC, EC with the SDC mask and 
EC without the SDC mask) and with their 
corresponding interaction with the dynam
ical components (see Methods for details). 
Asterisk indicates when only one regressor 
shows a significant relationship between the 
three measurements.   
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produced an empirical p-value by counting how many times the accu
racy of the classifier with scrambled class labels was greater than that of 
the original classifier. All accuracies were determined as the area under 
the receiver operating characteristic curve (AUC). The EC (with SDC 
mask) showed the highest performance (mean = 0.73, SD < 0.10, p 
<.01) followed by EC (mean = 0.65, SD < 0.1, p =.26), FC (mean = 0.65, 
SD < 0.11, p =.029) and SC (mean = 0.63, SD < 0.10, p =.028) (Fig. 6). 
Same information is summarized in Sup. Table. 1. The presented result is 
obtained by using 80 % of the subjects during the training of the cross- 
validation classification. For an exploration of other ratios of training, 
see Fig. S5. 

In summary, the highest performance to classify behavioral impair
ment was obtained by using the EC-model including the disconnection 
information, showing another contribution of the presented models for 
stroke patients’ diagnosis. 

3.6. Topological measures in EC-based models 

Since the EC represents the directed non-symmetrical interactions 
between brain regions, it is possible through graph metrics to describe 
differences in the topological organization between healthy controls and 
stroke patients by means of a group level analysis. Following that line, 
the next analysis will explore a diverse range of graph metrics in order to 
show how they reflect the difference between the two groups. 

In the comparison between stroke patients and healthy subjects, 
patients have a significantly higher degree ratio per node, both in 
broadcasters (t(121) = 113.04, p <.01), and in receivers (t(121) =
123.16,p <.01). Moreover, when comparing broadcasters to receivers, 
all patients had a larger number of broadcasters than receivers (Fig. 7a). 
It should be noted that the difference in Fig. 7 with healthy controls is 
somehow exaggerated by the fact that all reciprocal connections were 
excluded for the calculation of broadcasting and integration. Metrics 
calculations are explained in detail in the Methods section. 

In addition, the average path length was higher in patients than in 
the control group (t(121) = 28.5,p <.01), while the effect was the 
opposite for reciprocity and communicability where controls showed 
significantly higher values than patients (t(121) = − 14.59, p <.01 and t 
(121) = -41.13, p <.01 respectively. 

To examine the influence of lesions on these metrics, the damaged 
hemispheres were aligned on the same side. Broadcasters’ percentage 
was higher in the healthy hemisphere compared to the damaged one (t 
(190) = 67.01, p <.01)). The same effect was visible in the reciprocity 
level (t(190) = 31.54, p <.01)), while the reverse direction was observed 
in the receivers’ percentage (t(190) = − 49.09, p <.01)) where higher 
values occurred in the damaged hemisphere (Fig. 7b). 

These findings suggest that communication is less efficient in stroke 
patients (longer path length, lower reciprocity, and communicability), 
and this depends on a topological organization in which the integration 

Fig. 6. Improving classification of severity 
level by using EC: (A) Each plot represents a 
different criterion of classification of the two 
groups. Histograms of AUC values for the 
random forest classifiers trained to distinguish 
low from high severity behavior impairment 
using as division criteria: the lesion volume of 
the SC (top-left), the PCs of the FC (top-right), 
the PCS of the EC (bottom left) and the PCs of 
the EC with the SDC mask applied (bottom- 
right). All classifiers were tested using the 
neuropsychological assessment performances. 
Histograms in blue correspond to data without 
label shuffling, while red indicates AUC after 
label shuffling. (For interpretation of the ref
erences to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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among regions is abnormally high (higher broadcasters and receivers). 
Interestingly, this overall topological organization reflects an asymme
try between the damaged and healthy hemisphere, where the latter 
sends abnormally more to the damaged one. 

Next, it is interesting to ask how this topological organization relates 
to the canonical FC abnormalities reported in previous work (Baldas
sarre et al., 2016; J. C. Griffis et al., 2019; Siegel et al., 2016). Hence, the 
relation between FC impairments in stroke (intrahemishperic, inter
hemispheric, and modularity) and the topological metrics of the EC 
(Broadcasters’ amount, receivers’ amount, and reciprocity) were 
investigated giving as a result 9 combinations (3 FC × 3 topological) 
(Fig. 7d). Using the empirical FC, 6 out of 9 correlations were significant, 
using the simulated FC from the EC model with SDC masks 5 out of 9 
correlations were significant, while using the EC model without any 
mask, only one correlation was significant. 

Interestingly all topological measures (broadcasters, receivers, and 
reciprocity) correlated significantly with the strength of inter- 
hemispheric FC and modularity, much less with intra-hemispheric FC. 
The model that includes only SC correlated significantly with the 
modularity, and since it did not contain any directional information, did 
not correlate with broadcasters or receivers. 

There was a significant difference between patients with cortical 
lesions when compared with those with subcortical lesions: cortically 
damaged patients showed a lower value of broadcaster amount (t(54) =
− 2.5, p =.013), a lower value of receivers’ amount (t(54) = -2.42, p 
=.018) and a higher value of path length (t(54) = 2.28, p =.026) 
(Fig. S6). This result implies that the topological measures capture 
prevalently cortico-cortical communication and less subcortical-cortical 
communication. 

Conversely, we did not find any significant differences when 
comparing the patients with lesions in the left hemisphere and the right 
one (t(94) = − 0.5, p = .6). Left and right hemisphere lesion produced 
topological measures that were strongly correlated: Broadcaster per
centage: r = 0.98, p <.01; Receivers percentage: r = 0.98, p <.01; 
Reciprocity degree: r = 0.92, p <.01. This result implies that lesions on 
either side produce bilateral effects that are similar irrespective of the 

side of the lesion. 
In summary, topological differences between stroke patients and 

healthy controls can be obtained by the means of graph metrics, indi
cating how brain dynamics are modified due to the stroke incidents. 
Those differences got enhanced when the healthy and damaged hemi
spheres got aligned across all stroke patients. 

3.7. Relation between regions interaction and stroke-related metrics 

For the final analysis, we explored the nodes’ communication by 
inspecting the areas they are communicated to. Therefore, the edges of 
the corresponding nodes can be distinguished into different groups in 
order to observe which interactions are most associated with previous 
studied metrics. In order to localize which regions were involved in the 
affected nodes, we labeled the nodes based on which areas were being 
communicated. Each patient structural connectivity matrix was 
segmented into three different groups, edges that communicate two 
nodes from Cortical-Cortical (CC), nodes from Subcortical-Cortical (SC), 
and nodes from Subcortical-Subcortical (SS) (Fig. 8a). We performed 
correlations between the amount of lesion of each group and previously 
reported metrics. The relations between them are presented here 
(Fig. 8b). 

Relation with behavior:  

- There was a significant association between the CC group with 
Language (r2 = 0.36, p <.01), MotorL (r2 = 0.10, p <.01), MemoryS 
(r2 = 0.11, p <.01) and Motor IC T1 (r2 = 0.10, p <.01) while no 
significant relation with the remaining behavioral domains (p >.1)  

- There was a significant association between the SC group with 
Language (r2 = 0.16, p <.01), MotorL (r2 = 0.33, p <.01), MemoryS 
(r2 = 0.20, p <.01) and Motor IC T1 (r2 = 0.35, p <.01) while no 
significant relation with the remaining behavioral domains (p >.1)  

- There was no significant association between the SS group with any 
of the behavioral domains (p >.2) 

Relation with FC abnormalities. 

Fig. 7. Topological measures benefited from EC: (A) Comparison between stroke patients and healthy controls in (top-left) the amount of broadcasters per node, 
(top-right) the amount of receivers per node, (center-left) reciprocity per node, (center-right) average path length and (bottom-left) communicability. At the bottom- 
right graph, it is visible the relation between both the number of receivers and broadcasters in both sample groups. (B) Hemispheres were flipped when corresponding 
to align the damaged and healthy hemispheres. Differences in ratio of Broadcasters (top), receivers (center) and reciprocity (bottom) are represented with arrows. (C) 
Visualization of connections in both healthy and damaged hemisphere indicating the relevance of interhemispheric communication. Blue arrows show the broad
casting increase in the healthy hemisphere and the receivers increase in the damaged hemisphere. Purple arrows indicate the superior reciprocity in the healthy 
hemisphere compared to the damaged one. (D) Relation between the FC impairments in stroke (Intrahemishperic, interhemispheric, and modularity) and the to
pological metrics of the EC (Broadcasters, receivers, and reciprocity) in (top-left) EC model with SDC mask, (top-right) EC model without SDC mask, (bottom-left) SC 
model, (bottom-right) empirical FC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Lesion volume classified according to region interaction and their relation with stroke-related metrics: (A) Distinction between three different types of lesions 
regarding the involved regions, Cortical-Cortical, Subcortical-Cortical and Subcortical-Subcortical. Color is used as a reference to distinguish the three different 
groups in a visual way. (B) Association between the lesion classification and behavior domains, FC abnormalities, topological metrics, lesion volume, and NIHSS. It is 
important to note that the lower amount of nodes in the SS group is influencing the reported results. 
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- There was a significant association between the CC group and 
interhemispheric level (r2 = 0.23, p <.01) and modularity (r2 = 0.07, 
p <.01) while there was no significant difference with intrahemi
spheric level (r2 = 0.01, p =.19)  

- There was a significant association between the SC group and 
interhemispheric level (r2 = 0.33, p <.01) and modularity (r2 = 0.14, 
p <.01) while there was no significant difference with intrahemi
spheric level (r2 = 0.001, p =.38)  

- There was no significant association between the SS group and any of 
the three FC abnormalities (p >.1) 

Relation with Topological metrics:  

- There was a significant association between the CC group and the 
number of broadcasters (r2 = 0.20, p <.01), number of integrators 
(r2 = 0.33, p <.01), and reciprocity level (r2 = 0.26, p <.01)  

- There was a significant association between the SC group and the 
number of broadcasters (r2 = 0.22, p <.01), number of receivers (r2 

= 0.19, p <.01), and reciprocity level (r2 = 0.37, p <.01)  
- There was no significant association between the SS group and any of 

the topological metrics (p >.3) 

Relation with Lesion volume:  

- There was a significant association between the CC group and lesion 
volume (r2 = 0.72, p <.01).  

- There was a significant association between the SC group and lesion 
volume (r2 = 0.51, p <.01).  

- There was no significant association between the SC group and lesion 
volume (r2 = 0.01, p =.8) 

Relation with NIHSS:  

- There was a significant association between the CC group and NIHSS 
(r2 = 0.10, p <.01).  

- There was a significant association between the SC group and NIHSS 
(r2 = 0.51, p <.01).  

- There was no significant association between the SC group and 
NIHSS (r2 = 0.01, p =.9) 

In summary, this analysis shows that region interaction in the 
structural disconnection information is related to previously reported 
metrics across this study. This provides an extra benefit for the inclusion 
of this information into the whole-brain models. 

4. Discussion 

In the current study, we created a generative model based on effec
tive connectivity (EC) as a mechanistic answer to calculate post-stroke 
effects. The model replicates the most common FC impairments 
observed in previous literature by making use of the white matter 
structural disconnection caused by each patient’s lesion (SDC mask). 
The EC model proves to be more strongly associated than previous 
models when relating to subjects’ behavioral performance. More 
importantly, we demonstrate that the EC shows a higher performance 
when classifying the severity of the lesion. Finally, due to its asym
metrical property, it provides topological metrics useful for further 
analysis. All the presented methods and results contribute to shed light 
on the brain dynamics after stroke incidents, including the relevance of 
the structural disconnection information. 

4.1. FC impairment in stroke 

As reported in previous literature, there is a visible pattern of alter
ations in the FC of patients after stroke. These include an increase in the 
correlation of the intrahemispheric level (bringing it closer to zero), a 
decrease in the interhemispheric level, and a decrease in the modularity 
level (Arnemann et al., 2015; Baldassarre et al., 2016; Gratton et al., 
2012; Siegel et al., 2016). While many studies focus on the concepts of 
integration and segregation (Adhikari et al., 2017; Bullmore & Sporns, 
2009; Deco et al., 2015; Park & Friston, 2013; Sporns, 2013), their 
reduction poststroke could be the result of a single disruptive process 
such as the previously observed reductions in network modularity in the 
brain (Gratton et al., 2012). Moreover, modularity could be considered 
as a quantification of the ability of the brain to differentiate into sepa
rable subnetworks and is an essential property found in many complex 
systems that allows the system to develop dynamic behaviors (Meunier 
et al., 2010). 

By using simulated models, the Hopf model that included only the SC 
information did not accurately replicate the empirical FC abnormalities 
(Fig. 3), while the model optimized with EC did, but only when the SDC 
mask was added. Notably, the model replicated the empirical FC effects 
only when the degree of white matter disconnection was taken into 
account, not the gray matter (parcel) damage as in (Adhikari et al., 
2017). This illustrates the critical importance of white matter damage 
not only for understanding the physiological effects of stroke (Corbetta 
et al., 2015; Joseph C Griffis et al., 2019a; Griffis et al., 2020), but also 
for accurate modeling and prediction as illustrated in this work. 

The current study underlines the validity of whole-brain computa
tional models by complementing previous results (Joseph C Griffis et al., 
2019a) with the information of SDC masks. The inclusion of the SDC 
masks should be taken into consideration in the future when modeling 
data of stroke patients. 

Regarding the lesion localization, a clear distinction between cortical 
and subcortical patients is found when the SDC mask was included in the 
model, providing another advantage in using the presented model as a 
tool for future studies concerned about lesion localization and 
diagnostics. 

4.2. Associative value of EC and enhancement by using SDC mask 

Previous literature suggests that the relationship between the 
structural disconnection and the functional connectivity patterns (FC) 
should be low-dimensional (Corbetta et al., 2015; Joseph C Griffis et al., 
2019a) as the components which explained most of the variance could 
provide useful information about cognitive and behavioral impairment 
(Bayrak et al., 2019). 

In comparison to a recent study (Favaretto et al., 2022) that focused 
on the influence of the FC components and their interaction with 
dynamical features, this study aims to prove the enhanced associative 
value of the EC components. 

We investigated the associative power over all the described domains 
(Fig. S3). By comparing the dynamical components combined with the 
PC provided by the FC and EC, the latest showed higher accuracy, 
especially for motor deficits. This is consistent with previous literature 
which claimed that functional alterations of brain networks are impor
tant for cognitive functions that rely on distributed networks (e.g., 
memory, attention, language), as compared to visual and motor func
tions for which structural damage is more sensitive (Corbetta et al., 
2018). By performing a model which includes structural information, 
the relation over domains more sensitive to structural damage was more 
likely to get enhanced. It is important to underline that the present 
model combines both structural and functional information, providing 
more information compared to the analysis using only functional data 
(Favaretto et al., 2022). Future studies could introduce alternative 
models to control this issue. 
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4.3. Network communication reveals loss of interaction after stroke 

Several studies have discussed the role of DMN as a brain hub (Power 
et al., 2013; van den Heuvel & Sporns, 2013). Here we found that the 
DMN is the network that exerts the main influence over other networks 
and that this influence is significantly decreased in stroke patients, both 
in the damaged and healthy hemisphere. A functional-anatomical 
gradient of cortical organization going from sensory-motor networks 
to polymodal tertiary association networks, with the DMN sitting at the 
top of this hierarchy has been described (Margulies et al., 2016), situ
ating the default-mode network along a principal gradient of macroscale 
cortical organization (Raut et al., 2020). Hierarchical dynamics as a 
macroscopic organizing principle of the human brain (Mitra & Raichle, 
2016) and human cortical–hippocampal dialogue in wake and slow- 
wave sleep (Mitra et al., 2016) have also been described. This organi
zation is exactly the one mandated by hierarchical generative models. 
Networks that occupy higher levels may continuously generate pre
dictions to suppress prediction errors of lower brain networks, such as 
primary sensory and motor regions, which may be engaged when pre
diction errors cannot be readily canceled out. The role of the DMN in 
exerting influence on other networks as shown here is consistent with 
this interpretation, and further suggests the testable hypothesis that 
stroke patients’ deficits may partly reflect prediction errors in sensory- 
motor-cognitive processing. 

This analysis also provides converging evidence on the alterations of 
directional interactions caused by focal stroke lesions. Allegra et al. 
(Allegra et al., 2021) measuring Granger causality (GC) on BOLD time- 
series found that focal lesions cause a relative decrease of GC from the 
damaged to the healthy hemisphere, as well as a decrease of interactions 
within the damaged hemisphere. Our results using EC-based models 
converge on this empirical observation similarly showing a loss of 
‘sender’ influence from the damaged to the normal hemisphere, as well 
as an overall decrease of interactions within the damaged one. 

4.4. Improving classification of behavior severity level by using EC 

Previous studies (J. C. Griffis et al., 2019; Griffis et al., 2020; 
Wodeyar et al., 2020) showed, considering BOLD signals both at the 
voxel scale and ROI scale, that differences in structural connectivity 
were linked to changes in functional connectivity. Thus, found that, in 
the brain, communication between different regions is mediated 
through anatomical connections. The damaging effects perceived in 
stroke patients’ FC were evident when also inspecting their SC, but not 
evident when looking at FC only. 

Furthermore, the EC is calculated through simulations and modeling 
taking into consideration the anatomically restrained connections. In 
this study, the SC information was enhanced by the addition of the SDC 
mask. The classification using the EC information when applying the 
SDC mask showed the highest accuracy of classification, followed by a 
similar value by the EC without the SDC mask and afterward, with lower 
levels, the classification using only SC or FC. Despite providing a 
beneficial factor due to its enhanced classification power, further 
research is needed to know how this fluctuates across time and how the 
recovery of the patient is reflected in it. 

The reported results by analyzing the z-abnormalities help to shed 
light on the relation between FC and SC. The generative model presented 
in the current study exposed how the effect changes in FC as a conse
quence of the stroke damage could be observed when the disconnection 
information is added. Nevertheless, in the damaged area and lesion 
severity classification, the direction of the effect was reversed between 
the empirical and the simulated data. Future studies could clarify the 
underlying reason for this discrepancy. 

4.5. Topological measures benefited from EC 

Previous studies discussed the role of graph theory metrics in stroke 

patients (Han et al., 2020; Idesis et al., 2022; Sun et al., 2021; Vecchio 
et al., 2019b) revealing how properties such as global efficiency indicate 
the efficiency of integration of distributed information through the 
whole network. Nevertheless, the studies relied on FC to calculate the 
corresponding metrics. In the current study, the analysis profited from 
the asymmetricity of the EC to calculate topological metrics that could 
better describe the difference between stroke patients and healthy sub
jects. The calculation of broadcasts and receivers, used in the current 
study, excludes the relations that are spared reciprocally (both di
rections with a different node). Excluding the reciprocal relations 
(which are the majority), the higher number of broadcasters and re
ceivers in the patients (compared to the healthy controls where an even 
higher percentage of the connections were reciprocal) was expected. 
The fact that every single patient presented a higher number of broad
casters than receivers is a relevant and unexpected result. Previous au
thors discussed this as an implication of a loss of integration converting 
it into a good biomarker for stroke treatment (Adhikari et al., 2020; 
Pallarés et al., 2018). Furthermore, a previous study (Chen et al., 2021) 
tried to manipulate this phenomenon through transcranial alternating 
current stimulation (tACS) exposing the difference in integration ca
pacity in stroke patients. As reciprocity was found higher in controls, 
this metric could be used as a biomarker of patients’ recovery. By 
assessing the reciprocity across time of each patient, it could be observed 
if the networks tend to partially restore, or at least compensate for, the 
deficit provoked by the damage. 

While the distinction between patients according to the hemisphere 
damage did not reveal any significant information, the comparison be
tween patients with cortical and subcortical lesions showed significant 
differences (when the corresponding SDC mask was applied) revealing 
that the measures explained could provide a novel method to assess 
distinctions in lesion localization. 

The provided results open the possibility of using the metrics ob
tained in the current study to enhance the classification algorithms and 
create an even more accurate diagnosis. 

4.6. Region interaction association with stroke metrics 

Previous studies have reported the effects of after-stroke discon
nections and their relation with global dynamic metrics such as modu
larity (Joseph C Griffis et al., 2019a; Warren et al., 2014). In this study, 
we divided the disconnection matrix of each patient into different 
groups relative to which regions’ communication was impaired. We 
found a strong relationship between all the variables of interest and the 
Cortical-Cortical and Subcortical-Cortical groups while no association 
with the Subcortical-Subcortical group. These results support previous 
findings showing that stroke effects primarily disrupt whole-brain 
resting physiology by damaging interregional structural connections 
rather than only specific grey matter structures (Joseph C Griffis et al., 
2019b). Based on these results, further studies could benefit from this 
approach to achieve more accurate analysis and reduce the amount of 
data used. 

5. Limitations 

The current study focuses on providing information about thr rela
tionship with behavioral scores, classification of the severity of the 
injury, and providing informative topological metrics to analyze the 
brain dynamics properties. Nevertheless, it is not clear how these pa
rameters are modified through the process of the recovery of the pa
tients. Future studies could benefit from this longitudinal dataset in 
order to address these types of questions. Localization of the top 5 % 
weights in controls and patients is presented in Fig. S7 to allow com
parisons in future studies which focus on the recovery after stroke. 
Furthermore, the dataset consisted of mostly ischemic patients and 
should be replicated in hemorrhagic stroke before being generalized to 
all the patients who suffered from a stroke. 
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Lastly, as beneficial as it was found, the EC consists of a bidirectional 
matrix instead of the typical symmetrical matrices obtained by analyses 
of FC and SC. Therefore, computational processes may be more time 
demanding and computationally costly. 

6. Conclusion 

The current study illustrated how the application of generative 
models provided a mechanistic explanation of the stroke effects in pa
tients. We presented an approach to combine structural and functional 
data from stroke patients. The proposed model can also be used to 
compare different existing SDC masks to determine the one that pro
duces the best fit to empirically observed FC. Together with the rele
vance of the SDC mask for the whole-brain models of stroke, the current 
study replicates the existing biomarkers of stroke damage and provides 
evidence that the proposed model can improve the classification accu
racy of behavioral deficits after stroke. The present study opens a vast 
number of possibilities for further analysis providing a mechanistic 
explanation for stroke injuries and metrics due to its ability to model 
asymmetric interactions among brain regions. Lastly, it revealed the 
strong influence of SDC in the observed effects. 
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Panda, R., Annen, J., Ibañez, A., Kringelbach, M., Deco, G., Laufs, H., Sitt, J., 
Laureys, S., Tagliazucchi, E., Taylor, P.N., 2021. Perturbations in dynamical models 
of whole-brain activity dissociate between the level and stability of consciousness. 
PLoS computational biology 17 (7), e1009139. 

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., 
Eickhoff, S.B., Yeo, B.T., 2018. Local-global parcellation of the human cerebral 
cortex from intrinsic functional connectivity MRI. Cerebral Cortex 28 (9), 
3095–3114. 

Siegel, J.S., Ramsey, L.E., Snyder, A.Z., Metcalf, N.V., Chacko, R.V., Weinberger, K., 
Baldassarre, A., Hacker, C.D., Shulman, G.L., Corbetta, M., 2016. Disruptions of 
network connectivity predict impairment in multiple behavioral domains after 
stroke. E4376 Proc Natl Acad Sci U S A 113 (30), E4367. https://doi.org/10.1073/ 
pnas.1521083113. 

Siegel, J.S., Seitzman, B.A., Ramsey, L.E., Ortega, M., Gordon, E.M., Dosenbach, N.U., 
Petersen, S.E., Shulman, G.L., Corbetta, M., 2018. Re-emergence of modular brain 
networks in stroke recovery. Cortex 101, 44–59. 

Sporns, O., 2013. Network attributes for segregation and integration in the human brain. 
Curr Opin Neurobiol 23 (2), 162–171. https://doi.org/10.1016/j.conb.2012.11.015. 

Sprigg, N., Gray, L.J., Bath, P.M.W., Lindenstrøm, E., Boysen, G., De Deyn, P.P., Friis, P., 
Leys, D., Marttila, R., Olsson, J.-E., O’Neill, D., Ringelstein, E.B., van der Sande, J.-J., 
Turpie, A.G.G., 2007. Stroke severity, early recovery and outcome are each related 
with clinical classification of stroke: data from the ‘Tinzaparin in Acute Ischaemic 
Stroke Trial’(TAIST). Journal of the neurological sciences 254 (1-2), 54–59. 

Sun, J., Wang, D., Chen, S., Pang, R., Liu, H., Wang, J., Zhang, Y., Wang, C., Yang, A., 
2021. The behavioral significance of resting state network after stroke: A study via 
graph theory analysis with near-infrared spectroscopy. Medicine in Novel 
Technology and Devices 11, 100083. 

Tononi, G., Sporns, O., Edelman, G.M., 1994. A measure for brain complexity: relating 
functional segregation and integration in the nervous system. Proceedings of the 
National Academy of Sciences 91 (11), 5033–5037. 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., 
Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation of the MNI MRI 
single-subject brain. Neuroimage 15 (1), 273–289. 

van den Heuvel, M.P., Sporns, O., 2013. Network hubs in the human brain. Trends in 
cognitive sciences 17 (12), 683–696. 

Vecchio, F., Caliandro, P., Reale, G., Miraglia, F., Piludu, F., Masi, G., Iacovelli, C., 
Simbolotti, C., Padua, L., Leone, E., Alù, F., Colosimo, C., Rossini, P.M., 2019a. Acute 
cerebellar stroke and middle cerebral artery stroke exert distinctive modifications on 
functional cortical connectivity: A comparative study via EEG graph theory. Clinical 
Neurophysiology 130 (6), 997–1007. 

Vecchio, F., Tomino, C., Miraglia, F., Iodice, F., Erra, C., Di Iorio, R., Judica, E., Alù, F., 
Fini, M., Rossini, P.M., 2019b. Cortical connectivity from EEG data in acute stroke: A 
study via graph theory as a potential biomarker for functional recovery. 
International Journal of Psychophysiology 146, 133–138. 

Wang, X., Seguin, C., Zalesky, A., Wong, W.-W., Chu, W.-C.-W., Tong, R.-K.-Y., 2019. 
Synchronization lag in post stroke: relation to motor function and structural 
connectivity. Network Neuroscience 3 (4), 1121–1140. 

Warren, D.E., Power, J.D., Bruss, J., Denburg, N.L., Waldron, E.J., Sun, H., Petersen, S.E., 
Tranel, D., 2014. Network measures predict neuropsychological outcome after brain 
injury. Proceedings of the National Academy of Sciences 111 (39), 14247–14252. 

Wei, L., Wu, G.-R., Bi, M., Baeken, C., 2021. Effective connectivity predicts cognitive 
empathy in cocaine addiction: a spectral dynamic causal modeling study. Brain 
Imaging and Behavior 15 (3), 1553–1561. 

Weiss Cohen, M., Regazzoni, D., 2020. Hand rehabilitation assessment system using leap 
motion controller. Ai & Society 35 (3), 581–594. 

S. Idesis et al.                                                                                                                                                                                                                                    

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731634/pdf/pnas.201905534.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731634/pdf/pnas.201905534.pdf
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0165
https://doi.org/10.1016/j.celrep.2019.07.100
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0180
https://doi.org/10.1016/j.nicl.2021.102639
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0200
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0200
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0200
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0205
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0205
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0205
https://doi.org/10.1038/s41598-017-04522-x
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0215
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0215
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0220
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0225
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0230
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0230
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0235
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0240
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0245
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0250
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0250
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0250
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0255
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0255
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0265
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0265
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0265
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0265
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0270
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0270
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0270
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0275
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0275
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0280
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0280
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0280
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0285
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0285
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0290
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0290
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0290
https://doi.org/10.1093/cercor/bhx176
https://doi.org/10.1093/cercor/bhx176
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0300
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0300
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0300
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0305
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0305
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0305
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0305
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0305
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0310
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0310
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0310
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0310
https://doi.org/10.1073/pnas.1521083113
https://doi.org/10.1073/pnas.1521083113
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0320
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0320
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0320
https://doi.org/10.1016/j.conb.2012.11.015
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0330
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0330
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0330
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0330
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0330
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0335
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0335
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0335
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0335
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0340
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0340
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0340
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0345
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0345
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0345
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0345
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0350
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0350
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0355
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0355
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0355
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0355
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0355
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0360
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0360
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0360
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0360
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0365
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0365
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0365
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0370
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0370
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0370
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0375
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0375
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0375
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0380
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0380


NeuroImage: Clinical 36 (2022) 103233

17

Wodeyar, A., Cassidy, J.M., Cramer, S.C., Srinivasan, R., 2020. Damage to the structural 
connectome reflected in resting-state fMRI functional connectivity. Network 
Neuroscience 4 (4), 1197–1218. 

Yeh, F.-C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J.C., 
Vettel, J.M., Verstynen, T., 2018. Population-averaged atlas of the macroscale 
human structural connectome and its network topology. Neuroimage 178, 57–68. 

Yeh, F.-C., Tseng, W.-Y.-I., 2011. NTU-90: a high angular resolution brain atlas 
constructed by q-space diffeomorphic reconstruction. Neuroimage 58 (1), 91–99. 

Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 
Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., 2011. The organization of the 
human cerebral cortex estimated by intrinsic functional connectivity. Journal of 
neurophysiology.  

S. Idesis et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2213-1582(22)00298-4/h0385
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0385
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0385
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0390
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0390
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0390
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0395
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0395
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0400
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0400
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0400
http://refhub.elsevier.com/S2213-1582(22)00298-4/h0400

	Inferring the dynamical effects of stroke lesions through whole-brain modeling
	1 Introduction
	2 Methods
	2.1 Subjects
	2.2 Neuroimaging acquisition and preprocessing
	2.3 Neuropsychological and behavioral assessment
	2.4 Neuroimaging features for classification
	2.4.1 Lesions
	2.4.2 FC measures
	2.4.3 Lesion disconnection masks

	2.5 Whole-brain Hopf model parameter estimation
	2.6 Effective connectivity calculation
	2.7 EC correlation with clinical and behavioral variables
	2.8 Classification procedure
	2.9 Topological measurements
	2.10 Lesion assessment based on region interaction

	3 Results
	3.1 EC-based whole-brain models with disconnection masks reproduce FC impairments in stroke patients
	3.2 EC-based whole-brain models show the best fitting to the empirical data when including structural disconnection information
	3.3 EC-based whole-brain models show abnormalities of network communication in stroke
	3.4 EC-based whole-brain models and correlation with clinical variables
	3.5 EC-based whole-brain models and classification of behavioral impairment
	3.6 Topological measures in EC-based models
	3.7 Relation between regions interaction and stroke-related metrics

	4 Discussion
	4.1 FC impairment in stroke
	4.2 Associative value of EC and enhancement by using SDC mask
	4.3 Network communication reveals loss of interaction after stroke
	4.4 Improving classification of behavior severity level by using EC
	4.5 Topological measures benefited from EC
	4.6 Region interaction association with stroke metrics

	5 Limitations
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Funding
	Appendix A Supplementary data
	References:


